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Interaction between future cars and pedestrians should be designed
to be understandable and safe globally. While previous research
has studied vehicle-pedestrian interactions within specific cities or
countries, this study offers a more scalable and robust approach
by examining pedestrian behaviour worldwide. We present a
dataset, "PYT which includes 285 hours of day and night dashcam
YouTube footage from 157 cities and 59 countries. We detected
pedestrian movements, focusing on the speed and the pedestrian
crossing decision time during road crossings based on the bounding
boxes given by YOLO. Videos were carefully selected based on
specific criteria to ensure urban settings and adequate pedestrian
interactions. Results revealed statistically significant cross-cultural
variations in pedestrian behaviour influenced by socioeconomic
and environmental factors such as Gross Metropolitan Product
(GMP), traffic-related mortality and literacy. The dataset is publicly
available to encourage further research into global pedestrian
behaviour.
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1 Introduction

Most studies in the domain of Human Factors share processed
results and insights, with no data published in open access. In
recent years, there has been some improvement in the accessibility
of datasets for automated driving (AD) applications. Data collection
for AD research mostly assumes the acquisition of expensive
hardware, [49], which is often unreliable and requires considerable
time and resources. For example, Dingus et al. [14] collected 43,000
hours of data with 100 instrumented vehicles driving in the USA
for 12 months. Such studies are mostly geographically constrained,
limiting the potential to capture diverse, cross-cultural variations
in behaviour.
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1.1 Pedestrian Behaviour

Pedestrians and modern cars share roads in urban environments. In
2019, vulnerable road users (VRUs, such as pedestrians and cyclists)
accounted for 29% of road fatalities in the EU [16]. These fatalities
often occur due to the driver not being able to understand the
intentions of the pedestrian [43]. Sometimes, such fatalities also
occur as the driver and the pedestrian belong to different cultures,
e.g., in the case of the driver operating a rental car in a foreign
country [48].

Walking constitutes a significant portion of urban traffic. Particularly
in densely populated cities in the developing world, where walking
remains a primary mode of transportation. A study by LUTP
(Leaders in Urban Transport Planning) [47] indicate that in major
Indian cities, between 25% and 50% of trips are made entirely on
foot, while in major African cities, this figure reaches around 50%.
Even in terms of distance travelled, walking accounts for over 50%
of all trips in countries like Tanzania. Unlike vehicles, which follow
more predictable patterns dictated by traffic rules and road designs,
pedestrians exhibit a wide range of behaviours that can be difficult
to anticipate. This variability is influenced by numerous factors,
including individual decision-making, environmental context, cultural
norms, and social interactions [13]. As a result, accuratelymodelling
pedestrian behaviour in traffic scenarios presents a considerable
challenge. Pedestriansmaymake sudden stops, change directions, or
engage in unpredictable actions, such as crossing outside designated
crosswalks or interacting with their surroundings in ways that are
hard to quantify. Such unpredictable behaviour complicates efforts
to develop advanced driver-assistance systems (ADAS) and AD
technology that can effectively and safely interact with pedestrians
on the road.

Studies by Bazilinskyy et al. [3–5], Saffo et al. [42] and Alam et al.
[1] leverage crowdsourcing experiments to analyse human decision-
making across different cultures. However, these studies often lack
realism due to their controlled experimental conditions. Similarly,
research utilising Virtual Reality (VR) and driving simulators, such
as the studies by Onkhar et al. [33] and Bazilinskyy et al. [6], faces
challenges due to hardware constraints that limit their applicability
across different global contexts. Moreover, these studies often
focus on a specific set of scenarios predefined by the researchers,
neglecting other variables such as diverse environmental conditions,
the time of day, the age of the pedestrian, and various unexpected
or spontaneous events that can significantly influence pedestrian
behaviour and safety outcomes. This gap underscores the need
for more comprehensive research methodologies that consider a
broader range of real-world conditions and pedestrian demographics.

https://orcid.org/0000-0001-9184-9963
https://orcid.org/0000-0001-9184-9963
https://orcid.org/0000-0001-9565-8240
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Alam_YT et al.

Pedestrian hesitation [21] at crossings is a significant indicator
of both perceived and actual safety risks present in urban traffic
environments. Hesitation often occurs when pedestrians intend to
cross the road but pause due to traffic conditions, uncertainty, or
other inhibitory factors. These moments of hesitation are crucial
for understanding pedestrian behaviour and the effectiveness of
road safety measures. Harkey et al. [20] found that pedestrian
hesitation at roundabouts is common, particularly at exit legs
where uncertainty about vehicle yielding increases. Similarly, Jay et
al. [21] studied pedestrian hesitation when crossing illegally at a red
light. They found that hesitation often results in pedestrians either
abandoning the crossing or accelerating to avoid an oncoming
vehicle. The study highlights that hesitation increases the risk of
accidents, particularly when pedestrians misjudge the situation or
follow social cues without verifying traffic conditions, leading to
unsafe crossing decisions.

Understanding the speed at which pedestrians cross roads is
critical for assessing pedestrian behaviour, traffic flow, and road
safety [18]. Crossing speed can indicate the level of comfort
or urgency pedestrians feel in urban environments, and it is a
key factor in designing pedestrian-friendly infrastructure. This
approach provides quantitative insights into pedestrian crossing
speed under various urban conditions, including differing levels of
traffic congestion, time of day, and pedestrian demographics. Such
data is invaluable for urban planners and traffic engineers who aim
to enhance road safety and optimise pedestrian traffic management
systems. By analysing crossing speeds, we can better understand
pedestrian preferences and behaviours, ultimately contributing to
more effective and safer urban environments.

