
Pavlo Bazilinskyy

CUSTOMISABLE MULTITENANT
WEB FORM WITH JSF AND MYSQL

Bachelor’s Thesis
Information Technology

May 2012

DESCRIPTION
Date of the bachelor's thesis

 May 4, 2012

Date of the bachelor's thesis

 May 4, 2012

Date of the bachelor's thesis

 May 4, 2012

Author(s)

 Pavlo Bazilinskyy

Author(s)

 Pavlo Bazilinskyy

Degree programme and option

 Information Technology

Degree programme and option

 Information Technology

Degree programme and option

 Information Technology
Name of the bachelor's thesis

 Customisable multitenant web form with JSF and MySQL

Name of the bachelor's thesis

 Customisable multitenant web form with JSF and MySQL

Name of the bachelor's thesis

 Customisable multitenant web form with JSF and MySQL

Name of the bachelor's thesis

 Customisable multitenant web form with JSF and MySQL

Name of the bachelor's thesis

 Customisable multitenant web form with JSF and MySQL

Abstract

There is a tendency in Computer Science, nowadays, to move from single-user instances
of application to web-based programs. With improvements in Information Technology and
Computer Science fields of science it is possible nowadays to conduct business operations from
within Internet. Thousands or in some cases millions of sheets of paper and man-hours of work
can now be substituted by a single web form connected to a database on a certain website.

In recent years a number of new technologies have been introduced to improve usability of
Internet applications. It is now possible to create a multitenant piece of software that runs as one
instance but serves different users. Nowadays, web forms, that are created for commercial
purposes are normally not customisable and lack a possibility to adjust interface in order to suit
needs of a particular client. Making multitenant web forms customisable is one of the most highly
prioritised tasks for a number of companies that are working in the field of Internet.

The aim of the study was to investigate means of creating a fully-functioning and customisable
web form that is intended to be run on a server as a single instance. Through methods of user-
specific configurations a test case was created that is able to serve a number of clients, giving each
one a set of desired features. Before starting this work a following research question was raised:
“How to develop the most optimised and the most versatile multitenant web form using JSF and
MySQL?”. Also, working on this study makes an attempt to answer this question by doing a
theoretical research first and then developing a working product that could be used on a market.

A part of the study that focuses on development of the test case application is present in the study.
Difficulties and issues that are faced while working multitenant cloud-enabled applications are
outlined. Listings of programming code are given as examples where they are essential for
understanding of the technical aspects of the research. Additionally, different stages of testing are
described to outline strengths and weaknesses of the final product.

Abstract

There is a tendency in Computer Science, nowadays, to move from single-user instances
of application to web-based programs. With improvements in Information Technology and
Computer Science fields of science it is possible nowadays to conduct business operations from
within Internet. Thousands or in some cases millions of sheets of paper and man-hours of work
can now be substituted by a single web form connected to a database on a certain website.

In recent years a number of new technologies have been introduced to improve usability of
Internet applications. It is now possible to create a multitenant piece of software that runs as one
instance but serves different users. Nowadays, web forms, that are created for commercial
purposes are normally not customisable and lack a possibility to adjust interface in order to suit
needs of a particular client. Making multitenant web forms customisable is one of the most highly
prioritised tasks for a number of companies that are working in the field of Internet.

The aim of the study was to investigate means of creating a fully-functioning and customisable
web form that is intended to be run on a server as a single instance. Through methods of user-
specific configurations a test case was created that is able to serve a number of clients, giving each
one a set of desired features. Before starting this work a following research question was raised:
“How to develop the most optimised and the most versatile multitenant web form using JSF and
MySQL?”. Also, working on this study makes an attempt to answer this question by doing a
theoretical research first and then developing a working product that could be used on a market.

A part of the study that focuses on development of the test case application is present in the study.
Difficulties and issues that are faced while working multitenant cloud-enabled applications are
outlined. Listings of programming code are given as examples where they are essential for
understanding of the technical aspects of the research. Additionally, different stages of testing are
described to outline strengths and weaknesses of the final product.

Abstract

There is a tendency in Computer Science, nowadays, to move from single-user instances
of application to web-based programs. With improvements in Information Technology and
Computer Science fields of science it is possible nowadays to conduct business operations from
within Internet. Thousands or in some cases millions of sheets of paper and man-hours of work
can now be substituted by a single web form connected to a database on a certain website.

In recent years a number of new technologies have been introduced to improve usability of
Internet applications. It is now possible to create a multitenant piece of software that runs as one
instance but serves different users. Nowadays, web forms, that are created for commercial
purposes are normally not customisable and lack a possibility to adjust interface in order to suit
needs of a particular client. Making multitenant web forms customisable is one of the most highly
prioritised tasks for a number of companies that are working in the field of Internet.

The aim of the study was to investigate means of creating a fully-functioning and customisable
web form that is intended to be run on a server as a single instance. Through methods of user-
specific configurations a test case was created that is able to serve a number of clients, giving each
one a set of desired features. Before starting this work a following research question was raised:
“How to develop the most optimised and the most versatile multitenant web form using JSF and
MySQL?”. Also, working on this study makes an attempt to answer this question by doing a
theoretical research first and then developing a working product that could be used on a market.

A part of the study that focuses on development of the test case application is present in the study.
Difficulties and issues that are faced while working multitenant cloud-enabled applications are
outlined. Listings of programming code are given as examples where they are essential for
understanding of the technical aspects of the research. Additionally, different stages of testing are
described to outline strengths and weaknesses of the final product.

Abstract

There is a tendency in Computer Science, nowadays, to move from single-user instances
of application to web-based programs. With improvements in Information Technology and
Computer Science fields of science it is possible nowadays to conduct business operations from
within Internet. Thousands or in some cases millions of sheets of paper and man-hours of work
can now be substituted by a single web form connected to a database on a certain website.

In recent years a number of new technologies have been introduced to improve usability of
Internet applications. It is now possible to create a multitenant piece of software that runs as one
instance but serves different users. Nowadays, web forms, that are created for commercial
purposes are normally not customisable and lack a possibility to adjust interface in order to suit
needs of a particular client. Making multitenant web forms customisable is one of the most highly
prioritised tasks for a number of companies that are working in the field of Internet.

The aim of the study was to investigate means of creating a fully-functioning and customisable
web form that is intended to be run on a server as a single instance. Through methods of user-
specific configurations a test case was created that is able to serve a number of clients, giving each
one a set of desired features. Before starting this work a following research question was raised:
“How to develop the most optimised and the most versatile multitenant web form using JSF and
MySQL?”. Also, working on this study makes an attempt to answer this question by doing a
theoretical research first and then developing a working product that could be used on a market.

A part of the study that focuses on development of the test case application is present in the study.
Difficulties and issues that are faced while working multitenant cloud-enabled applications are
outlined. Listings of programming code are given as examples where they are essential for
understanding of the technical aspects of the research. Additionally, different stages of testing are
described to outline strengths and weaknesses of the final product.

Abstract

There is a tendency in Computer Science, nowadays, to move from single-user instances
of application to web-based programs. With improvements in Information Technology and
Computer Science fields of science it is possible nowadays to conduct business operations from
within Internet. Thousands or in some cases millions of sheets of paper and man-hours of work
can now be substituted by a single web form connected to a database on a certain website.

In recent years a number of new technologies have been introduced to improve usability of
Internet applications. It is now possible to create a multitenant piece of software that runs as one
instance but serves different users. Nowadays, web forms, that are created for commercial
purposes are normally not customisable and lack a possibility to adjust interface in order to suit
needs of a particular client. Making multitenant web forms customisable is one of the most highly
prioritised tasks for a number of companies that are working in the field of Internet.

The aim of the study was to investigate means of creating a fully-functioning and customisable
web form that is intended to be run on a server as a single instance. Through methods of user-
specific configurations a test case was created that is able to serve a number of clients, giving each
one a set of desired features. Before starting this work a following research question was raised:
“How to develop the most optimised and the most versatile multitenant web form using JSF and
MySQL?”. Also, working on this study makes an attempt to answer this question by doing a
theoretical research first and then developing a working product that could be used on a market.

