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Generating Realistic Traffic Scenarios: A Deep Learning Approach Using
Generative Adversarial Networks (GANs)

MD SHADAB ALAM∗, MARIEKE MARTENS, and PAVLO BAZILINSKYY, Eindhoven University of

Technology (TU/e), The Netherlands

Diverse and realistic traffic scenarios are crucial for testing systems and human behaviour in transportation research. Leveraging
Generative Adversarial Networks (GANs), this study focuses on video-to-video translation to generate a variety of traffic scenes. By
employing GANs for video-to-video translation, the study accurately captures the nuances of urban driving environments, enriching
realism and breadth. One advantage of this approach is the ability to model how road users adapt and behave differently across
varying conditions depicted in the translated videos. For instance, certain scenarios may exhibit more cautious driver behaviour, while
others may involve heavier traffic and faster speeds. Maintaining consistent driving patterns in the translated videos improves their
resemblance to real-world scenarios, thereby increasing the reliability of the data for testing and validation purposes. Ultimately, this
approach provides researchers and practitioners with a valuable method for evaluating algorithms and systems under challenging
conditions, advancing transportation models and automated driving technologies.

Additional Key Words and Phrases: Generative Adversarial Networks(GANs), Future traffic, Deep Learning, Traffic modelling, Diurnal
Traffic Behavior
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1 INTRODUCTION

1.1 Traffic scenarios in transportation research

In contemporary research projects, data collection efforts encompass diverse traffic scenarios under various conditions,
often involving instrumented vehicles equipped with costly sensors such as cameras and LiDARs. Datasets like
KITTI [20], NuScenes [7], One Thousand and One Hours [26], Pedestrian Intention Estimation (PIE) [31], Waymo Open
Dataset [33], ApolloScape Auto [37], Cityscapes [10], A*3D dataset [30] and Argoverse [8] are benchmarks for numerous
computer vision and automated driving-related tasks. These datasets have been used in various studies to learn different
insights, such as Kooijman [23], which addresses a research gap regarding the impact of objective in-scene features
on driver perceptions during interactions with pedestrians, utilising crowdsourced data and annotations from the
Pedestrian Intention Estimation (PIE) dataset to analyse factors such as pedestrian behaviour, vehicle speed, and visual
clutter. De Winter conducted a study in which he developed a predictive model for human risk perception in driving
scenarios using KITTI Vision Benchmark data and validated it against an online survey, revealing non-linear risk
∗Corresponding Author

Authors’ address: Md Shadab Alam, m.s.alam@tue.nl; Marieke Martens, m.h.martens@tue.nl; Pavlo Bazilinskyy, p.bazilinskyy@tue.nl, Eindhoven
University of Technology (TU/e), Eindhoven, The Netherlands, 5612DS.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0001-9184-9963
HTTPS://ORCID.ORG/0000-0002-1661-7019
HTTPS://ORCID.ORG/0000-0001-9565-8240
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0001-9184-9963
https://orcid.org/0000-0002-1661-7019
https://orcid.org/0000-0001-9565-8240


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Alam-GANs et al.

perception trends and highlighting the importance of factors like road users’ information, vehicle velocity, and road
type for model accuracy [14].

Spanning approximately 39.2 km of driving, the KITTI dataset comprises more than 200k 3D object annotations
captured in cluttered scenarios captured in urban environments using a vehicle outfitted with cameras, LiDAR, and
GPS and IMU sensors. Identifiable individuals are usually absent in these scenes, emphasising a focus on traffic and
environmental factors rather than human behaviour analysis. KITTI’s restricted focus on traffic scenes and absence of
identifiable individuals limit its applicability in studying human behaviour patterns and human factors research.

While comprehensive datasets are mentioned above, they entail significant costs and time investments for data
collection and annotation, particularly concerning diverse environmental and climatic conditions. Moreover, these
datasets provide limited coverage of nighttime scenarios, hindering the development of robust models for low-light
conditions. Furthermore, many datasets, like One Thousand and One Hours, Cityscapes, etc, do not contain any data
for night conditions.