Another variable is the time it takes for a pedestrian to decide
to cross the road, which is a critical measure that reflects both
individual behaviour and broader traffic environment conditions.
To the best of our knowledge, no prior studies have measured this
variable either at a local or global level. Crossing decision time
can indicate the perceived safety, the level of caution, and the
overall efficiency of crossing locations. This metric is pivotal for
evaluating the impact of traffic signals, signage, and other urban
infrastructure on pedestrian behaviour. By quantitatively assessing
crossing decision times, we gain valuable insights into how different
variables, such as traffic density, time of day, and pedestrian density,
influence pedestrian decisions at crossings. This information is
crucial for urban and traffic planners seeking to improve pedestrian
safety and optimise traffic flow, thereby enhancing the overall
efficiency and safety of urban transport systems.

1.2 Datasets for Analysing Pedestrian Behaviour

Soon, future traffic will be mixed, comprised of manually-driven
(MDVs) and automated vehicles (AVs), as well as VRUs [7, 30]. The
algorithms deciding on the behaviour of AVs are being designed by
computer-human interaction experts in both industry and academia
today [2, 24]. Often, decisions are made based on the verification
done with a limited base of potential users comprised of individuals
from a single city/country/culture. However, such algorithms must
be scalable to all cultures, and it is important to understand how
pedestrians behave cross-culturally.

The field of computer vision (CV) began in the 1960s, initially
focusing on the challenge of dividing, defining, and identifying
backgrounds and objects within a scene [37]. However, a significant
breakthrough occurred in 2012 with the introduction of AlexNet
[23], a deep neural network that dramatically improved image
recognition accuracy by substantially reducing error rates. With
these advancements in technology, researchers started employing
vehicle-mounted cameras to gather extensive video data from
driving in urban environments. Pivotal datasets such as KITTI
[19], NuScenes [9], One Thousand and One Hours [28], Caltech
Pedestrian detection benchmark [15], Pedestrian IntentionEstimation
(PIE) [38], Waymo Open Dataset [44], ApolloScape Auto [46],
Cityscapes [12], A*3D dataset [35], Argoverse [10] and others have
become standard benchmarks that support a variety of tasks in CV
and AD research. Studies such as Oxley et al. [34] and Rasouli et
al. [39] used videos to investigate the intentions of pedestrians in
traffic. Oxley et al. discovered that crossing decisions were primarily
based on vehicle distance and less on the time of arrival of the
vehicle. Rasouli et al. trained a neural network for the classification
of pedestrians who were looking to cross or walking. Similarly,
Mordan et al. [32] used the JAAD dataset [40] to detect 32 attributes
for a pedestrian. Meanwhile, Vajgl et al. [45], and Mauri et al.
[29] used KITTI datasets to train their algorithm to detect cars,
pedestrians and cyclists in traffic with distance estimation.

On-road studies involving instrumented vehicles for the collection
of traffic data often limit their scope to one or few specific cities or
countries due to (1) high costs, (2) the complexity of the method,
(3) the use of specialised hardware and closed-source software, and
(4) difficulties with obtaining the ethics approval for cross-country
research. Another critical limitation of the existing datasets is
the scarcity of research on the cultural and regional differences
in pedestrian behaviour, particularly at the city level across the
globe. For example, NuScenes features scenes from Singapore and
Boston, while Argoverse focuses on Miami and Pittsburgh. Datasets
such as Waymo Open Dataset attempt to cover some parts of the
USA, namely San Francisco, Detroit, Seattle, Phoenix, Los Angeles
and Mountain View. Similarly, 𝐿2-dataset [11] encompasses five
cities from China, whereas datasets like KITTI only contain scenes
from Karlsruhe (Germany). Bazilinskyy et al. [5] compared risk
perception by showing dashcam video to participants across the
world through crowdsourcing, while Bellone et al. [8] conducted a
user experience of automated public transport in the cities around
the Baltic Sea namely Finland, Estonia, Norway and Gdansk. While
these studies begin to address regional and contextual differences,
they often remain focused on limited geographical areas or specific
aspects of the issue.

1.3 Aim of study

As shown above, the present literature lacks an understanding
of how pedestrians behave in different cities (and countries).
The present study aims to provide a dataset PYT ("Pedestrians
in YouTube") that will entail cross-cultural insights into traffic
behaviour across different cities worldwide. We achieve this goal
by collecting 285 hours and 57 minutes of day and nighttime
dashcam footage from 157 cities from the video hosting platform
YouTube (https://www.youtube.com). The dataset was used to

https://www.youtube.com
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analyze pedestrian crossing speed and time to initiate crossing
without the use of any pre-trained neural networks, relying solely
on object detection in each video frame. Furthermore, the study’s
objective is to explore the difference in traffic behaviour and
compare traffic behaviour and city-specific parameters, namely: (1)
Gross Metropolitan Product (GMP) per capita, (2) rate of traffic-
related mortality, and (3) level of literacy.

