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Fig. 1. Ghibli-style personas for LLMs (image was generated using ChatGPT-4o).

This study examines the effectiveness of using large language model-based personas to evaluate external human-machine interfaces
(eHMIs) in automated vehicles. Various models including miniCPM-V, LLaVA, LLaVA-LLaMA-3, Llama3.2 vision, Moondream, Bak-
LLaVA, Granite3.2 vision, LLaVA-Phi3, Gemma 3, Deepseek-vl2, and ChatGPT-4o were used to simulate pedestrian perspectives.
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2 Alam & Bazilinskyy

Models assessed vehicle images with eHMIs, assigning scores from 0 (completely unwilling) to 100 (fully confident) regarding crossing
decisions. Each model was compared with 15 trials with randomised image sequences, both with and without prior chat context,
and the results were compared with crowdsourced human ratings. The findings indicate Gemma3: 27B performed better without
chat history (r = 0.85), while ChatGPT-4o was superior when the historical context was included (r = 0.81). In contrast, models such
as Deepseek-vl2 and BakLLaVA provided uniform confidence scores with memory context, while Llama3.2 vision failed entirely to
produce outputs.

CCS Concepts: • Computing methodologies → Machine learning approaches; Cross-validation; Simulation theory; Image
processing.
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1 Introduction

In 2017, Google researchers proposed an influential work titled "Attention is all you need" [30], introducing
the attention mechanism [2] to significantly enhance sequence-to-sequence (seq2seq) models [25]. This innovation
paved the way for encoder-only architectures such as the Bidirectional Encoder Representations from Transformers
(BERT) [12] and subsequently decoder-only models such as the Generative Pre-trained Transformer (GPT). Since then,
numerous Large Language Models (LLMs) have emerged, tailored for specific tasks such as medical analysis [22] and
document processing [36], as well as general purpose models such as DeepSeek [34] and ChatGPT (https://chatgpt.com).
With the continuous growth in available data and advancements in computational resources, the performance and
capabilities of these models have steadily improved.

Researchers have shown significant interest in evaluating whether these sophisticated language models can suc-
cessfully pass rigorous evaluations such as the Turing test. In particular, Chat GPT-4.5 and LLaMa-3.1-405B have
recently passed this test, with GPT-4.5 judged human in 73% of cases and LLaMa-3.1-405B in 56% of cases [16]. Further
highlighting their capability, Bhardwaj et al. (2025) demonstrated that models like ChatGPT 3.0 can achieve an accuracy
of 48.71% on some of the world’s most challenging examinations, a figure that increases substantially to 77.69% with
targeted training [5]. Similarly, Stengel et al. (2024) reported that Google’s Bard LLM [26] outperformed human par-
ticipants by correctly answering 62% of the European Board Examination in Neurological Surgery (EANS) questions
in general and 69% when excluding IB-specific questions, compared to human scores of 59% (p = 0.67) and 59% (p =
0.42), respectively [24]. In particular, LLMs consistently performed best in theoretical questions, significantly exceeding
human performance with scores of 79% for ChatGPT, 83% for Bing (https://www.bing.com), and 86% for Bard, compared
to a human baseline of 60% (p = 0.03).

Traditional crowdsourcing strategies, such as putting the questionnaire on a website such as Appen (https://www.
appen.com) or Amazon Mechanical Turk (https://www.mturk.com) have led researchers to frequently encounter issues
with regard to data quality and adherence to experiment protocols, resulting in considerable data exclusion. This
removal process can significantly impact the efficiency and cost-effectiveness of research. For example, de Winter et
al. [11] conducted a crowdsourcing experiment involving 1918 participants who evaluated 100 images over a period of
19 days. However, they subsequently excluded 540 responses due to participants not complying with the guidelines
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Fig. 2. Car equipped with an eHMI given as input to the LLMs.

provided or submitting responses from duplicate IP addresses. Similarly, Bazilinskyy et al. (2022) conducted a crowd-
sourced study examining interactions between cyclists and automated vehicles, initially collecting 2,000 responses but
eventually discarding 740 responses for similar reasons [4]. Burnap et al. (2015) further demonstrated that even when
participants adhere to protocols, the presence of non-expert evaluators and clusters of consistently incorrect judgments
can degrade the reliability of the results [7]. Their findings suggest that crowdsourcing can fail to deliver accurate
insights, particularly for tasks requiring specialised knowledge or domain-specific expertise.