A part of the study that focuses on development of the test case application is present in the study.
Difficulties and issues that are faced while working multitenant cloud-enabled applications are
outlined. Listings of programming code are given as examples where they are essential for
understanding of the technical aspects of the research. Additionally, different stages of testing are
described to outline strengths and weaknesses of the final product.
Subject headings, (keywords)

 Mutlitenancy, SaaS, Software as a Service, cloud computing, Java EE, JSF, JSP, Java, MySQL,
XHTML, HTML, Netbeans, IDE, CSS, Glassfish, web form, web field, tenant, tenant, client, multi

Subject headings, (keywords)

 Mutlitenancy, SaaS, Software as a Service, cloud computing, Java EE, JSF, JSP, Java, MySQL,
XHTML, HTML, Netbeans, IDE, CSS, Glassfish, web form, web field, tenant, tenant, client, multi

Subject headings, (keywords)

 Mutlitenancy, SaaS, Software as a Service, cloud computing, Java EE, JSF, JSP, Java, MySQL,
XHTML, HTML, Netbeans, IDE, CSS, Glassfish, web form, web field, tenant, tenant, client, multi

Subject headings, (keywords)

 Mutlitenancy, SaaS, Software as a Service, cloud computing, Java EE, JSF, JSP, Java, MySQL,
XHTML, HTML, Netbeans, IDE, CSS, Glassfish, web form, web field, tenant, tenant, client, multi

Subject headings, (keywords)

 Mutlitenancy, SaaS, Software as a Service, cloud computing, Java EE, JSF, JSP, Java, MySQL,
XHTML, HTML, Netbeans, IDE, CSS, Glassfish, web form, web field, tenant, tenant, client, multi

Pages LanguageLanguageLanguage URN

99 pages + app. 34 pages

English

English

English NBN:fi:amk-201205259840

Remarks, notes on appendices Remarks, notes on appendices Remarks, notes on appendices Remarks, notes on appendices Remarks, notes on appendices

Tutor

 Matti Koivisto

Tutor

 Matti Koivisto

Tutor

 Matti Koivisto

Employer of the bachelor's thesis

 Mikkeli University of Applied Sciences

Employer of the bachelor's thesis

 Mikkeli University of Applied Sciences

CONTENTS

...1 INTRODUCTION 1

...2 CLOUD COMPUTING AND MULTITENANCY 4

...2.1 Cloud computing 4

...2.2 Architecture of cloud computing 6

..2.3 Software as a Service 8

..2.4 Software as a Service business model 16

....................2.5 SWOT analysis of SaaS markets in Ukraine, Finland and the UK 19

..2.5.1 Analysis of SaaS market in Ukraine 20

...2.5.2 Analysis of SaaS market in Finland 22

...2.5.3 Analysis of SaaS market in the UK 23

...2.5.4 Results of the analysis 24

..2.6 Infrastructure for SaaS 25

...2.6.1 Cluster computer storage 25

.....................................2.6.2 Scaling storage for hosting large amounts of data 28

..2.6.3 Relational databases and cloud computing 30

...2.7 Multitenancy 31

...2.7.1 Multitenancy at enterprise level 35

...2.8 Development of multitenant applications 36

...2.9 Agile development of SaaS 39

...3 CUSTOMISABLE USER INTERFACE 41

..3.1 User interface in Software Engineering 41

.............3.2 Problem of customisable user interfaces in modern Computer Science 44

....................................3.3 Customisable user interfaces in web-based applications 46

..............4 CUSTOMISABLE WEB FORMS IN MULTITENANT APPLICATIONS 51

...5 TECHNOLOGIES USED FOR THE TEST CASE 53

..5.1 JSF 2.0 54

..5.2 XHTML 56

...5.3 CSS 57

...5.4 MySQL 57

..5.5 Netbeans IDE 58

..6 THE TEST CASE APPLICATION 60

..6.1 Description of views and user actions 63

...6.1.1 Registration, login and logout 64

..6.1.2 Front page 65

..6.1.3 Creating new web forms 65

..6.1.4 Viewing and filling web forms 68

...6.1.5 Editing web forms 73

..6.1.6 Managing account information 79

...6.1.7 Changing tenant-specific configuration 80

..6.2 Comments and Javadoc 81

...6.3 Description of application code from the test case 83

...6.3.1 Model classes 84

..6.3.2 Logic classes 86

..6.3.3 Database Access Object (DAO) classes 87

...6.3.4 Database rowmapper classes 88

..6.3.5 Views, CSS styling and UI classes 89

............................6.3.6 Techniques for localisation and session control utilised 91

..6.4 Debugging in SaaS 93

...6.5 The database and the application server 93

..6.6 The database scheme used 94

..7 CONCLUSION 98

..8 BIBLIOGRAPHY 99

APPENDICES

1: SELECTED LISTINGS OF APPLICATION CODE

1.1. Method for editing web forms (WebFormView.java)

1.2. Method for creating new “child” web forms (WebFormView.java)

1.3. Method for parsing a web form (WebFormView.java)

1.4. Method for generating a list of user rights for a form (WebFormView.java)

1.5. Method for validating email address (EmailValidator.java)

1.6. Methods for fetching lists of users (AccountDao.java)

1.7. Method for editing web field privileges (WebFormView.java)

1.8. Login view and its backing bean (login.xhtml, Login.java)

1.9. Method that manages users logging in (Login.java)

1.10. Method for locating DataSource object (DataSourceLocator.java)

2: SQL STATEMENTS FOR CREATION OF THE DATABASE

3: FACES-CONIG.XML PROJECT CONFIGURATION FILE

4: DESCRIPTION OF ENTITIES OF THE DATABASE

1 INTRODUCTION

There is a tendency in Computer Science, nowadays, to move from single-user instances

of application to web-based programs. With improvements in Information Technology and

Computer Science fields of science it is possible nowadays to conduct business operations

from within Internet. Thousands or in some cases millions of sheets of paper and man-hours

of work can now be substituted by a single web form connected to a database on a certain

commercial website.

In recent years a number of new technologies have been introduced to improve usability of

Internet applications. It is now possible to create a multitenant piece of software that runs as

one instance but serves different users. Nowadays, web forms, that are created for commercial

purposes are normally not customisable and lack a possibility to adjust interface in order to

suit needs of a particular client. Making multitenant web forms customisable is one of the

most highly prioritised tasks for a number of companies that are working in the field of

Internet.

The aim of the study is to investigate means of creating a fully-functioning and customisable

web form that is intended to be run on a server as a single instance. Through methods of user-

specific configurations a test case is created that is able to serve a number of clients, giving

each one a set of desired features. Before starting this work a following research question was

raised: “How to develop the most optimised and the most versatile multitenant web form

using JSF and MySQL?”. Also, working on this study makes an attempt to answer this

question by doing a theoretical research first and then developing a working product that

could be used on a market by MHG Systems Oy.

A current description of MHG Systems Oy company, available at MHG Systems (2012), says

that it is one of the world's leading suppliers of bioenergy ERP systems. The company utilises

its partner network to produce customer-oriented IT and map service solutions designed for

developing bioenergy and forest energy, and field work business operations. It is an

international company with business advisers all over the world. MHG Systems offers its

customer companies an MHG ERP and MHG Bioenergy ERP systems and also consultation

and training services on bioenergy and forest energy business operations, and field work

1

management. In addition to the aforementioned, MHG Systems provides its customers with

its “know-hows” on modern IT technologies, mobile technology and geographical data. It also

offers a technology platform, which it has developed in-house. MHG Systems' services are

targeted especially at companies operating in the following sectors: energy, biofuels,

electricity and heating, harvesting, sawmilling, pellets, forest services and forestry industry.

MHG Systems works in a field of SaaS (Software as a Service) and an extensive layer of

hardware that provides reliable and fault-tolerant connection for its customers and tenants

backs up their current system. Solutions that MHG Systems offers for its clients are written in

Java programming language. This research was commissioned to investigate and implement

an improvement in customisation of their SaaS ERP system.

According to Spolsky (2001), there are three essential parts of success of an application:

• Features, referring to what the piece of software does for the user. The demands for the

software.

• Function, referring to how well the software operates. Perfect program is without any

malfunctioning in the logical part: without “bugs” it will function perfectly.

• Face, referring to how the application presents itself to the user, the program’s “user

interface”, and the way application presents itself to the user.

Features, function and face can also be stated as questions:

• Does the application meet the user’s requirements? (Features)

• Does the application work as intended? (Function)

• Is the application easy to use? (Face)

This work’s goal is not only to answer the question put as a topic, but, additionally, help

science advance with understanding of these three components of software in case of cloud

computing multitenant applications. This study is organised as described below.

In the chapter Cloud Computing and Multitenancy research on the current situation of cloud

computing is performed. Recent advancements in providing services to multiple tenants and

cloud-based services are outlined. Also, theoretical foundations, such as used by Software as a

Service architectures and implementations of infrastructure behind them, are given. Short

2

descriptions of methodologies used in development of such solutions as well as SWOT

analysis of case studies are also presented.