2 Method

2.1 Dataset

Numerous videos of driving footage from the perspective of the
dashcam are available on the Internet, with an absolute majority
placed on YouTube. Sharing "special"dashcam traffic videos is
a phenomenon where people exchange them for amusement. A
notable example is a Telegram group BadShofer (https://t.me/
s/badshofer) with →43,800 users and →48,700 shared videos as
of September 1, 2024. Most such videos are short and contain
isolated footage of abnormal events like accidents and unexpected
behaviour of participants in traffic. The angle of the camera is
often not constant throughout such videos. For this study, we
collected dashcam footage, which is representative of regular
driving situations. Numerous users on YouTube share relatively long
(often longer than 40 min) dashcam videos made with professional
recording equipment (e.g., https://www.youtube.com/@jutah with
→787,000 followers and 781 uploaded videos, as of September 1,
2024); likely as they can be used as "background noise"by viewers,
generating income for the authors. As these videos are hosted
on YouTube, they are under the Fair use on YouTube1, which
allows their use for research. The research was approved by the
Human Research Ethics Committee of the Eindhoven University of
Technology. To populate the dataset with videos from YouTube, we
defined the following inclusion criteria:
C1: A continuous focus onurban settings, excluding clips featuring

highways or rural routes.
C2: A minimum video duration of 10 minutes to ensure adequate

coverage of urban environments.
C3: Avoidance of atypical events, such as accidents or special

events, which do not represent everyday conditions.
C4: A population threshold of at least 50,000 for the cities of

interest to guarantee sufficient pedestrian interactions.
It is important to note that YouTube’s license allows the use of

content for research under its Fair use policy. In this study, we
gathered dashcam videos from YouTube, adhering to these licensing
conditions.

The authors included videos that passed the C2 criterion from
the results of search queries on YouTube, where cities were input
individually. The queries were as follows: "dashcam video in [city
name] "driving videos in [city name] "dashcam videos in cities"and
some queries in the regional language like "!i"#$ % &#’()&*)$-
&*"("video from dashcam"in Ukrainian) and "!+"#$ ( &##()&*)$-
&*"("video from dashcam"in Russian). If a part of the video does
not satisfy the criteria C2, the part was removed from the study.

1https://support.google.com/youtube/answer/9783148?hl=en&sjid=
15816069292466875886-EU

Furthermore, if the video contains scenes from both daylight and
nighttime, the video was split in two based on the street lights. The
search for videos took place between February 3, 2024, and April
15, 2024. Each video selected in this study went through visual
inspection by the authors to verify whether criteria C1, C3 and
C4 were satisfied. A total of 338 videos from 157 cities across 59
countries were included. See Figure 1 for the overview of included
countries. They represent 76.67% of the global population. Of these
videos, 267 featured daytime driving, 62 showed nighttime driving,
and 4 included footage from both day and night. The combined
length of collected footage was 285 h 58 min. The videos were
downloaded from YouTube using the pytube library 2 in resolution
1280 x 720 px. Supplementary material contains the codebase used
in this work.

The videos in the dataset were then analysed with the You
Only Look Once (YOLO) algorithm [41], specifically YOLOv8 [22].
YOLO is free to use and is renowned for its speed and accuracy
in real-time object detection. It processes images in a single pass,
predicting bounding boxes and class probabilities simultaneously.
It can detect objects from 80 different classes and provides the
width (W), height (H), and centre coordinates of each bounding
box (X-center, Y-center). The output from YOLO is normalised
between 0 and 1, representing the relative position and size of
objects within the frame. We processed the videos with YOLO to
extract detailed annotations of persons (N = 464,805), bicycles (N
= 30,459), motorcycles (N = 73,409), cars (N = 946,916), buses (N =
41,408), trucks (N = 100,105), traffic lights (N = 178,906) and stop
signs (N = 5,918) at 30 frames per second with minimum of 70% of
confidence. Each detected object was assigned a unique ID, which
was tracked across frames to analyse movement patterns.

We also incorporated additional statistical data for each city: (1)
the population of the country3, (2) road traffic mortality (deaths
per 100,000 population)4, (3) population of the city 5, (4) GMP per
city6, where the GMP of 37 cities were not available, so we took
the GDP of the country from World Bank7 and divided it from the
population of the country (GDP per capita).(5) literacy rate8, and
(6) the average height of the nation9. See supplementary material
for the list of included cities with the YouTube IDs, included videos,
and the aforementioned statistical data.

2.2 Pedestrian Crossing Detection

The acquired dataset allows us to investigate the behaviour of
pedestrians on the city (and automatically country and culture)
level. Detecting pedestrian crossings accurately is essential for
understanding andmodelling pedestrian behaviour in urban settings.

2https://pytube.io/en/latest/
3https://data.worldbank.org/indicator/SP.POP.TOTL; last accessed on June 20, 2024
4https://extranet.who.int/roadsafety/death-on-the-roads/#deaths; last accessed on
June 20, 2024
5https://en.wikipedia.org/wiki/List_of_cities_by_GDP; last accessed on June 20, 2024
6https://en.wikipedia.org/wiki/List_of_cities_by_GDP; last accessed on June 20, 2024
7https://data.worldbank.org/indicator/NY.GDP.MKTP.CD; last accessed on June 20,
2024
8https://en.wikipedia.org/wiki/List_of_countries_by_literacy_rate; last accessed on
June 21, 2024
9https://en.wikipedia.org/wiki/Average_human_height_by_country; last accessed on
June 21, 2024
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)’*. 1: Geographic distribution of cities included in the study. Red points indicate cities from which dashcam videos were
collected, while grey-shaded regions represent countries included in the dataset.

The algorithm detailed in Algorithm 1 employs this detection
strategy to systematically identify and count pedestrian crossings.