Both academic and industrial projects often rely on video content generated by software platforms like Unity3D or
Unreal Engine or use footage from public sources on the Internet to conduct experiments. For instance, Bazilinskyy et
al. (2023) presented participants with simulations wherein they assumed the roles of cyclists navigating roads alongside
automated or non-automated vehicles [4]. Rasouli et al. (2017) curated a dataset prompting participants to predict
pedestrian intentions when crossing the road [32]. Evans et al. (2020) investigated driving behaviour disparities between
daytime and nighttime conditions [18]. Chen et al. (2019) utilised videos to assess perceived risk under varying weather
conditions such as snow or rain [9]. Bazilinskyy et al. (2020) employed crowdsourced YouTube dashcam footage from
India, Venezuela, the United States, andWestern Europe to assess perceived risk [5]. Oxley et al. (2005) conducted studies
wherein videos depicting road-crossing scenarios were presented to participants spanning different age demographics,
analysing their hesitation levels in crossing roads [29].

1.2 Generative Adversarial Networks (GANs)

The availability of large datasets and powerful processing components has propelled the advancement of artificial
intelligence (AI) in recent years. AI has found application in diverse fields such as drug discovery [6, 24, 25], autonomous
controllers [1, 2, 15], and humanities [19, 27], among others. Specifically, within computer vision [34], AI algorithms
can analyse and interpret images or videos, aiding in tasks like identification, tracking, and classification, which are
integral to daily life. Notably, the introduction of Generative Adversarial Networks (GANs) by Goodfellow et al. (2014)
revolutionised data synthesis, enabling the generation of synthetic images and videos that closely mimic real-world
data distributions [21]. This breakthrough has further expanded the horizons of AI applications, particularly in domains
such as medical imaging, remote sensing, and social media analysis, where access to diverse, high-quality datasets may
be limited.

A GAN comprises two neural networks: (1) generator, a network that inputs random noise and endeavours to create
new data mirroring the actual data, and (2) discriminator, a network that evaluates both real data and the data generated
by the generator (see Figure 1), aiming to distinguish between them as authentic or synthetic. These networks engage
in adversarial training, wherein they vie against each other. The generator strives to enhance its capacity for generating
lifelike data, while the discriminator endeavours to refine its skill in discerning fabricated data. This competitive
dynamic fosters iterative improvement in both networks over time. Additionally, the core equation of a GAN is defined
as follows:
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min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = E𝑥∼𝑝data (𝑥 ) [log𝐷 (𝑥)] + E𝑧∼𝑝𝑧 (𝑧 ) [log(1 − 𝐷 (𝐺 (𝑧)))]

where𝐺 represents the generator,𝐷 the discriminator, 𝑝data (𝑥) the distribution of real data, and 𝑝𝑧 (𝑧) the distribution
of random noise. This equation encapsulates the adversarial training process, wherein the generator aims to minimise
this objective function while the discriminator seeks to maximise it, leading to the iterative refinement of both networks.

GANs present a promising alternative as a data source for creating traffic scenarios. GANs can generate realistic traffic
scenes through unsupervised learning, offering a cost-effective and efficient means of augmenting existing datasets
with diverse scenarios, including nighttime environments and varying traffic densities. Furthermore, the synthetic
nature of GAN-generated data helps preserve individual privacy by eliminating identifiable elements and ensuring
ethical compliance in research endeavours. This addresses the need for data diversity and scalability in traffic analysis,
ultimately enhancing the development and evaluation of machine learning algorithms for real-world applications.

Real Data
Predict real

or fake

Generates
fake data

Random noise inputfeedback

Result

Discriminator

Generator

Fig. 1. GANs architecture.

One pivotal aspect contributing to the widespread adoption of GAN frameworks is their ability to address certain lim-
itations inherent in other generative models, such as Variational Autoencoders (VAEs) [22]. Notably, GANs demonstrate
superiority in generating high-fidelity images compared to VAEs. While VAEs rely on pixel-wise similarity metrics for
reconstruction loss, GANs leverage semantic loss functions [17]. Pixel-wise measures often fail to align with human
visual perception, as they may prioritise trivial discrepancies that humans overlook or vice versa. GANs circumvent this
issue by implicitly integrating reconstruction loss into the training process via the discriminator’s gradient feedback
mechanism, which guides the generator towards generating images that are indistinguishable from real ones.

1.2.1 Recycle GAN. Recycle GAN [3], an extension of the vanilla Generative Adversarial Network (GAN) framework,
introduces a novel approach to improve the quality and diversity of generated samples while addressing the issue of
mode collapse. Mode collapse occurs when a GAN fails to capture the entire data distribution, generating limited and
repetitive samples.

In Recycle GAN, the key idea is to recycle previously generated samples to encourage the generator to explore
different modes of data distribution. This is achieved through a feedback loop mechanism, where samples generated by
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the generator are fed back into the system as input data. By reusing these samples, the generator learns to refine its
output distribution iteratively, resulting in a more diverse and realistic set of generated samples.