Chapter Customisable User Interface is arranged in a way that gives a brief description of the

concept of the user interface in general and advancements with web-based interfaces in

particular. Additionally, recent findings of researchers in the field of creating customisable

user interfaces are written.

Chapter Customisable Web Forms in Multitenant Applications is focused on means of

research of making web-based input forms configurable and customisable. In other words, it

describes investigation of ways of giving tenants of the application sets of tools that can be

used to adjust the user interface of the web forms as well as web fields that are assigned to

forms. Such modifications are needed to meet as larger amount of possible wishes about

adjusting properties of forms that come from the client’s side as possible.

In the Chapter Technologies Used for the Test Case a brief description of technology used in

this study is outlined. Namely, JSF (JavaServer Faces), MySQL, XHTML and CSS

(Cascading Style Sheets) are described. Furthermore, a programming environment that was

used to conduct this research - Netbeans IDE - is mentioned.

Chapter The Test Case Application describes a technical part of the study, which deals with

development of the test case application. This part of the study is focused on outlining a

process of doing that work. Difficulties and issues that are faced while working on such

projects are mentioned. Listings of programming code are given as examples where they are

essential for understanding of the technical aspects of the research. Additionally, different

stages of testing are described to outline strengths and weaknesses of the final product.

Conclusion summarises work concluded and collects achieved results along with comments

and suggestions on how to improve the study. Also, in this chapter study gives a description of

how findings from this research benefit to the world of Computer Science and improve

existing knowledge on a problem of creation of multitenant web forms.

3

2 CLOUD COMPUTING AND MULTITENANCY

2.1 Cloud computing

“If computers of the kind I have advocated become the computers of the future, then

computing may someday be organized as a public utility just as the telephone system is a

public utility... The computer utility could become the basis of a new and important industry.”

- John McCarthy, the father of cloud computing (speaking at the MIT Centennial in 1961)

Cloud computing is rapidly increasing its popularity. "It's become the phrase du jour," says

Gartner senior analyst Ben Pring, describing needs and opinions of many of his clients and

colleges. The term “cloud computing” is used so heavily nowadays that it is now difficult to

give a solid definition of it. Yet, understanding a phenomena of “Utility Computing” or

“Software-as-a-Service” or even “Application Service Provider” (which according to

Aggarwal (2011) are synonyms to the term “cloud computing”) is crucial for advancing in

knowledge of multitenant architecture and its applications.

Cloud computing was defined by the National Institute of Science and Technology in 2011 as

“... a model for enabling ubiquitous, convenient, on-demand network access to a shared pool

of configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction” (Mell & Grance, 2011). As Aggarwal (2011) points out there are

at least two popular ways of interpreting a meaning of cloud computing present on the

scientific scene today. Conservatives argue that cloud computing is merely an addition built

on top of utility computing. Knorr & Gruman (2008) have drawn attention to the fact that the

idea of utility computing is not new and by such companies as Amazon.com, Sun and IBM it

is currently interpreted as offering server farms for their clients as virtual datacenters. Thus

indicating that utility computing and cloud computing are not identical entities of Computer

Science. On the other hand, some researches and vendors define this technology as broad as

including everything that is located outside of a firewall used in the local network of the point

of access to the global network.

Arguing about a correct definition of terms is not in a purpose of this research, yet it is

valuable to realise how big a potential of this emerging movement is. As rightfully indicated

4

by Armbrust et al. (2009), cloud computing is making software more attractive than ever as a

service and it is changing the way hardware is designed and manufactured. Hardware needs

from the era of cloud computing demands powerful fast backbone servers and elements of

ICT infrastructure and light clients with excellent network compatibilities. As Hardy (2012)

perceptively states companies are buying thousands of servers in bulk, carrying less about

brand. One example of hardware from the era of cloud computing is the browser-based

Chromebook from Google where all functionality depends on cloud-based applications, it is

essentially useless without them.

Reference to Hamdaqa et al. (2011) reveals that cloud duties are to provide compute, storage,

communication and management capabilities for SaaS solutions. Tasks can be cloned into

multiple virtual machines, and they are usually accessible through application programmable

interfaces (API). Internet as a whole can be viewed as a giant cloud and even such its key

component as DNS can be considered to be SaaS, following the work of Fox & Patterson

(2012a). The growing number of enterprises that use Internet and emerging of broadband

technologies for high connections opened the way for SaaS to make significant progress in the

Software Engineering industry. (Blokdijk 2008)

Three implementation models exist for the cloud computing solutions, based on research

made by Poelker (2011):

1. Private cloud: Created and run internally by an organisation or purchased and stored

within the organisation and run by a third party.

2. Hybrid cloud: Outsources some but not all elements either internally or externally.

3. Public cloud: No physical infrastructure locally, all access to data and applications is

external.

Naturally, each of advantages and features of cloud computing, that were described in this

section, has within it a corresponding disadvantage or concern. First among these is security.

Miller (2008, 28) Grossman (2009) claim that because cloud-based services are commonly

hosted remotely (including hosted cloud services), their functionality and reliability can be

threatened by the latency- and bandwidth-related problems. Furthermore, since hosted cloud

services operate with large amounts of customers, various issues related to multiple customers

sharing the same piece of hardware and one instance of application code can arise.

5

Smith (2009) correctly argues that plenty of enterprises are undecided about hosting their

valuable data on a computer that is external to their own company and not located on the

premises of their office locations. By now, there has been no client-to-client attacks of

software or data hosted in the cloud. That may be due to necessary security provisions, or it

may be because there has been no value in this kind of penetration in the past. This situation

may change in favour of hackers in the future, where cloud computing is likely to become the

main platform for software distribution. Additionally, another concern is location. Companies

may be concerned about the physical location of the data that is being stored in the cloud.

Having said that, it is not problematic to imagine a situation where a poorly designed system

can be compromised by actions of tenants that produce unintended results. Finally, according

to Miller (2008, 28) services that work from the cloud require high speed Internet connection

from their users and might not be suitable for constant use. Cloud-based programs rarely

require a lot of bandwidth to download, as do large documents.

In conclusion, let us consider one good example that helps with understanding of cloud

computing, which was given in the article of Aggarwal (2011). In it the author compared

cloud computing with mobile phones: both of these technologies freed people from using old-

fashioned tools in favour of newly developed approaches and appliances. Nowadays, such

companies as Oracle and SAP are spending billions in favour of research of cloud computing.

And, indeed, thanks to IT companies choosing cloud computing in favour of more

conservative solutions such, as not cross-platform desktop applications, web-based

multitenant applications became a reality.

2.2 Architecture of cloud computing

As rightfully pointed out by Fox & Patterson (2012a), architecture is a way of organising

components of a certain system and other architectures are possible. By choosing a specific

architecture, we reject other ways of organisation. The web uses client-server architecture and

since cloud computing is a part of Internet, it has clients and servers and the cloud in between.

Of course, other architectures are possible and no one can tell for sure that people will still be

using the same architecture in a hundred years from now. But architecture of multitenant

programs is not a topic of this research, rather practical applications of the architecture that

lies beneath it is.

6

As can be learnt from the online course about SaaS offered by the University of California at

Fox & Patterson (2012b), cloud computing uses the most popular architecture in the world of

network distributed systems: Client-Server architecture (Peer-to-Peer being the only likely

alternative on the market today). Services, which are distributed using cloud computing

typically consist of five layers: Server, Infrastructure (Infrastructure as a Service), Platform

(Platform as a Service), Application (Software as a Service) and Client (see Figure 1).

Figure 1. Layers of cloud computing. Wikipedia contributors (2012b)

Let us describe briefly each part of the cloud computing architecture paying special attention

to the Application layer.

Clients are used by users to access cloud computing services. The essential requirement for

these devices is network access features. Some of the clients rely on cloud based solutions so

heavily that virtually all functionality depends on them. Cloud based applications can be

accessed using special pieces of software such as email managers and RSS news readers, in

other cases virtual machines are used. Majority of clients, however, do not require special

programs for access to cloud computing and are capable of running programs using installed

web browsers.

Application layer is the most interesting part of cloud computing architecture as for this

research. A main purpose of cloud application service or Software as a Service is to publish

software in Internet thus eliminating any need for installation of programs as singletenant

7

applications. According to Blokdijk (2008, 24) sometimes SaaS is also called hosted

application, application service provider (ASP), hosted solution etc. This study focuses

primarily on this layer of cloud computing.

Cloud platform services, also known as Platform as a Service (PaaS) solution stacks and/or

computer platforms as a service. It often utilises offered services of the cloud infrastructure

and supports cloud application layer. Possibly, the greatest innovation that was brought to

Computer Science by introduction of cloud computing is migration of developers to cloud

platforms. Such companies as Force.com and Heroku.com abstract the concept of servers

entirely, companies of this type focus on core application development from the very first

stage of project advancement. The application can be deployed with a single button click and

there is no need for application developers to worry about multitenancy, availability,

scalability etc.