The criterion for a pedestrian crossing is defined by the pedestrian’s
entry and exit points on the video frame. A pedestrian is considered
to have crossed the road if their tracked path crosses from less
than 0.45 to greater than 0.55 of the frame’s width, or vice versa.
This accounts for both directions of crossing, thereby capturing a
comprehensive view of pedestrian movement patterns. Importantly,
this criterion is designed to account for different traffic orientations,
whether right-sided or left-sided, by focusing on relative frame
positions rather than specific road configurations. The algorithm
filters the video data to focus only on those instances where the
‘YOLO id’ matches specific pedestrians, groups the data by unique
identifiers, and then checks whether these identified groups cross
the predefined screen width boundaries.

2.3 Calculation of Pedestrian Speed of Crossing a
Road

Algorithm 2 calculates the speed of crossing a road by pedestrians.
The algorithm calculates the speed of pedestrians crossing a road
using frame-by-frame tracking data and removes outlier speeds to
ensure accuracy.

First, the input data, consisting of video-specificmetadata, a list of
pedestrian IDswho crossed the road, and an average person’s height
in the country for pixel-to-meter conversion, is processed. The

Algorithm 1 Identification of Pedestrian Crossings.
1: Input: CSV file containing tracking data of individual objects,

including their unique ID and position (X and Y coordinates in
the frame).

2: Output: List of IDs of individuals who crossed the pedestrian
area

3: Filter the dataset to include only entries corresponding to
persons.

4: Initialize an empty list: 𝑀𝑁𝑂𝑃𝑃𝑄𝑅𝑆𝑅𝑃𝑇𝑈𝑃𝑉 ↑ [].
5: Group the filtered dataset by 𝑊𝑋𝑈𝑌𝑍𝑄 𝑆𝑅 , such that all entries

corresponding to a single individual across multiple frames are
grouped together and named as 𝑎𝑁𝑂𝑍𝑏𝑄𝑅𝐿𝑐𝑉𝑐.

6: for each 𝑎𝑁𝑂𝑍𝑏 in 𝑎𝑁𝑂𝑍𝑏𝑄𝑅𝐿𝑐𝑉𝑐 do
7: Extract the X-coordinate values of the individual across

frames: 𝑑𝑒𝑐𝑓𝑍𝑄𝑃 ↑ 𝑎𝑁𝑂𝑍𝑏 [𝑔 ↓ 𝑀𝑄𝑋𝑉𝑄𝑁 ] .𝑐𝑓𝑍𝑄𝑃 .
8: if 𝑖𝑈𝑋(𝑑𝑒𝑐𝑓𝑍𝑄𝑃) ↔ 0.45 and𝑖𝑐𝑑 (𝑑𝑒𝑐𝑓𝑍𝑄𝑃) ↗ 0.55 then
9: The individual is classified as having crossed the

pedestrian area.
10: Add the individual’s ID (i.e., 𝑎𝑁𝑂𝑍𝑏 .𝑋𝑐𝑖𝑄) to

𝑀𝑁𝑂𝑃𝑃𝑄𝑅𝑆𝑅𝑃𝑇𝑈𝑃𝑉 .
11: end if
12: end for
13: return 𝑀𝑁𝑂𝑃𝑃𝑄𝑅𝑆𝑅𝑃𝑇𝑈𝑃𝑉 .

algorithm iterates through each group of pedestrians, identified by a
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Algorithm 2 Calculation of Pedestrian Road Crossing Speed
1: Input:
• 𝑅𝑐𝑉𝑐𝑗 𝑁𝑐𝑖𝑄: DataFrame containing the tracking data of

objects, including their unique ID, coordinates of the centre
(X-center and Y-center), size of the bounding box (height
and width) and time information.

• 𝑀𝑁𝑂𝑃𝑃𝑈𝑋𝑎𝐿𝑐𝑉𝑐: List of pedestrian IDs who crossed the road,
as determined by the pedestrian crossing identification
algorithm.

• 𝑘𝑄𝑈𝑎𝑘𝑉𝑂 𝑗 𝑏𝑄𝑁𝑃𝑂𝑋: Real-world reference length used to
calculate pixel-per-meter (ppm) scaling (refer to 2.1).

2: Output: A list of valid pedestrian speeds.
3: Initialise an empty list: 𝑃𝑏𝑄𝑄𝑅𝑙𝑄𝑃𝑍𝑓𝑉𝑃 ↑ []
4: function time_to_cross(dataframe, crossingData)
5: Initialise an empty dictionary: 𝑐𝑁 ↑ {}
6: for each 𝑀𝑁𝑂𝑃𝑃𝑈𝑋𝑎𝐿𝑐𝑉𝑐 in 𝑅𝑐𝑉𝑐𝑗 𝑁𝑐𝑖𝑄 do
7: for each 𝑈𝑅 in 𝑀𝑁𝑂𝑃𝑃𝑈𝑋𝑎𝐿𝑐𝑉𝑐 do
8: Find the minimum and maximum X-coordinate for

the pedestrian: 𝑑_𝑖𝑈𝑋 and 𝑑_𝑖𝑐𝑑
9: Find the index of the minimum and maximum X-

coordinates.
10: 𝑀𝑂𝑍𝑋𝑉 ↑ difference between the index of the

minimum and maximum X-coordinates:
11: 𝑉𝑈𝑖𝑄 [𝑀𝑁𝑂𝑃𝑃𝑈𝑋𝑎𝐿𝑐𝑉𝑐] ↑ 𝑀𝑂𝑍𝑋𝑉/30 𝐿 30 frames per

second
12: end for
13: end for
14: return 𝑉𝑈𝑖𝑄
15: end function
16: function Calculate speed to cross(dataframe, crossingData,

length, time)
17: for each 𝑈𝑅 in 𝑀𝑁𝑂𝑃𝑃𝑈𝑋𝑎𝐿𝑐𝑉𝑐 do
18: Extract the data for the pedestrian with ID 𝑈𝑅 from