By incorporating the recycle mechanism, Recycle GAN effectively mitigates mode collapse and encourages the
generator to explore diverse regions of the data distribution. Experimental results have demonstrated that Recycle GAN
outperforms vanilla GAN regarding sample quality, diversity, and training stability across various datasets.

1.2.2 Unsupervised Recycle GANs. In unsupervised Recycle GANs, Wang et. al[36] modified the Recycle GANs by
introducing the unsupervised recycle loss and the unsupervised spatial loss to conduct more accurate and efficient
spatiotemporal consistency regularisation. The objective function becomes:

𝐿𝑜𝑠𝑠 = 𝐿𝑎𝑑𝑣 + 𝜆𝑢𝑟𝐿𝑢𝑟 + 𝜆𝑢𝑠𝐿𝑢𝑠 (1)

where 𝜆𝑢𝑟 and 𝜆𝑢𝑠 are the weights for the unsupervised losses. 𝐿𝑎𝑑𝑣 is the adversarial loss, 𝐿𝑢𝑟 is the unsupervised
recycle loss and 𝐿𝑢𝑠 is the unsupervised loss.

1.3 Aim of study

This study aims to investigate the potential efficacy of Unsupervised Recycle GANs for transforming traffic scenes,
focusing specifically on the conversion of scenes between daytime and nighttime environments. We aim to assess the
capability of Recycle GANs to produce realistic traffic scenarios under different lighting conditions through training
and evaluation. This research seeks to address two primary challenges: (1) the scarcity of diverse datasets suitable
for training machine learning models, particularly in low-light settings, and (2) the potential insights derived from
analysing human behavioural patterns across diurnal cycles. Additionally, we endeavour to evaluate the feasibility of
Recycle GANs in generating customised traffic videos featuring varied densities of vehicles and pedestrians, with the
overarching objective of enhancing the authenticity and cross-cultural relevance of simulated traffic environments.
Moreover, we will employ GPT-4V for evaluation, soliciting comments on the generated scenes’ realism, thus aiming to
enhance the authenticity of simulated traffic environments.

2 METHOD

2.1 Live webcam footage from YouTube used to train GANs

To comprehensively study the interaction between traffic dynamics and environmental variables throughout the day, we
employed a dataset sourced from live footage available on YouTube1 captured on Gangnam Street in Seoul, South Korea.
The research was approved by the Human Research Ethics Committee of the Eindhoven University of Technology. The
footage included one hour of daytime and one hour of nighttime scenes, recorded on 5 April 2024, 16:00–17:00 (GMT+9)
and 5 April 2024, 20:00–21:00 (GMT+9), respectively. We strategically selected these times to maximize pedestrian
activity, as the late afternoon typically sees increased foot traffic, while choosing too late in the evening might result in
fewer people on the streets, potentially impacting the richness and diversity of the dataset. The videos are available in
the supplementary material. To ensure thorough coverage of both daylight and nighttime conditions, we divided the
footage into training and validation datasets, dedicating 80% to training and 20% to validation. This dataset served as
the foundation for robust training and evaluation of our proposed models, enabling a detailed exploration of traffic
behaviour under varying lighting conditions and environmental settings.

1https://www.youtube.com/watch?v=JbnJAsk1zII
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2.2 Implementation of GANs for traffic scene generation

We used Unsupervised Recycle GANs architecture [36] to train the network. The contemporary difference between
recycle GANs and unsupervised recycle GANs is that they incorporate tonal constraints in the learning process,
specifically focusing on enhancing the visual quality and realism of the generated images. This distinction is crucial for
generating traffic scenes with high fidelity, as it ensures that the synthetic images closely resemble the characteristics
of real-world traffic scenarios. Additionally, the utilisation of Recycle-GANs facilitates the preservation of essential
features such as vehicle shapes, colours, and movement patterns during the generation process, thus contributing to
the overall effectiveness of the framework in simulating realistic traffic dynamics.

2.3 Hyperparameters of the network

Table 1. Hyperparameters

Parameter Value Parameter Value
–loadSizeW 542 –loadSizeH 286
–resize_mode rectangle –crop_mode rectangle
–fineSizeW 512 –fineSizeH 256
–no_dropout True –pool_size 0
–lambda_spa_unsup_A 10 –lambda_spa_unsup_B 10
–lambda_unsup_cycle_A 10 –lambda_unsup_cycle_B 10
–lambda_content_A 1 –lambda_content_B 1
–batchSize 1 –noise_level 0.001
–niter_decay 0 –niter 1
–which_model_netG resnet_6blocks

The training process hinges on a set of hyperparameters delineating the experiment’s crucial aspects. Enumerated in
Table 1, these parameters encompass key configurations essential for effective training. After this enumeration, each
hyperparameter is described in detail to elucidate its role in shaping the training procedure. The source code used to
train the network is available in the supplementary material.