Cloud infrastructure services, also known as Infrastructure as a Service (IaaS), deliver

computer infrastructure as a service, extended with means of raw storage and networking.

Clients may buy these services entirely outsourced instead of purchasing servers, network

equipment, software and datacenters.

The Server layer contains software and hardware. Products that are specifically designed for

the delivery of cloud services, including multi-core processors, cloud-specific operating

systems are present on this layer.

2.3 Software as a Service

Traditional software is represented by binary code that is installed on one machine and runs

wholly on the client device. Selling software as a subscription service over the Internet is

another approach to the problem of distribution of IT assistance. Turning to research

conducted in Blokdijk (2008, 16), one can find an interesting analogy: the authors compare

SaaS to electricity, air travel and telephone services, clients pay for services to server

providers in a similar manner as paying to electrical companies for using electricity and as

buying tickets to use airplanes.

8

Many applications, which have been known as purely desktop solutions can now be reached

in the cloud, for example: Microsoft Office 365, iWorks, TurboTax Online etc. Customers can

now choose between paying for a license to use traditional software (and often separate

licenses for each individual device using it) or use a product that can be accessed from the

cloud. “Why pay more?” - this is a kind of question that can frequently be heard from

supporters of SaaS. There are multiple advantages of SaaS over traditional software that make

it a likely candidate for a dominant approach to Software Engineering in the near future. Fox

& Patterson (2012a). Let us discuss six main advantages of SaaS:

1. No hardware or OS compatibility issues: compatible Internet browser program is enough.

2. Data loss is very unlikely: all data is stored on the remote site.

3. If data used is large and often changed it is simpler to store one copy of it on the remote

site.

4. Ease of interactions with other users.

5. Compatibility of software more easily achievable for developers.

6. Simplified maintenance of updates for developers and easier process of updating for users.

Using Software as a Service brings a lot of positive innovations to, first of all, end users that

use bought services every day. Indeed, one of the main advantages of cloud-based

applications for developers is a high level of compatibility. Hence, there are common tasks

that are identical for almost all web applications. When a user sends a request to the SaaS

applications such processes occur:

1. “Mapping” of the URI (Uniform Resource Identifier) to a correct program and function.

2. Passing arguments.

3. Invoking the program on the server.

4. Handling storage and initial exchange of data.

5. Handling cookies.

6. Handling raised errors.

7. Output back to the user.

The description of deployment patterns from Microsoft (2012) states that aforementioned

duties of SaaS can be categorised into three tiers:

9

1. Presentation (client). This is the top most layer. The main function of it is to translate

tasks and processes to understandable to the end user language.

2. Logic (application). This layer coordinates the application, processes commands. It is

responsible for decision-making and evaluation. It also moves data between other two

layer. Separation from the Persistence layer is needed because amount of work done by

this layer is greatly smaller compared to the Server tier.

3. Persistence (server). In this tier information is processed and stored either in the local

storage or in the database. The ready information is passed back to the logic level and then

eventually back to the user via presentation layer.

This kind of architecture is often called “Three-tier architecture” (see Figure 2). It is a

variation of the N-tier architecture. In this architecture communication between layers with

skipping the middle layer is impossible. With SaaS following the Three-tier architecture,

developers can use benefits of that system, namely “Shared nothing” principle. What is means

is that all three tiers of the architecture that lie behind SaaS application are independent and

isolated from each other. It gives a benefit for scalability and development. Understanding of

principles of its work is crucial for development of efficient and well-designed multitenant

applications.

Figure 2. Example of Tree-tier architecture. IBM (2010)

One might confuse the three-tier architecture to model-view-controller (MVC) approach. It is

a well-known architectural pattern. However, these two systems are different in their

10

fundamentals. Unlike three-tier architecture communication between the top layer and the

lowest layer is possible without calling the middle layer. MVC is a programming design

pattern where different portions of code are responsible for representing the Model, View, and

controller in some application (see Figure 3).

Figure 3. MVC concept. Wikipedia contributors (2012a)

These two concepts are related because, for instance, the Model layer may have an internal

implementation that calls a database for storing and retrieving data. The controller may reside

on the webserver and remotely call application servers to retrieve data. MVC abstracts away

the details of how the architecture of an application is implemented. N-tier architecture just

refers to the physical structure of an implementation. These two technologies are sometimes

confused because an MVC design is often implemented using an N-tier architecture. Both

concepts are used in development of multitenant SaaS applications. In the practical part of

this work MVC approach is used for demonstration purposes.

Model-view-controller is the way of organising applications that an end-user is seeing.

Presentation layer and UI are separated from the data layer and logical components of the

program that are operating on it. With MVC whenever a user interacts with the application,

the action is passed to a certain controller that has access to a certain model in the program.

Essentially, everything in the program that follows MVC goes via controllers. Models in the

MVC can communicate with each other. For example, in a hypothetical bioenergy ERP

(Enterprise Resource Planning) system a model of web forms for chipping might be present.

However, organising them without information about location of the sight and details about

the task is difficult to implement. In this case communication with different models that store

data about the location and details about the chipping task would be required.

11

It is hard to imagine SaaS applications without a term Service Oriented Architecture (SOA). It

nearly disappeared from use because it is so unspecific and hard to define with absolute

certainty. In this architecture all of the components are designed to be services. In it every

component can be used by someone else, not just by its creator, every part of it is

independent. For Software Engineering it means ability to create programs, which consist of

components that are developed separately. With this architecture creation of a situation-

specific pieces of software based on an existing solutions is easier. It is possible to take a

ready-made program and change only a few components to make a new solution ready to be

used in a new environment by new clients of the company. Mistakes in design are also easier

to recover from. Based on the work of Fox & Patterson (2012a), the most distinguished

difference between software implemented using SOA and programs that work as standard silo

versions is that no service can access or name another service’s data. Only requests for data

through APIs are possible.

Continuing a topic of SOA architecture one can mention a curious situation that happened a

few years ago. This interesting situation happened once in the world of online blogging. Steve

Yegge, who has worked both in Amazon.com and Google posted a public blog post, which

was intended to be viewed only by the staff of Google (his then current employer) and not

outside of the company, copy of it available at Microsoft (2012). In that post he argued that

despite all the weaknesses that Amazon.com has compared to Google (which is

comprehensively a much larger and more successful company) they have a fully developed

and functioning SOA and Google does not. "Start with a platform, and then use it for

everything," Yegge demanded, referencing to Google+ as a main example of Google wrongly

creating a mere product instead of a Facebook-style platform upon which products can be

added and connected. As rightly pointed by the author, creation of SaaS based extendable

platforms is the future of programming. Once it was discovered that the post was viewable in

entire world, it was shortly deleted. However, it spread quickly over Internet and it was clear

from it that even such giants as Google are incorporating the SOA into their products and how

important that system for the modern world of software development is.

An absorbing email is worth mentioning in the scope of this research. It perspicuously shows

how important and urgent moving to the Service Oriented Architecture is considered by the

12

key players in the world of IT. It can be backed up by Yegge’s description of an email from

Amazon.com’s CEO Jeff Bezos that he received when Mr. Bezos was his employer:

1. All teams will henceforth expose their data and functionality through service interfaces.

2. Teams must communicate with each other through these interfaces.

3. There will be no other form of interprocess communication allowed: No direct linking, no

direct reads of another team's data store, no shared-memory model, no back doors

whatsoever. The only communication allowed is via service interface calls over the

network.

4. It doesn't matter what technology they use. HTTP, Corba, Pubsub, custom protocols --

doesn't matter. Bezos doesn't care.

5. All service interfaces, without exception, must be designed from the ground up to be

externalizable. That is to say, the team must plan and design to be able to expose the

interface to developers in the outside world. No exceptions.

6. Anyone who doesn't do this will be fired.

It can be assumed that the last point made by Jeff Bezos is to ensure that all engineers without

exception would follow these suggestions. Points 1-5 are more interesting, however, since

they define steps required to take to make a SaaS, which emphasises all key aspects of SOA.

This email was a beginning of a new strategy acquired by Amazon.com, which brought that

company billions in earnings and is a part of one of many success stories of usage of cloud

computing in eBusiness.

Turning to Amazon (2008), one can find that in less than two years after launch of the system,

Amazon Web Services increased the number of different types of compute servers

(“instances”) from one to five, and in less than one year they added seven new infrastructure

services and two new operational support options.