𝑅𝑐𝑉𝑐𝑗 𝑁𝑐𝑖𝑄: 𝑎𝑁𝑂𝑍𝑏𝑄𝑅𝑚𝑈𝑉𝑘𝑆𝑅 ↑ 𝑅𝑐𝑉𝑐𝑗 𝑁𝑐𝑖𝑄 .𝑎𝑄𝑉_𝑎𝑁𝑂𝑍𝑏 (𝑈𝑅)
19: Calculate the mean pedestrian height

(in pixels) across all frames: 𝑖𝑄𝑐𝑋𝑛𝑄𝑈𝑎𝑘𝑉 ↑
𝑎𝑁𝑂𝑍𝑏𝑄𝑅𝑚𝑈𝑉𝑘𝑆𝑅 [↘𝑛𝑄𝑈𝑎𝑘𝑉𝑂 𝑗 𝑉𝑘𝑄𝑜𝑂𝑍𝑋𝑅𝑈𝑋𝑎𝑜𝑂𝑑 ↘] .𝑖𝑄𝑐𝑋()

20: Determine the minimum X-coordinate: 𝑖𝑈𝑋𝑔𝑝𝑄𝑋𝑉𝑄𝑁 ,
and the maximum X-coordinate:𝑖𝑐𝑑𝑔𝑝𝑄𝑋𝑉𝑄𝑁

21: Calculate the pixel-per-meter ratio: 𝑏𝑏𝑖 ↑
𝑖𝑄𝑐𝑋𝑛𝑄𝑈𝑎𝑘𝑉/𝑘𝑄𝑈𝑎𝑘𝑉𝑂 𝑗 𝑏𝑄𝑁𝑃𝑂𝑋

22: Compute the real-world distance crossed: 𝑅𝑈𝑃𝑉𝑐𝑋𝑀𝑄 ↑
(𝑖𝑐𝑑𝑔𝑝𝑄𝑋𝑉𝑄𝑁 ↓𝑖𝑈𝑋𝑔𝑝𝑄𝑋𝑉𝑄𝑁 )/𝑏𝑏𝑖

23: Retrieve the time taken by the pedestrian
to cross: 𝑉𝑈𝑖𝑄 ↑ 𝑎𝑁𝑂𝑍𝑏𝑄𝑅𝑚𝑈𝑉𝑘𝑆𝑅 [↘𝑞𝑈𝑖𝑄↘] .𝑖𝑐𝑑 () ↓
𝑎𝑁𝑂𝑍𝑏𝑄𝑅𝑚𝑈𝑉𝑘𝑆𝑅 [↘𝑞𝑈𝑖𝑄↘] .𝑖𝑈𝑋()

24: Compute the pedestrian’s speed: 𝑃𝑏𝑄𝑄𝑅 ↑
𝑅𝑈𝑃𝑉𝑐𝑋𝑀𝑄/𝑉𝑈𝑖𝑄

25: if 𝑃𝑏𝑄𝑄𝑅 ↔ 1.2 then 𝐿 Filter out unrealistic speeds [18]
26: Append the calculated speed to 𝑃𝑏𝑄𝑄𝑅𝑙𝑄𝑃𝑍𝑓𝑉𝑃
27: end if
28: end for
29: return 𝑃𝑏𝑄𝑄𝑅𝑙𝑄𝑃𝑍𝑓𝑉𝑃
30: end function

unique ID, and calculates the mean height of each individual. Using
the mean height and average height, it computes a pixel-per-meter
(ppm) scaling factor, which allows the conversion of X-coordinate
movement (in pixels) into real-world distance (in meters). The
time taken by each pedestrian to cross is calculated from the
difference between the maximum and minimum timestamps of
their movement. The pedestrian’s speed is then determined by
dividing the real-world distance by the time taken. Speeds greater
than 1.2 m/s are treated as outliers and excluded from the results
(taken from [18]) to eliminate people who are on skateboard or
cycle. The algorithm outputs a list of valid speeds for pedestrians
who successfully crossed the road.

2.4 Quantifying Pedestrian Crossing Decision Time

In our study, we have developed a method to measure the decision
time for pedestrians as they approach and begin to cross the road,
detailed in Algorithm 3. This analysis utilises video data tagged
and processed through the You Only Look Once (YOLO) object
detection system, focusing specifically on individual pedestrians
identified by their unique ‘YOLO id’.

The algorithm calculates the time a pedestrian takes to decide
to start crossing a road based on their movement data. It first
filters the data for the specified pedestrian ID, then groups it by
the pedestrian’s unique ID to process each pedestrian’s movements
individually. For each pedestrian, the algorithm calculates their
mean height to set a margin of 10 % for detecting consistent
movement. It identifies the initial X-coordinate and determines
the crossing direction (left-to-right or right-to-left) based on the
pedestrian’s starting position. The algorithm then iterates through
the pedestrian’s X-coordinate data in steps, checking whether the
pedestrian remains within the defined margin for thirty consecutive
frames (1 second). Once consistent movement is detected, the time
taken to initiate crossing is recorded. The result is stored in a
dictionary, where the keys are pedestrian IDs, and the values are
the respective decision times for starting the crossing.