Recently, researchers such as Driessen et al.[13], Bubeck et al.[6], Wu et al.[33], Argyle et al.[1], H"am"al"ainen et
al.[14], and Wang et al. (2021) have demonstrated that LLMs can effectively approximate human opinions on subjective
tasks [32]. This capability allows them to simulate human responses to crowdsourced questionnaires and interviews
with impressive accuracy. Additionally, LLMs have shown promise as annotators, often exceeding human annotators
recruited through crowdsourcing in terms of reliability and consistency. For example, He et al. (2024) illustrated that
GPT-3.5, when adequately guided with clear instructions and examples, outperforms typical crowdsourced annotators
[15]. Furthermore, studies by Li et al. (2025) indicate that LLMs substantially improve the processing of crowdsourced
test results, particularly in tasks involving the clustering and deduplication of bug reports, further emphasising their
utility in crowdsourced research settings [18].

1.1 Aim of Study

This study aims to explore the effectiveness of vision language models (VLM) in interpreting text-based external Human-
Machine Interface (eHMI) messages displayed on automated vehicles (AVs), emphasising their potential to simulate

Manuscript submitted to ACM



4 Alam & Bazilinskyy

pedestrian decision-making processes. Specifically, we evaluate multiple VLM architectures, comparing their ability
to accurately recognise and interpret eHMI messages, assess pedestrian crossing safety, and maintain performance
consistency when historical conversational context (memory) is introduced. The performance of these models is
benchmarked against large-scale human responses collected through crowdsourcing [3]. By investigating the impact
of contextual memory on model accuracy, this research seeks to validate the reliability of VLMs as cost-effective and
consistent substitutes for human participants in human-machine interaction (HMI) evaluations, ultimately forming
design guidelines for effective pedestrian-AV communication interfaces.

2 Method

This study used a crowdsourced dataset initially compiled by Bazilinskyy et al. (2022), involving 1,438 participants
who evaluated 227 distinct textual eHMIs displayed on an AV [3]. Participants indicated their willingness to cross
the road by adjusting a slider scale ranging from 0, representing absolute unwillingness to cross, to 100, representing
complete confidence in crossing safely. This dataset provided an essential human benchmark for the evaluation of the
interpretability of eHMI messages using contemporary vision-language models (VLMs).

All images used in this research were sourced directly from the dataset established by Bazilinskyy et al. (2022) [3].
The dataset comprised a total of 227 unique images, each displaying distinct textual eHMI messages on an AV. The
images were standardised at a resolution of 1024 × 598 pixels and stored in JPEG format.

A variety of LLMs equipped with vision processing capabilities were evaluated. These models were deployed across
three distinct platforms: Ollama (https://ollama.com), Hugging Face (https://huggingface.co/models), and the OpenAI
ChatGPT API (https://platform.openai.com/docs/overview). Table 1 summarises the models employed, detailing their
base architecture and respective deployment platforms. The cost of using the ChatGPT API was 20 EUR. All other LLMs
were used for free.

Table 1. Overview of the models used, their architecture, and deployment platform.

Model Name Architecture Platform
MiniCPM-V [35] CPM-based Ollama
LLaVA:13B [19] LLaMA + CLIP Ollama
LLaVA:34B [19] LLaMA + CLIP Ollama
LLaVA-LLaMA-3 [9] LLaMA-3 + Visual Adapter Ollama
Llama3.2-vision [29] LLaMA 3.2 + Vision Ollama
Moondream [31] Distilled CLIP variant Ollama
BakLLaVA [23] LLaMA 2 + BLIP Ollama
Granite3.2-vision [28] IBM Granite vision model Ollama
LLaVA-Phi3 [10] Phi-3 + Vision module Ollama
Gemma 3: 12B [27] Gemma 3 vision-capable model Ollama
Gemma 3: 27B [27] Gemma 3 vision-capable model Ollama
DeepSeek-VL2-Tiny [34] DeepSeek VLM Hugging Face
GPT-4o [20] Multimodal transformer OpenAI (ChatGPT API)

Each model received an identical series of images sequentially in a controlled, standardised order. The models were
evaluated under two distinct conditions: without conversational history (memory) and with conversational history.
For trials without memory, each image was accompanied by a uniform prompt requesting the models to observe the
vehicle’s displayed message, interpret its implications regarding pedestrian safety, and assign a numerical confidence
Manuscript submitted to ACM
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score (0-100). Below is the prompt used for models without conversation history and the first prompt used when
delegated to work with conversation history.