(1) –loadSizeW and –loadSizeH: Specify the width and height of the input images to be loaded during training,
respectively.

(2) –resize_mode and –crop_mode: Determine the resizing and cropping modes employed during preprocessing.
In this configuration, both modes are set to rectangle.

(3) –fineSizeW and –fineSizeH: Define the dimensions of the final input images after resizing.
(4) –which_model_netG: Specifies the architecture of the generator model. Here, it is set to resnet_6blocks,

indicating a ResNet-based generator with six residual blocks.
(5) –no_dropout: Controls the utilisation of dropout regularisation during training. In this instance, dropout is

disabled.
(6) –pool_size: Sets the size of the image pool used for storing previously generated images to aid in training

stability. It is configured to 0, indicating no image pool usage.
(7) –lambda_spa_unsup_A and –lambda_spa_unsup_B: Determine theweights assigned to the spatial unsupervised

loss for domains A and B, respectively.
Manuscript submitted to ACM
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(8) –lambda_unsup_cycle_A and –lambda_unsup_cycle_B: Specify the weights for the unsupervised cycle con-
sistency loss for domains A and B.

(9) –lambda_cycle_A and –lambda_cycle_B: Control the weights assigned to the cycle consistency loss for do-
mains A and B when supervision is provided.

(10) –lambda_content_A and –lambda_content_B: Determine the weights for the content loss for domains A and
B, respectively.

(11) –batchSize: Specifies the batch size used for training. Here, it is set to 1 for single-image processing per
iteration.

(12) –noise_level: Defines the level of noise added to input images during training to enhance robustness.
(13) –niter_decay and –niter: Determine the number of epochs before starting learning rate decay and the total

number of training epochs, respectively.

3 RESULTS

After completing the training process, the neural network underwent rigorous testing using footage captured on 13
April 2024. The resulting video showcases a comprehensive comparison between the daytime and nighttime scenarios,
capturing a 10-minute sequence from each. This footage was selected randomly from daytime and nighttime sequences to
bolster the network’s generalisation capabilities, enabling robust performance across diverse environmental conditions.
The training utilised 60 minutes of footage, whereas testing employed separate 10-minute sequences captured on
distinct days. This approach ensures that the network’s performance is evaluated on unseen data, enhancing its ability
to generalise to new scenarios and environmental conditions. The videos generated by the GANs are available in the
supplementary material. To visualise the efficacy of the trained model, Figure 2 presents a single frame comparison
between the daytime and nighttime conditions alongside its transformation through the GANs. Notably, the GANs
adeptly transpose scenes from one lighting condition to another, as evidenced by the seamless transition in the
transformed images.

Upon obtaining the results, the subsequent step involved assessing the veracity of the images. To achieve this, we
utilised GPT-4V [28]. This has been done in numerous research projects (e.g., [11–13, 16, 35]). Driessen et al. (2024)
assessed GPT-4V’s ability to predict human-perceived risk levels in traffic images, utilising 210 static images rated by
approximately 650 individuals[16]. They found that repeating prompts under identical conditions, varying prompt text,
and incorporating object detection features alongside GPT-4V-based risk ratings significantly enhance model validity.
This resulted in a high correlation coefficient of r = 0.83 between AI predictions and human risk scores, indicating
accurate population-level risk prediction and emphasising the importance of prompting GPT-4V similar to human
multi-item questionnaire responses.