3 Results

3.1 Time taken by pedestrians to start crossing and
speed of crossing

Figure 2 shows the distribution of the speed of pedestrian crossing
the road and time taken for the pedestrian to start crossing the
road as described in subsection 2.3 and subsection 2.4.

The average pedestrian speed during the day across the cities
analysed is 0.77 m/s, with a standard deviation of 0.13 m/s. At night,
the average speed is 0.81 m/s, with a standard deviation of 0.14 m/s.
The city with the highest daytime speed is Hong Kong at 1.19 m/s,
while Dhaka records the lowest speed during the day at 0.27 m/s.
At night, Monaco has the highest speed at 1.13 m/s, and Moscow
the lowest at 0.23 m/s.

The average time it takes pedestrians to start crossing the road
during the day is 0.31 s, with a standard deviation of 0.13 s. At
night, the average crossing decision time is 0.34 s, with a standard
deviation of 0.29 s. The longest time to start crossing during the
day is in Sofia, at 1.05 s, while the shortest time is in Huaián, at
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)’*. 2: Comparison of time taken by pedestrians to start crossing and speed of crossing the road across multiple cities,
highlighting both day and night scenarios.
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Algorithm 3 Calculation of time a pedestrian takes to decide to start crossing a road.

1: function Calculate Crossing Decision Time(dataframe, crossingdata)
2: Initialise dictionary: 𝑅𝑄𝑀𝑈𝑃𝑈𝑂𝑋𝑞𝑈𝑖𝑄𝑃 ↑
3: Group by pedestrian𝑊𝑋𝑈𝑌𝑍𝑄 𝑆𝑅 : 𝑎𝑁𝑂𝑍𝑏𝑄𝑅𝐿𝑐𝑉𝑐 ↑ 𝑏𝑄𝑁𝑃𝑂𝑋𝐿𝑐𝑉𝑐.𝑎𝑁𝑂𝑍𝑏𝑜𝑟 (↘𝑊𝑋𝑈𝑌𝑍𝑄𝑆𝑅↘)
4: for each (𝑍𝑋𝑈𝑌𝑍𝑄𝑆𝑅) in 𝑎𝑁𝑂𝑍𝑏𝑄𝑅𝐿𝑐𝑉𝑐 do
5: Extract X-coordinates: 𝑑𝑒𝑐𝑓𝑍𝑄𝑃 ↑ 𝑎𝑁𝑂𝑍𝑏𝐿𝑐𝑉𝑐[↘𝑔 ↓ 𝑀𝑄𝑋𝑉𝑄𝑁 ↘] .𝑐𝑓𝑍𝑄𝑃
6: Calculate mean pedestrian height across all frames:𝑖𝑄𝑐𝑋𝑛𝑄𝑈𝑎𝑘𝑉
7: Set initial X-coordinate: 𝑈𝑋𝑈𝑉𝑈𝑐𝑓𝑔
8: Set margin for movement:𝑖𝑐𝑁𝑎𝑈𝑋 ↑ 0.1 ≃𝑖𝑄𝑐𝑋𝑛𝑄𝑈𝑎𝑘𝑉
9: Initialise counters: 𝑀𝑂𝑋𝑃𝑄𝑀𝑍𝑉𝑈𝑄𝑠𝑁𝑐𝑖𝑄 ↑ 0, 𝑗 𝑓𝑐𝑎 ↑ 0
10: Determine crossing direction:
11: if 𝑈𝑋𝑈𝑉𝑈𝑐𝑓𝑔 < 0.5 then
12: Set direction to left-to-right: 𝑅𝑈𝑁𝑄𝑀𝑉𝑈𝑂𝑋 ↑ 1
13: else
14: Set direction to right-to-left: 𝑅𝑈𝑁𝑄𝑀𝑉𝑈𝑂𝑋 ↑ ↓1
15: end if
16: for 𝑈 ↑ 0 to 𝑓𝑄𝑋(𝑑𝑒𝑐𝑓𝑍𝑄𝑃) ↓ 10 step 10 do
17: if 𝑑𝑒𝑐𝑓𝑍𝑄𝑃 [𝑈] ↓𝑖𝑐𝑁𝑎𝑈𝑋 ≃ 𝑅𝑈𝑁𝑄𝑀𝑉𝑈𝑂𝑋 ↔ 𝑑𝑒𝑐𝑓𝑍𝑄𝑃 [𝑈 + 10] ↔ 𝑑𝑒𝑐𝑓𝑍𝑄𝑃 [𝑈] +𝑖𝑐𝑁𝑎𝑈𝑋 ≃ 𝑅𝑈𝑁𝑄𝑀𝑉𝑈𝑂𝑋 then
18: 𝑀𝑂𝑋𝑃𝑄𝑀𝑍𝑉𝑈𝑄𝑠𝑁𝑐𝑖𝑄 ↑ 𝑀𝑂𝑋𝑃𝑄𝑀𝑍𝑉𝑈𝑄𝑠𝑁𝑐𝑖𝑄 + 1
19: if 𝑀𝑂𝑋𝑃𝑄𝑀𝑍𝑉𝑈𝑄𝑠𝑁𝑐𝑖𝑄 = 3 then
20: Set flag: 𝑗 𝑓𝑐𝑎 ↑ 1
21: end if
22: else if 𝑗 𝑓𝑐𝑎 = 1 then
23: Store crossing decision time: 𝑅𝑄𝑀𝑈𝑃𝑈𝑂𝑋𝑞𝑈𝑖𝑄𝑃 [𝑍𝑋𝑈𝑌𝑍𝑄𝑆𝑅] ↑ 𝑀𝑂𝑋𝑃𝑄𝑀𝑍𝑉𝑈𝑄𝑠𝑁𝑐𝑖𝑄
24: break
25: else
26: Reset consecutive frame counter: 𝑀𝑂𝑋𝑃𝑄𝑀𝑍𝑉𝑈𝑄𝑠𝑁𝑐𝑖𝑄 ↑ 0
27: end if
28: end for
29: end for
30: return 𝑅𝑄𝑀𝑈𝑃𝑈𝑂𝑋𝑞𝑈𝑖𝑄𝑃
31: end function