Carefully observe the image of an automated vehicle and quote the exact text displayed on the vehicle. Briefly

explain what this message implies regarding whether it is safe for a pedestrian to cross the street. Then assign

a numerical confidence score from 0 (certainly unsafe) to 100 (certainly safe). Respond strictly in this format:

Confidence: [numeric value] Meaning: [brief explanation].

For trials incorporating memory, the first image was introduced with the initial prompt. From the second image and
onwards, contextual memory was incorporated using LangChain software (https://www.langchain.com), preserving
the prior conversation history as structured JSON data. The instructions in subsequent trials explicitly instructed the
models to consider previous responses when evaluating pedestrian safety. Each trial was limited to a maximum of six
historical conversations to ensure manageability and comparability, as See et al. (2019) showed, that it is a reasonable
window for humans to maintain a coherent context and judge factors such as fluency, listening, and engagement [21].

(1) Pre-image prompt:
You are a pedestrian deciding whether to cross the road in front of this autonomous vehicle. Pay attention to any

external text or signals displayed on the car.

(2) History prompt:
Below is the conversation history from previous interactions (your past answers might influence your decision):

Followed by the complete prompt-response history of earlier steps.
(3) Final image prompt:

Now, based on the current image details, please respond with a number from 0 to 100 indicating your confidence

to cross the road( 0 = no confidence, 100 = full confidence). Respond strictly in this format: Confidence: [numeric

value] Meaning: [brief explanation].

The evaluation used a modular system architecture to process and analyse responses (see Figure 3). To ensure
response consistency and avoid interference between trials, model interactions occurred sequentially. Local model
deployments via Ollama supported batch mode image processing. The DeepSeek-VL2 model code and weights were
sourced directly from Hugging Face (https://huggingface.co/deepseek-ai/deepseek-vl2-tiny), while API-based models,
such as GPT-4o, were accessed through synchronous HTTP POST requests using JSON payloads.

All evaluations were conducted on a computing system featuring an AMD Ryzen 9 7950X3D 16-core processor with
32GB RAM and a 16GB NVIDIA GeForce RTX 4080 graphics card, ensuring high performance, reproducibility, and
compatibility for local lightweight model execution.

Upon completion of model evaluations, responses were meticulously analysed to extract numeric confidence scores
using deepseek-r1: 14b https://huggingface.co/deepseek-ai/DeepSeek-R1. This was necessary due to variations in model
output verbosity. The following is the prompt used for the extraction of the confidence score.

Read the following sentence carefully and extract the number mentioned in it. Only return the number (as

digits), without any additional explanation or units.

Sentence: “<model’s previous response>”

In instances where direct numeric extraction was not straightforward, a correction protocol was implemented,
instructing the models explicitly to return the numeric value without additional explanation. This ensured accuracy
and consistency across all model outputs. The responses were systematically stored for subsequent statistical analysis,
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allowing comparison with human benchmarks and assessment of the interpretative precision of each model regarding
pedestrian crossing decisions based on eHMI messages.

Fig. 3. Flow diagram of the system architecture showing image processing, prompting, model querying, response correction, and
downstream analysis.

3 Results

The confidence outputs of each model were averaged for each image and compared with crowdsourced results [3].
Without conversation history, Gemma3 27B demonstrated the highest correlation with crowd-sourced responses, with
a strong correlation with mean values (r = 0.85) and median values (r = 0.86). GPT-4o also showed high correlation
coefficients, closely aligned with crowd-sourced responses of the mean (r = 0.84) and median (r = 0.85). In contrast,
MiniCPM-V exhibited a lower correlation coefficient (r = 0.42), indicating weaker alignment with human scores.

When incorporating conversation history, GPT-4o retained the highest correlation coefficient (r = 0.81), indicating
its superior ability to interpret eHMI cues in a conversational context. Gemma 3’s correlation significantly decreased
when using conversation history, suggesting that its performance was adversely impacted by prior conversational
inputs. The MiniCPM-V correlation dropped drastically to -0.01, reflecting poor consistency under memory-based
conditions. Additionally, models like Llama3.2-Vision did not generate output in scenarios involving conversation history,
demonstrating severe limitations in handling contextual memory. Other models also exhibited peculiar behaviours
under these conditions; for example, DeepSeek VL2 provided a constant confidence score of 75 regardless of the image
presented, always accompanied by identical explanations. BakLLaVA consistently produced a confidence score of 0
without providing any explanatory context, indicating significant issues with interpretative consistency and precision.