Cloud computing is becoming more and more popular with every month. Multiple analysis of

growth of cloud computing have been made. One of the most notable of them is research

conducted by the company called Forrester, which, based on research of Columbus (2011)

and Kisker et al. (2011), investigated that SaaS will outgrow all other cloud services,

achieving 50% adoption rate in companies (meaning that half of enterprises dealing with IT

would have SaaS as parts of their strategies) in 2012, see Figure 4. In previous studies

13

Forrester has shown that SaaS is a major growth catalyst of ongoing investment in IaaS, PaaS

and BPaaS (Business Process as a Service) in enterprises.

Figure 4. Cloud computing adoption in 2011-2012. Kisker et al. (2011)

Scientists that made their research on SaaS in Fox & Patterson (2012a) predict that virtually

all software will be offered as a service by the end of this decade. Thousands of businesses

around the world, large enterprises and freelance developers, share the same view on the

situation of software development today. Arguably the most famous and known SaaS

development company is Salesforce.com. The company’s founders Marc Benioff and Parker

Harris opened their business in 1999 in California, USA. According to Swartz (2007), this

3000-person company, which mainly focuses on tracking prospects of sales and share

information, is “credited with turning the software industry on its head”. It has contributed to

the revolution that happened in the way software is designed and distributed. Based on the

press release from the company at Salesforce.com (2002), after a decade the company has

grown so much that they opened their own charity foundation, which in 2011 gave $100,000

to projects conducted in Tibet. In 2008 Salesforce.com suppressed a $1 billion mark in sales

14

and at the moment of writing this paragraph it was reported that the company raised $632 in

revenue in the last quarter of year 2012, as Rao (2012) has indicated. Moreover, analytics

predict that earning of Salesforce.com will be growing by up to 30% each year.

According to Hardy (2012), a long-known IT giant Dell, on the other hand, reported a 7% fall

in earnings, similar reports came from HP who claimed that a planned transformation in

favour of SaaS of the company would take as many as five years. This example clearly shows

that research and development in the area of cloud computing and Software as a Service can

be beneficial for both entrepreneurs and the welfare of peoples of the world in general.

The evidence seems to indicate that a concept of Software as a Service is not an entirely

positive technology, it has negative sides as well. Compared to more traditional ways of

offering software, some of its disadvantages are a threat to its further development as a

dominating way of offering IT services with help of Internet. Firstly, SaaS applications

depend heavily on connection to the network. Secondly, it is a fresh technology and

community of developers that are following it is still not as big as of those who create desktop

solutions. Further, a range of tools that are offered by development community is in a process

of maturing and improvement. Finally, Miller (2008, 29) states that not all tasks can be

represented in the cloud, some services rely heavily on special hardware and software.

Blokdijk (2008) states erroneously that Software as a Service is now experiencing

transformation into SaaS 2.0, which is arguable. What can you call as SaaS 2.0 if the term is

so vastly large and far from a definite definition? No matter what iteration of SaaS is the

world of programming in right now, one thing is clear: this architecture will be dominating in

the near future.

In conclusion, let us give a quote of a futurist Jack Uldrich: “My prediction is that the term

'cloud' will have disappeared from the phrase 'cloud computing' by 2020, because the majority

of computing will simply assumed to be done in the cloud. As a result of this transition, the

market capitalization of major networking firms will be slashed to less than one-third of their

2012 levels, and 50% of all of today's IT vendors will be out of business by the decade's end.”

15

2.4 Software as a Service business model

Reference to Fox & Patterson (2012a) Chong & Garraro (2006) reveals that developers who

switch to working with off-premises software need to keep in mind aspects of three

interrelated areas: business model, application architecture, and operational structure (see

Figure 5).

Figure 5. Areas for consideration for SaaS developers. Chong & Garraro (2006)

As application architecture and operational structure of cloud-based services are described

extensively throughout this research, let us briefly discuss changes in a business model of an

enterprise that need to be undertaken by software engineers before moving from offering on-

premise software to offering Software as a Service.

The business model of SaaS has multiple differences compared to traditional software. A

question of ownership of the program rises: ownership shifts from the customer to a service

provider, responsibility for infrastructure (see section 2.6 Infrastructure for SaaS) and

managements is given to a service provider, the cost of providing software services is reduced

by means of specialisation and economical scaling, a new target can be chosen - "long tail" of

smaller businesses by cutting prices for services.

In an average Software Engineering firm, a budget is divided into following categories,

(Chong & Garraro 2006):

• Software - expenses on actual projects, all software and data related problems and costs.

16

• Hardware - desktop computers, networking components, servers and mobile devices that

provide users with access to the software.

• Professional services - staff of the company that is responsible for maintenance of projects

and ensuring reliability and customer support.

Figure 6. Typical budget for on-premises software environment. (Chong, Garraro 2006)

On Figure 6, one can see a typical division of budget for using projects that are implemented

as traditional on-premises software. It is clear from the diagram that expenses on actual

functionality of software are gradually lower that on hardware that supports it, and means of

professional services. The hardware budget is spent in the direction of desktop and mobile

computers for end users, servers that host data and programs, and components of networking.

The professional services budget pays for supporting staff to deploy and support software and

hardware. Also, consultants and development resources’s salaries are paid from the

“Professional Services” sector that helps design and build custom systems.

In a company that deals with off-premises cloud-based solutions, a division of money looks

significantly different (refer to Figure 7).

17

Figure 7. Typical budget for a Software as a Service business. (Chong & Garraro 2006)

Typical budget in an SaaS environment is represented by a much more complex model. In this

model SaaS vendor hosts their applications and related data on centralised servers which are

supported by dedicated staff. Moreover, applications delivered over Internet place

significantly less demand on hardware, which enables the customer to extend the desktop

technology lifecycle greatly. However, two new kinds of expenses can be seen in this model:

fees for SaaS vendor hardware and fees for SaaS vendor services. On the other hand, it can be

concluded that expenses on Software part of the service are largely higher than in the on-

premises software model.

By lowering prices for services, Software as a Service solutions can now target a so called

“long tail” of business, described in Anderson (2006). By removing a large amount of costs

for maintenance, and using scalability in services to combine and centralise customers'

hardware and services requirements, SaaS dealers can offer solutions at a much lower cost

than traditional vendors.Also, it allows tenants to avoid using complex IT infrastructures.

These features give SaaS access to customers for whom using traditional solutions has always

been too expensive and unaffordable. Effectively targeting these clients can bring large

profits.

Conclusively, the end result of the SaaS business model is that a much higher part of the IT

budget is available to spend on actual software, typically in the form of subscription fees to

SaaS providers. It can be stated that one of the main breakthroughs received with coming of

Software as a Service is its business model that allows customers of such solutions to receive

18

much better functionality than from comparable on-premises traditional solutions.

Furthermore, even accounting for new costs exposed by SaaS vendors, tenants can still obtain

significantly greater software functionality. Additionally, turning to Chong & Garraro (2006)

Anderson (2006), one can say that SaaS is uniquely positioned to fill a gap in demand that has

not been filled by traditional retailers known as “long tail”.

2.5 SWOT analysis of SaaS markets in Ukraine, Finland and the UK

The author of this research had an opportunity to reside in the UK, Finland and Ukraine

during working on this study, see Figure 8. As a result a chance to make analysis of situations

with Software as a Service markets in these very different countries was used.

Figure 8. Finland, Ukraine and the UK highlighted on the map of Europe.

These three countries are all from Europe. However, it can be stated that local situations with

such high-end technologies as SaaS are rather different. Finland is from Scandinavia, the UK

is from the West and Ukraine is an Eastern European country. Finland and the UK are

members of the European Union and Ukraine is not. Demographic and political aspects of

these countries are also extremely dissimilar from each other.

19

The UK has the biggest population of 62 million people (data for 2010, based on Google

(2012c)), yet it has the smallest area among these countries: 243,610 sq. km (Nationmaster

2012). Ukraine, on the other hand, has a population of 45.8 million people (data for 2010,

based on Google (2012a)), and it is the largest country in Europe with area of 603,628 sq. km.

And Finland has the smallest population among these three countries, 5.3 million people (data

for 2010, based on Google (2012b)), however, it is the 6th largest country in Europe.

Meaning, that these three test cases have very contrasting markets for such businesses as

SaaS: Finland is a country with small density of population, when the UK is becoming

overpopulated, especially in Southern England. Ukraine is in the middle with a large area and

average (decreasing) population.

Finland and the UK are highly-developed industrial countries with very high standards of

living and Ukraine is a developing nation still struggling to rebuild itself after the collapse of

the USSR. Finland has a rapidly-developing market for new technologies and more and more

spheres of life are converted into cloud-based enterprises. The UK, on the other hand, is a

country with a bigger diversity of population: a gap between rich and poor is larger.