0.10 s. At night, the longest time to start crossing is observed in
Mexico City at 1.61s, while Monaco has the shortest time at 0.14s.

In cities such as Delhi (0.01 m/s), Sydney (0.01 m/s), Cairo (0.02
m/s), and Shanghai (0.02 m/s), pedestrian speeds exhibit minimal
variation between day and night. In contrast, Moscow (0.51 m/s)
and Hong Kong (0.48 m/s) display significantly greater differences
in pedestrian speeds during these periods. Furthermore, the time
taken by pedestrians to start crossing shows the largest differences
in Moscow (0.51 s) and Hong Kong (0.48 s), whereas London
(0.00 s) and Las Vegas (0.01 s) demonstrate negligible differences.
Additionally, regional patterns indicate that Asian cities tend to
have faster speeds and start crossing the road sooner compared to
North American and European cities, where speeds are generally
slower.

3.2 Time taken by pedestrian to start crossing as a
function of literacy rate

Cities with higher literacy rates generally exhibit quicker crossing
decision times. For example, Dusseldorf (99% literacy) has a crossing
decision time of 0.18s, Paris (99% literacy) has a crossing decision
time of 0.28 s during daytime and 0.22 s at night, and Bucharest
(99% literacy) has a crossing decision time of 0.13 s. Other cities

with high literacy rates, like Ottawa (99% literacy) and Taipei (86%
literacy), also show relatively short crossing decision times, at 0.35
s and 0.33 s, respectively, in the daytime and at night respectively.
Some cities with high literacy rates show longer crossing decision
times, especially at night. Mexico City (95% literacy) has a crossing
decision time of 1.61 s at night, and Taipei (98.7% literacy) has a
crossing decision time of 1.52 s at night. Lower literacy cities like
Juba (35% literacy) have longer crossing decision times during the
day, with 0.6 s. Other cities with lower literacy, such as Lagos (62%
literacy), exhibit a crossing decision time of 0.24 s.

3.3 Time taken by pedestrian to start crossing as a
function of traffic-related mortality

The Figure 4 shows that cities like Geneva (traffic mortality rate:
2.7 per 100,000, crossing decision time in night time: 0.16) and Oslo
(traffic mortality rate: 2.7 per 100,000, crossing decision time: 0.19
s in daylight) have both low traffic mortality rates and relatively
short crossing decision times. Similarly, Frankfurt has a traffic
mortality rate of 4.1 per 100,000 and a crossing decision time of 0.16
s, while Amsterdam has a traffic mortality rate of 3.8 per 100,000
and a crossing decision time of 0.27 s. These cities exhibit low
values in both mortality rates and crossing decision times.
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)’*. 3: Time taken by pedestrians to start crossing the road as a function of literacy percentage of the nation. Each point
represents a city, with the size of the point corresponding to GMP per capita.

Cross-city Pedestrian Behaviour as a Function of traffic-related mortality

In contrast, cities with higher traffic mortality rates generally
have longer crossing decision times. Moscow has a traffic mortality
rate of 18.0 per 100,000 and a crossing decision time of 0.47 s, while
Juba shows a traffic mortality rate of 25.7 per 100,000 and a crossing
decision time of 0.60 s. Can Tho reports a traffic mortality rate
of 26.4 per 100,000 and a crossing decision time of 0.41 s, while
Dubai has a traffic mortality rate of 18.1 per 100,000 and a crossing
decision time of 0.45 s. These cities have higher mortality rates
alongside longer or moderate crossing decision times.

4 Discussion

The present study introduces the "PYT"dataset to explore pedestrian
behaviour across globe, contributing significantly to the Car-VRU
Interaction research community by offering cross-cultural insights
into traffic behaviour. The analysis of this dataset reveals substantial
variability in the time required to initiate crossing and walking
speed while crossing the road. These variations are influenced by
local traffic regulations, urban infrastructure, and cultural norms,
underscoring the complexity of pedestrian behaviour in different
regions.

The use of the YOLOv8 algorithm helped the identification of
significant differences in pedestrian crossing behaviours across
cities with varying socio-economic conditions, such as traffic-
related mortality rates, GMP per capita, and literacy levels. The

study also highlights a notable correlation between literacy rates
and pedestrian crossing behaviours. In cities with near-perfect
literacy rates, such as Dusseldorf and Paris, pedestrians tend
to exhibit faster decision-making, resulting in shorter crossing
initiation times. This trend suggests that higher literacy levels
may contribute to better awareness of traffic rules and quicker
reactions in traffic environments. However, outliers such as Mexico
City and Taipei exhibit prolonged crossing decision times at night,
despite high literacy rates, indicating that additional factors, such
as infrastructure quality and nighttime lighting conditions, play
critical roles in pedestrian safety.