4 Discussion

This study examines the nuanced performance of various LLMs in simulating pedestrian decision making in response
to eHMI cues from AVs. Excluding BakLLaVA and DeepSeek (with conversation history enabled), our analysis of
models including ChatGPT-4o, Gemma 3:27B, MiniCPM-V, and LLaMA3.2-vision reveals significant differences in the
calibration of the risk assessment.

In particular, ChatGPT-4o and Gemma 3:27B exhibit strong alignment with human-like safety evaluations, particularly
in settings without conversational history. Their superior performance in these memory-free scenarios is attributable
to robust one-shot inference capabilities, enabling accurate extraction and interpretation of salient visual and textual
Manuscript submitted to ACM
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Fig. 4. Correlation matrix without memory.

cues without interference from prior dialogue [17]. The advanced architectures and high parameter counts of these
models facilitate sophisticated multimodal integration, resulting in outputs that closely mirror human judgment. In
contrast, other models demonstrate an overreliance on conversational memory, which often leads to context dilution
and generalised or flattened responses, as they struggle to prioritise immediate inputs over preceding interactions [8].
These architectural and training differences explain the consistent performance of ChatGPT-4o and Gemma 3:27B under
similar conditions.
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8 Alam & Bazilinskyy

Fig. 5. Correlation matrix with memory

When conversational history is introduced, ChatGPT-4o maintains high performance, while Gemma 3:27B and
several other models exhibit a noticeable decrease in predictive accuracy. This divergence appears to be the result of
model-specific strategies for integrating the extended context. The architecture and training of GPT-4o are explicitly
optimised for multi-turn dialogue, allowing it to incorporate previous exchanges without obscuring current visual
inputs. In contrast, the performance degradation observed in Gemma 3:27B suggests limitations in its ability to balance
Manuscript submitted to ACM
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the historical context with new stimuli. Other models, such as those producing uniform responses under memory-
based conditions, further illustrate how conversational history can overshadow relevant immediate input, diminishing
performance.

Additional models, including MiniCPM-V and LLaMA3.2-vision, display increased variability in behaviour when
context is introduced. MiniCPM-V experiences a marked decrease in performance, while LLaMA3.2 vision fails to
generate outputs under memory-inclusive scenarios. These results suggest that in the absence of carefully calibrated
memory mechanisms, some LLMs may underestimate or overestimate risks in pedestrian-vehicle interactions. Such
inconsistencies underscore the importance of fine-tuning models to more accurately reflect human risk assessments in
these contexts.

A further observation involves models such as LLaVA-13B, LLaVA-LLaMA3, and, occasionally, Moondream, which at
times issue crossing commands even when the AV’s LED or eHMI does not explicitly prompt pedestrian movement.
This behaviour indicates a degree of proactivity or inference beyond the given cues, raising concerns about misaligned
or anticipatory decision making in safety-critical scenarios.

5 Limitations and Future Work

This study has several limitations that must be acknowledged. First, the rapidly evolving landscape of Large Language
Models (LLMs) poses a challenge, as newer models regularly emerge that may provide increasingly human-like
responses. Consequently, the results presented here may quickly become outdated. In addition, a standardised prompt
was uniformly applied across all models tested, potentially limiting the ability of individual LLMs to demonstrate
their maximum performance. Customised prompts tailored to each model’s strengths could provide more accurate
assessments of their capabilities. Furthermore, the study observed significant variability in how the models handled
contextual memory, with some performing poorly or completely failing when historical conversational context was
included.

Future research should consider several promising avenues. First, subsequent studies might investigate the impact
of customised prompts specifically designed to take advantage of each LLM’s unique architecture and strengths. In
addition, as new models continue to develop rapidly, systematic evaluations of emerging LLMs should be performed
regularly to assess improvements and refinements in the simulation of human-like decision-making processes. Future
work should also address the challenges associated with incorporating conversational history more effectively, possibly
through specialised training or improved architectural designs. Furthermore, real-world validation experiments that
compare LLM-derived decisions directly with actual pedestrian behaviours could enhance the ecological validity of
these findings. Finally, broadening the scope of scenarios studied beyond pedestrian crossing decisions might provide
deeper insights into the capabilities and limitations of LLM in various contexts of traffic and safety.

6 Supplementary Material

The code and responses of LLMs are available at https://www.dropbox.com/scl/fo/xs37ldfp72dspsrjykc2d/AEnstqB2KFDRjnnl8M0VJz8?
rlkey=63vcekw3qr2c91ao38j1wtxow. The maintained code is at https://github.com/Shaadalam9/llms-av-crowdsourced.
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