We inputted 12 distinct scenes into the model and requested its assessment regarding the authenticity of the images.
To ensure a comprehensive evaluation and to check the consistency of the response from GPT-4V’s we divided the 12
scenes into 2 batches comprising 6 scenes, each containing 3 day and 3 night scenarios. In both cases, GPT-4V was
prompted with "Based on the following criteria, could you determine if these images are artificially created? 1. Uniformity

of lighting 2. Shadow behavior 3. Perspective and scale 4. Texture and detail 5. Presence of edge artefacts".
These criteria are widely recognised as signs of digital imagemanipulation or creation. Typically, genuine photographs

captured by cameras exhibit consistent lighting, shadows that align with light sources, accurate perspectives and scales,
and natural textures. Deviations from these elements within an image usually indicate that it has been edited or
completely synthesised. While these indicators are not solely characteristic of fabricated images, they represent
Manuscript submitted to ACM
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Fig. 2. Dynamic Scene Translation with Recycle GANs: This frame exemplifies the successful application of Recycle GANs in seamlessly
transforming day scenes into night and vice versa. The images on the left depict the original footage, while those on the right are
generated via GANs. We achieve a compelling reversal of time and illumination through innovative generative techniques, showcasing
the potential of GANs in real-world scene adaptation.

anomalies that are generally absent in authentic, unaltered photographs of real-world scenes. In authentic images, all
elements are expected to align cohesively with the physics of light and space. During our assessment, we searched for
discrepancies from this natural coherence to determine if an image appeared fabricated.

For the initial set of six images, GPT-4V’s feedback, as shown in Figure 3a, indicated: "Based on these observations,

there are no definitive indications that these images are artificially created". Interestingly, GPT-4V identified each image
and gave comments on daylight images and nighttime as can be seen in the Figure 3.

Subsequently, we fed another batch of six images—three from daylight and three from nighttime—was analysed.
GPT-4V commented on these images stating, "Overall, these images also do not exhibit clear signs of artificial creation

upon visual inspection. They appear to maintain consistent lighting, shadow behaviour, perspective, and detail that one

would expect from unaltered photos". The detailed response is shown in Figure 3b.

4 CONCLUSION AND FUTURE STUDIES

In this study, we have demonstrated the effectiveness of Unsupervised Recycle GANs for traffic scene transformation
across different times of the day. Our approach addresses the challenge of the lack of datasets for training machine
learning algorithms for transportation research, particularly in low-light conditions such as nighttime scenes. By
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8 Alam-GANs et al.

(a) Response for 1st set of scenes. (b) Response for 2nd set of scenes.

Fig. 3. GPT-4V evaluations of twelve images for signs of artificial creation, examining criteria such as uniformity of lighting, shadow
behaviour, perspective and scale, texture and detail, and presence of edge artefacts. Panels (a) and (b) respectively show the model’s
responses to the first and second sets of images, both during day and night conditions, indicating no clear evidence of artificial
manipulation.

leveraging Recycle GANs, we bridge the gap between data availability during day and night scenarios, enhancing the
robustness and applicability of traffic analysis models.

In addition to our study, we sought external validation of the generated images by leveraging GPT-4V for qualitative
assessment. The feedback from GPT-4V affirmed the high quality and authenticity of the generated images, with no
discernible indications of artificial generation. This external validation underscores the robustness and realism of our
approach, as the generated images closely resemble real-world counterparts. Such confirmation bolsters confidence in
the fidelity and effectiveness of our model, positioning it as a valuable tool for generating authentic traffic scenarios for
various applications in transportation engineering and automated driving research.

In future research, this study can be extended to generate custom videos featuring diverse scenarios with varying
densities of cars and pedestrians. Additionally, there is scope for integrating cross-cultural perspectives into the training
process, encompassing traffic conditions from different regions worldwide. Furthermore, a crucial aspect of enhancement
lies in incorporating background sounds, such as traffic honks and ambient noise, into the generated videos. This
integration would enhance the realism and immersion of the simulated traffic scenes, offering a more comprehensive
dataset for analysis and training of machine learning algorithms. Additionally, exploring techniques for fine-tuning the
generated videos to specific cultural and geographical contexts can further enhance the utility and accuracy of the
generated traffic simulations. Comparing our approach with OpenAI’s SORA2 would provide valuable insights and
contribute to advancing traffic simulation technology.

2https://openai.com/sora
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5 SUPPLEMENTARY MATERIAL

Videos used to test, train and validate the network, and a tag of the source code in Python can be found at https://www.
dropbox.com/scl/fo/wikk927sitse4dc0iwm9v/AAM5hWlKjlCOHkjfr7w587g?rlkey=j4yw3q6q5oipq7gawu0ic5pgl&st=0nyw3yy6&
dl=0. A maintained version of the source code is available at https://github.com/Shaadalam9/gans-traffic. A video demon-
stration of the results is available at https://www.dropbox.com/scl/fo/pli63rbd8bb0z5nv1xtjv/AED5m6pdSf3VgwtKZAl2NO8?
rlkey=n3zkml8vp4ch20cvqnceo5h5z&st=o5xz676d&dl=0.
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