When comparing pedestrian speeds, citieswith advanced infrastructure,
such as Hong Kong and Tokyo, demonstrate consistently high
walking speeds both during the day and night. These results
suggest that well-designed urban environments promote pedestrian
confidence and efficiency in movement. In contrast, cities such as
Dhaka and Can Tho show slower walking speeds, which may be
linked to challenges such as inadequate pedestrian infrastructure
or heightened safety concerns at nighttime hours. The significant
differences between day andnight pedestrian behaviours, particularly
in cities like Mexico City and Hong Kong, suggest that local
traffic patterns, lighting conditions, and cultural factors influence
pedestrian speed. Faster speeds at night in these cities may reflect
a tendency to navigate more quickly in lower traffic conditions
during off-peak hours.
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)’*. 4: Time taken by pedestrians to start crossing the road as a function of traffic-related mortality(per 100,000 population).
Each point represents a city, where the size of the point corresponds to the GMP per capita.

The analysis of pedestrian crossing decision time reveals further
variability across cities. In cities like Warsaw and Sofia, longer
waiting times during the day suggest either higher traffic volumes or
a more cautious pedestrian approach. On the other hand, cities such
as Geneva and Monaco exhibit shorter waiting times, indicating
more efficient pedestrian crossings, likely supported by favourable
traffic regulations and well-planned urban infrastructure. Cities
with advanced urban planning, including Tokyo and Shanghai,
exhibit moderate walking speeds and shorter start times, pointing
to the presence of organized pedestrian traffic systems. Conversely,
cities with less developed infrastructure, such as Dhaka and
Yangon, exhibit slower speeds and lower crossing decision times,
highlighting the challenges faced in these regions.

An important observation from the study is the relationship
between pedestrian crossing behaviour and traffic-related mortality
rates. Cities with low mortality rates generally exhibit shorter
pedestrian crossing decision times,while citieswith highermortality
rates show longer hesitation times. This correlation suggests that
the level of traffic safety directly influences pedestrian confidence
and decision-making processes. European cities tend to cluster
at the lower end of mortality rates, indicating more consistent
safety standards, whereas cities in Africa and Asia display greater
variability in pedestrian behaviour, reflecting disparities in infrastructure
and safety measures. The relationship between crossing decision
times and mortality rates presents an interesting pattern, with a gap
in the mid-to-high range of mortality rates and crossing decision

times. This indicates that cities with moderately high mortality
rates may still implement safety measures that prevent excessive
pedestrian hesitation, while cities with extremely high mortality
rates struggle with inadequate infrastructure, leading to significant
delays in crossing decisions.

The findings also suggest that while technological advancements
in traffic systems, such as autonomous vehicles, are important,
socio-economic and environmental factors play a more immediate
role in shaping pedestrian behaviour. Observable patterns of
time and speed adjustments are more reflective of the local
socio-cultural context than of technological innovations. Thus,
interventions aimed at improving pedestrian safety should be
tailored to address these contextual factors rather than relying
solely on high-tech solutions. The insights gained from this research
provide a foundation for developing targeted strategies to improve
road safety globally by focusing on enhancing pedestrian infrastructure
and addressing socio-economic disparities that impact traffic
behaviour.

5 Limitations and Future Work

It is important to acknowledge the limitations inherent in relying
solely on videos from YouTube for data collection. Particularly,
the accessibility of videos from certain regions, notably those in
Africa, proved challenging due to socioeconomic factors influencing
video production and dissemination. Moreover, while the YOLOv8
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algorithm facilitated object detection within videos, its scope was
limited to bounding box characteristics, precluding detailed analysis
of attributes such as vehicle speed or lane length. Furthermore, the
videos are also not classified in different seasons as the date is not
available for the video.

Future research should address these limitations by utilizing
more advanced CV models capable of detecting a broader range
of attributes within video footage. For instance, by employing
algorithms that can discern detailed features such as vehicle
dynamics, lanemarkings, and specific pedestrian actions, researchers
could gain a deeper understanding of traffic behaviour. This
includes detecting additional attributes for pedestrians, such as
road crossing intentions, time-to-crossing predictions, current
behaviours like walking direction and posture, and appearance
factors like clothing and accessories [32]. Moreover, vehicle-related
attributes such as lane detection [17], speed estimation [27],
and distance calculations [45] between objects could also be
incorporated. These enhancements would provide a richer, more
nuanced dataset, enabling a more comprehensive analysis of how
different socio-economic and environmental factors influence
pedestrian and cyclist behaviours across diverse urban settings.

Additionally, expanding the geographic scope of data collection
to include underrepresented regionswill help create amore balanced
representation of global traffic patterns. Future studies could also
extend thesemethodologies to other VRUs, such as cyclists, building
on previous research but broadening the focus beyond single cities
or countries. This approach would offer a more holistic view of
global traffic behaviour, ultimately supporting the development of
more effective and culturally sensitive trafficmanagement strategies
[31] and interventions worldwide.

Future research could also focus on cyclists (another type of
VRU). Past papers have investigated how cyclists behave [25, 26, 36],
yet these resources also focus on one city/country. This dataset and
presented algorithms could be extended to assess the difference in
the behaviour of this increase in its share group of participants in
traffic.

Supplementary Material

A maintained version of the source code is available at https:
//github.com/Shaadalam9/pedestrians-in-youtube. The PYT dataset
can be found at https://doi.org/10.4121/06e9bb9a-a064-412b-b0f3-
9ac5dd62ea16.
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