Nevertheless, the government in London is increasing levels of interactions with computing in

many areas of life in the country, sometimes turning whole departments of interactions with

citizens of government agencies into, fundamentally, websites.

2.5.1 Analysis of SaaS market in Ukraine

Strengths:

Turning to WorldApp (2010), Ukraine has a big technological potential. Its software industry

is a fast growing global market. It is a country with a large population and its location

between Europe and Asia has been a source of success for international companies.

Weaknesses:

Ukrainian software market develops unsystematically and with a moderate pace. The market

for Software as a Service is only emerging now. It can be explained by lack of interest to SaaS

from companies of the IT “long tail”. Estimates claim that Ukrainian IT market is 5-6 years

behind such developed countries as the USA and the UK. It is unlikely that business climate

in Ukraine will be promising for SaaS vendors in the near future.

20

The country suffers from a vast corruption rate. Practically all levels of its society depend of

corruption and almost nothing can be achieved without paying to the black market. In 1990s

corruption was the main cause why Ukraine did not succeed in being accepted in the

European Union and even now, after more than 20 years of independence, the country is

struggling from it. Companies that consider stepping into Ukrainian market should discuss all

its weaknesses and threats with other enterprises from the developed world that have

experience in working in Ukraine.

Opportunities:

The country has a big potential for software development companies. Its educational system is

very similar to the one that the USSR had. Demands on students are very high and to

successfully graduate young scholars need to work hard. However, educators give very little

freedom and students have to follow very strict rules. As a result, undergraduate and graduate

students often take first places in programming competitions, according to ICPC (2011), and

they graduate as already matured engineers.

Ukraine is an importer of software. Working for the national market is not profitable for most

companies, since level of piracy in the country is exceedingly high and project budgets are

often small. A lot of development is outsourced. It creates a perfect productional base for

Western engineering enterprises.

Threats:

The government of Ukraine does not provide approving conditions for national Information

Technology industry development. If it continues to be a case, a career of and IT specialist

will become unattractive for young people of Ukraine and the country will lose all of its IT

industry, as well as investments from outside.

Ukrainian piracy market is estimated to be as high as 83 % of the whole market (WorldApp

2010). If nothing will be done, Ukraine may be left without many important spheres of its

market, which would collapse under pressure of fighting with piracy.

21

2.5.2 Analysis of SaaS market in Finland

Strengths:

Finland has a unique position, in the far east of the European Union. According to Finfacts

(2011), Google has recently chosen this country as a location for its datacenter, due to cold

climate beneficial for cooling of hardware and low energy prices. Moreover, Finland is one of

world leading countries in terms of networking and Internet access, which makes it a perfect

candidate for usage of Software as a Service. It was reported by BBC News (2010) that since

2009 this country has had broadband connection to Internet as one of fundamental rights of its

citizens.

Finland is a country with a very developed and complex market. Turning to the work of

Tiihonen (2003, 99), it cannot be said that Finland has no corruption at all, the country

constantly occupies high rankings in world free-of-corruption lists. De Heide (2007) reports

that in 1990s the Finnish government focussed its policy and instruments on improving R&D

intensity, which resulted in the economic growth in the 1990s that outpaced most of its

competitors.

Weaknesses:

A low population of Finland means a relatively small market. However, a high level of

computer awareness of Finnish population makes their market still quite attractive for SaaS

vendors. Additionally, although its location might be considered as a benefit, it can also be

called a weakness. Finland is located in a remote part of Northern Europe and reaching

Helsinki can be time-consuming.

Opportunities:

SaaS market is a fast-growing and developing market in Finland and in Scandinavia in

general. Both local companies like MHG Systems Oy and global ones like Salesforce.com are

investing money and resources into Nordic markets.

Because of low density of population in Finland even some traditional sectors of business like

mail delivery are seeking ways of using Internet to save costs and improve their efficiency: as

indicated by Helsingin Sanomat (2012), Itella (Finnish Post Service company) is now

22

considering opening physical letters and delivering them via means of Internet to reduce

prices and improve their services and reliability.

Threats:

Like in most other developed countries, Finland has been suffering from the bank crisis lately.

As a result its economy slowed down and companies like Nokia are closing their offices and

moving to other countries. However, the rate of economical growth is still positive and people

are expecting further improvements.

2.5.3 Analysis of SaaS market in the UK

Strengths:

The United Kingdom has a largest population among the three countries that were chosen as

study cases. Having a population of 62 million people means that there are a lot of clients

waiting to be connected to the cloud. It is also the most industrially-developed country with a

GDP of $2.253 trillion (data for 2011, based on International Monetary Fund (2011)). The UK

has a leadership position in Cloud Computing adoption with even the government introducing

systems that are on early stages of development.

Scaling is what makes cloud computing attractive in the UK. Insurance company Aviva, for

example, moved all its enterprise content management and business intelligence tools to

Microsoft's Sharepoint service. Also, logistics firm Pall-Ex grows fast and with reducing costs

with every day thanks to moving their IT infrastructure to the UK hosting company

Outsourcery. (Weber 2010)

The UK has a large software development base and many IT specialists from outside of the

UK are attracted to high salaries in this country. It may be a good base for software

development firms that seek expanding of their Research and Development departments.

Weaknesses:

The UK has been trying to be a relatively closed country. Even though it is a part of the

European Union, it did not sign Schengen Agreement and it is the most isolated “old” member

of the EU. This country is highly self-providing with low rates of import compared to its

23

http://en.wikipedia.org/wiki/Schengen_Agreement
http://en.wikipedia.org/wiki/Schengen_Agreement

neighbours. It may be a factor that slows down investments into a sector of SaaS from outside

of Great Britain.

Opportunities:

The UK is one of world’s leaders in scientific research in Computer Science. New

technologies are welcomed in that country and SaaS vendors have big opportunities in Great

Britain. Overall, computing is received positively in the country and SaaS vendors may seek

profits from opening their services to the UK market.

Following the research of Hingley (2011), the total spending on ITC in the UK in 2011 were

about £200 billion, of which around 16% were spent on cloud computing. By 2016 the total

market is estimated to grow to £219 billion, of which cloud computing will account for 20%

(£43 billion). Consumers and small businesses will spend most on Cloud Services, as

researchers predict.

Threats:

Similar to Finland, the UK has been suffering from the bank crisis. As a result its economy

slowed down and enterprises are closing their offices. Nevertheless, the rate of economical

growth is positive.

2.5.4 Results of the analysis

A situation with SaaS seems to be the most interesting in Ukraine where it is undergoing a

start of development and it analytics cannot predict with absolute certainty what will happen

in next five years. Ukrainian market is difficult to forecast and, unlike Finland and the UK,

the country has a large problem with corruption. Because, of this unpredictability, companies

that are interested in investing into cloud computing in developing countries should be on

alert and have ready-made strategies for rapid advancement to the market in case of Ukraine.

In cases of Finland and the United Kingdom, situation is quite stable with cloud computing

and it promises to be developing further with a constant positive pace. Opening enterprises

that are specialised in providing SaaS for customers in these countries have little risks and

promising opportunities.

24

Surprisingly, it was difficult to find trustful information on the current states of SaaS markets

in aforementioned countries. More extensive research needs to be conducted, providing how

quickly cloud computing is advancing forward.

2.6 Infrastructure for SaaS

In the cloud computing users sign up for a service and in addition to the application itself,

they hire the entire ICT infrastructure, which backs up the service. Only Internet connection

and a piece of software, such as a modern browser, are required for efficient usage of the

program. Furthermore, Software as a Service has specific requirements for the hardware that

is used in its backbone and the hardware is essential for success of applications.

There are three piles that cloud computing stands on. SaaS needs to provide good means of

communication with a service to its customers providing fine reliability: ability to send and

receive data with sufficient data exchange ratios. Also, scalability is very important for

servers that store data of the SaaS, storage used should be easily extendable. Additionally,

without constant connection to the program that a user has signed up for, there is “no” service

at all since he/she cannot use it under any other conditions other than exchanging information

with infrastructure behind SaaS, fine level of connection is achieved by utilising

dependability. If a user decides to switch to software in the cloud instead of using an

application that is installed on the local machine, the SaaS must provide the same value for

dependability as its desktop replacement.

2.6.1 Cluster computer storage

The last word in the science of choosing hardware for SaaS belongs to cluster computers.

Using cluster computers can save money because ordering mainframe machines in bulk is

much cheaper than buying traditional large servers. Furthermore, a group of workers required

for maintenance of the farm of clusters usually consists of just a few persons. Clusters are also

much more scalable, than large servers. Software hosting companies can now lower their

costs of maintaining redundant services such as the upkeep of servers and software

maintenance.

25

As discovered by Armbrust et al. (2009), software engineers with innovative ideas for

services that can be launched from Internet no longer need to invest large capitals into

hardware resources needed for deployment and human resources requested for maintenance.

SaaS architecture is offering attractive possibilities for start-up companies. Starting your

organisation in the world of eBusiness used to be difficult and required complex planning and

risk analysis. Development of a start-up project often requires investments in multiple spheres

of IT besides Software Engineering such as ordering servers for storing data, paying staff that

takes care of maintenance of hardware, creating custom interfaces for data communication

etc. Today, however, such services as Amazon.com EC2 offer attractive packages for renting

hardware for SaaS oriented software development. Amazon.com’s EC2 service is virtual and

is built on top of the company’s Elastic Computer Cloud. Turning to Shore & Warden (2007),

one can learn that it is currently the 42nd fastest computer on Earth, which is unprecedented

having in mind a price for renting the machine. Anyone can rent this service that has more

than 30000 processor units for about €1000 an hour (other super computers with similar

performance would require paying millions for completion of the task in the same amount of

time). According to Fox & Patterson (2012b) flexible plans offered by companies like

Amazon.com offering renting hardware for SaaS allow startup companies to start their

businesses with less risk and better chances to succeed. Just five years ago ability to rent

hardware for a price of a little more than a euro for an hour was hard to imagine.

With cloud computing developers need not think about overprovisioning for services that are

not successful, which are wasting resources, and underprovisioning (see Figure 9) for the ones

that meet their optimistic prognoses, thus missing potential customers and revenue.

Additionally, enterprises with massive mass-oriented tasks can get updated outcome as

quickly as their programs can scale, since using, as an example, 100 servers for one hour

requires not more costs than using one server for 100 hours. This stretchiness of resources is

extraordinary in the history of IT. Bezemer & Zaidman (2010) back up this idea by indicating

that easier application development and better utilisation of infrastructure hardware reduce

costs of development and this makes SaaS applications largely attractive for customers in the

small and medium enterprise (SME) segment of the market, as those companies often have

limited financial resources and do not demand the computational power of dedicated servers.

26

Figure 9. (a) Even if peak load can be correctly anticipated, without elasticity engineers waste

resources (shaded area) during nonpeak times. (b) Underprovisioning case 1: potential

revenue from users not served (shaded area) is sacrificed. (c) Underprovisioning case 2:

certain users leave the site permanently after experiencing inaccessible service. (Armbrust et

al. 2009)

Based on the research of Armbrust et al. (2009), the cloud computing’s ability to scale quickly

is the key observation when a decision about moving to the cloud is made. With elasticity

offered by cluster farm services such as the Amazon.com’ EC2 matching resources to

workload in almost real time is now a reality. According to Rangan et al. (2008) utilisation of

most datacenters is only 5 - 20 %, it is explained by the fact that workload during peak time

might exceed average rate by factors of 2 to 10. Taking into account such elements of the

system as seasonal bursts (e.g., e-commerce peaks during sales seasons and photo sharing

sites peak after holidays) and unexpected demand bursts due to external events like news

flashes in addition to simple diurnal patterns it can be said that benefits of elasticity can be

even higher. With sufficient elasticity of clusters and dynamic allocation of resources

utilisation can be raised to be close to 100 %.

Analysing reasons behind moving to cloud computing is important to consider before

spending large resource on the change. Let us show a simple equation for estimating cost

efficiency of cloud computing compared to a fixed-capacity datacenter:

27

EQUATION 1. Estimating cost efficiency of cloud computing compared to a fixed-capacity

datacenter. (Rangan et al. 2008)

In the left side of the equation an estimate of cost efficiency for cloud computing is outlined,

where the net revenue per user-hour (revenue realised per user-hour minus cost of paying

Cloud Computing per user-hour) is multiplied by a number of user-hours. In the right side an

estimate for efficiency of a traditional fixed-capacity datacenter is given, where the same

calculation is performed by factoring the average utilisation, including nonpeak workloads.

The greater opportunity for profit is indicated by the side, which is greater in this equation. If

Utlization was 1.0 the two sides of the equation would be equal. Authors of (Abramson et al.

2002) argue that in real world this value is typically in a range [0.6 , 0.8], where the equation

states that cloud computing is more profitable. The equation explains that the crucial element

in successful operation of cloud computing-based services is the ability to control the cost per

user hour of operating the service.

The aforementioned model is simplified. The pricing of cloud services may be out of control

of the outsourcing company. If the company that provides SaaS services holds a strong

position compared to its competitors, it may “overcharge” for its service. And in this case this

equation is not necessarily true.

Furthermore, cloud computing and utilisation of clusters can eliminate penalties, which are

possible in case of scaling down of the system. The scaling down can happen due to

improving software efficiency or business slowdown. For example, with 3-year depreciation,

a €2,100 server removed after a year of operation generates a “penalty” of €1,400. With cloud

computing it is not an issue. (Armbrust et al. 2009)

2.6.2 Scaling storage for hosting large amounts of data

One of the most discussed areas in research in distributed and cloud computing is a problem

of scaling storage for hosting large amount of data. Scientist have invented two ways of doing

that: sharding and replication.

28

According to Fox & Patterson (2012a) Hoff (2009), with sharding data is divided into small

parts. One possible way of doing so can be seen from Figure 10 where data, which belongs to

users of a certain application, is divided based on the first letter of surnames of users. Any

application that utilises storage of this kind should be able to access data from any part of the

system, for example, address of Mr. Wales should be as easily accessible as address of Mrs.

Anderson. This sort of storage has a big factor of scalability. Additionally, high availability

can be achieved: if one server goes down, other servers still work. Also based on Roy (2008),

with no master database serialising “Write” queries one can write in parallel, which increases

one’s write throughput, Hoff (2009) backs up this idea. The downside of this approach is big

latencies of queries that work with populating databases with data.

Figure 10. Data distribution using sharding. (Fox & Patterson 2012a)

Unlike sharding, replicated storage have normalised data: when it is needed, data is fetched

from different servers and put together (Roy 2008). With replication data is propagated to all

copies of the storage. It makes fast operations with writing data possible, but scaling becomes

difficult. Whenever data is written to the storage, values of data become temporarily

inconsistent. An example of replicated storage can be seen on Figure 11 below, red arrows

represent propagation of data.

29

Figure 11. Data distribution using replication. (Fox & Patterson 2012a)

A well-known website Facebook.com has faced the issue with big latencies of queries in

sharded databases. Their datacenters handle enormous amounts of data on 24/7 bases and

whenever a user posts something on his or her “Wall” other users on the other side of the

planet or even a large country would be able to see the post after a few seconds of delay,

which is unacceptable in case of social networks. The company has decided to combine

sharding with replication. Facebook decided to create one storage unit, which was responsible

only for wall posts of users and removed issues connected with high latencies of “Write”

operations with database.

The work of Roy (2008) assets that sharding solves problems with replication entirely.

However & Roy (2008) does not support Fox & Patterson (2012b)'s argument that only

sharding should be used and claims that in reality, most companies are using combinations of

sharding and replication. Following material presented at Fox & Patterson (2012b) such

combination allows achieving good scalability and fine performance with low latencies of

writing data. Scalability of successful SaaS applications that work with large amounts of users

and data is a very complicated field of research and it shall not be covered in details in the

scope of this research, although understanding of the problem that developers need to face

when they deploy their cloud computing projects to the cloud is essential for creation of

multitenant SaaS programs.

2.6.3 Relational databases and cloud computing

According to research made by Fox & Patterson (2012b), models used in MVC usually store

data in relational databases, which can be viewed using relational database management

30

systems (RDBMS) such as MySQL Workbench, which was utilised in the scope of this

research. Applications and necessity of utilisation of this type of databases has been on

agendas of almost all Computer Science related conferences lately. That is why mentioning a

few words in the scope of this work can be considered beneficial for the topic.

Relational databases emerged in 1970s. The problem with relational databases is that they do

not scale very well. Many solutions have been offered as possible substitutes to classical

Relational databases, which are commonly called as “NoSQL”. They scale with a much better

rate, which is crucial for development of multitenant SaaS applications.

Each model in the application that is created using MVC approach s associated with a Data

Mapper that defines specific rules on how to work with a certain particular model. The

negative side of using data mappers is that not all features that simplify complex relationships

and queries of RDBMS can be used. Data mappers keep mapping independent of particular

data storages and it provides better database system compatibility. Today multiple vendors

and database systems are present on the market of DB management. Hence, having a

sufficient layer of database compatibility is an important asset for any SaaS project. A popular

example of extensive usage of data mappers is Google AppEngine.

The data mappers are used in the database, which was build to support a test case in this

research. The alternative approach to data mappers is using Active Records, which might be

beneficial in cases when requirement of writing complex data access queries is present. (Fox

& Patterson 2012b)

2.7 Multitenancy

Turning to Goldszmidt & Poddar (2008), one can find that web-developed applications that

follow a Software as a Service delivery model offer great business value for enterprises of any

size. Programmers who develop new solutions following SaaS or transforming old projects

into the cloud oriented computing face technical challenges. Among them is a multitenant

approach to offering IT services. What is mutlitenancy and how is it different from the other

ways of presenting SaaS applications in the cloud today?

31

According to Engelsen (2011) there are at least three different ways of implementing

program-user relationships:

1. Users log into a single instance of codebase/database.

2. Users log into individually developed pairs of codebase/database where all information is

isolated and not accessible by other users.

3. Users log into a single instance of the program, but such methods as configuration files,

SQL tables or connection strings are used to locally isolate data and sensitive information.

So called “One-to-Many” approach.

Moreover, another issue is raised when development of applications that are offered as web-

based solutions is considered: customisation of the program and ability to serve clients

individually, taking their individual needs into account. In the first approach, where all tenants

of the service use a single codebase, it is difficult because of issues of separation of data and

respecting ownership rights. In the second approach a problem of data individuality does not

rise any more but development of codebase/database packages for each client can be cost and

time inefficient.

The third approach, however, attracts attention of programmers when they deal with issues of

allowing different tenants to use their applications. With this way of implementing codebase

for web applications software developers have ability to satisfy multiple sets of requirements

asked by different tenants with creation of one single codebase and a logically separated

database. It is called the Multitenant (Multi-Tenant) Architecture. On the pages of Goldszmidt

& Poddar (2008), one can read that in this architecture a single solution, running on a service

provider’s premises, is capable of serving multiple tenants/organisations.

As Jansen et al. (2010) has indicated, a multitenant web application is a program which

enables usage of the same instance of a system for different customer organisations or

individuals, without necessarily sharing data or functionality with other clients of the

program. These tenants have one or more users that use this application to reach tenant-

specific goals.

At this point it is important to outline a difference between multitenant and multiuser

applications. The work of Bezemer & Zaidman (2010) shows that multiuser programs assume

users utilising one application that has configurable elements, on the other hand multitenant

32

solutions offer much more diverse options for customisation. Multitenant applications are

essentially SaaS solutions, which reside in the Application level of a typical system set up

using cloud computing. Multitenancy is an organisational approach for SaaS applications as

outlined by Bezemer & Zaidman (2010).

Multitenant architecture (example of which can be found on Figure 12) has gone a long way

since it was first introduced in 1960s when companies were renting space and processing

power of mainframe computing to reduce expenses spent on calculations. In 1990s

Application Service Providers (ASPs) were hosting instances of their applications as separate

processes or as instances on physically separated machines. Nowadays, such applications as

Gmail, Hotmail and Google Calendar are designed as functionally single instances that are

capable of servicing often up to hundreds of millions of clients. We are living in the era of

multitenant applications and people in today’s world are surrounded by them on various levels

of their lives.

Figure 12. Multitenant architecture. (Keene et al. 2012)

A study by Weissman & Bobrowski (2009) shows that operating just one application that

serves needs of multiple clients (in not rare cases millions of tenants of a certain company)

provides great scale of economy for the provider. As with all Software as a Service solution,

one set of hardware and a relatively small number of experienced workers can support the

whole system, software developers need to create and maintain one codebase on a single

33

platform. The economics offered by multitenancy makes it possible for the application

provider to offer the service at a lower cost to customers.

Benefits of multitenancy include, but are not limited to, improved user satisfaction, quality

and customer control. Dissimilar to singletenant applications, which are isolated solutions

used outside the reach of the application provider, a multitenant application is one large

instance that is hosted by the provider itself. This design lets the service provider collect

analytical information from the collective user population and make persistent, progressive

improvements to the service that benefit the entire user community in an instance.

Furthermore, collaboration and integration can also be improved when multitenancy is used.

Unlike more traditional pieces of software, one of the most important aspects of development

and maintenance of multitenant applications, namely web forms which can often be parts of

bigger projects, is utilisation of an appropriate system for determining what sets of features

and requirements must be shown for certain users and what must be turned off. It is crucial for

providing security and giving tenants exactly what they are asking for. Turning to Bezemer &

Zaidman (2010), one finds that in contrast to the multiuser applications, multitenancy requires

customisation of a single instance of the application for meeting multi-faced requirements of

tenants.

Moreover, potential issues can arise in multitenant applications, based on Goldszmidt &

Poddar (2008):

1. Isolation: since tenant share the same instance of software and hardware, availability of

one tenant can possibly be affected by actions of other users.

2. Security: if the shared program does not have adequate protection, users of one tenant

might be capable of accessing data from the other tenant. However, turning to Weissman

& Bobrowski (2009), one can find that thanks to all users running all applications in one

virtual space, letting any user of any application assorted access to specific sets of data is

easily reachable, if required.

3. Customisability: appropriate level of customisation of multitenant software is difficult to

achieve, since all customers use the same instance of the solution. This is a topic of

interest for many researchers.

34

4. Application upgrades can cause problems for tenants: simultaneously upgrading

shared software may not be desirable for all tenants.

5. Recovery: tenants use the same database, which makes it difficult to back up and restore

data for each individual client.

Software developers must be aware of these problems of multitenancy and avoid them in their

products.

2.7.1 Multitenancy at enterprise level

A great number of enterprises are looking into ways of transcribing their singletenant

applications into multitenant ones. Yet, two obstacles of multitenant architecture are slowing

this process down, namely:

• Enterprises differ in terms of initial budgets for reengineering their singletenant applications

into multitenant programs (Tsai et al. 2007).

• Maintenance personnel is anxious that multitenancy may bring additional problems into

maintenance based on the fact that these solutions are highly customisable and they require

effective ways of customisation, in the process eliminating the advantage that multitenancy

offers through the fact that updates are developed and applied only once. (Bezemer &

Zaidman 2010)

Mutlitenancy is used in various projects. Especially big value for using this approach can be

found in a field of development of enterprise resource planning (or ERP) systems which,

according to Blokdijk (2008), are sets of services attempting unification of all data

information and processes of a particular company into one cohesive system. Multitenant

ERP systems that serve multiple clients need to be capable of providing well designed tools

for customisation on all levels of the system. Most companies would prefer the ERP system to

be as customised as possible and fit to their particular needs.

Turning to pages of Leon (2008), one can find that initially ERP systems were targeted only at

the manufacturing enterprises and included common for such businesses functions such as

sales management, accounting, cost management, etc. However, in recent years ERP systems

have been adapted by a great number of companies from other areas and field of business.

Enterprise resource planning systems have reached a truly global level. It can be said that in

35

today’s world the enterprise resource planning system is a very important asset for practically

any organisation.

2.8 Development of multitenant applications

Before development of any service it is important to assess all sides of upcoming

development process. One of the major phases of development of software is determination of

the service value. Developers should ask questions like “Why does the customer need this

service?” and “Why should the customer give our company this project?” To answer these

questions two factors need to be examined: Service Warranty and Service Utility, which in

combination produce Service Value (see Figure 13). (Hatch 2008, 17 - 18)

Figure 13. Creating Service Value. (Hatch 2008) p.17

Service Utility defines the functionality side of the service from the user’s point of view (i.e.

what the service does).

Service Warranty represents level of reassurance and guarantee for meeting discussed

requirements for the project.

Together they represent the value of the service, which can be determined with help of

Equation 2:

Service Warranty + Service Utility = Service Value

EQUATION 2. Service value. (Hatch 2008, 17)

36

If after assessment of risks, which needs to be taken during the work on the project, results

prove that development will be successful and profitable, the SaaS application can be

developed and released. Let us take a look at the brief history of development of RIA (Rich

Internet Applications) and aspects of working on projects of this type.

In the elder days Internet was a collection of websites that consisted of HTML pages, which

sometimes had CSS styling put on top of them. Eventually, web developers faced a problem

of the necessity of dynamic content for the web. At first, by such means of programming as

PHP and Perl languages of programming, websites started to have pieces of code put inside of

HTML tags that generated something unique for specific situations (Fox & Patterson 2012a).

Later, scientists and engineers came up with a concept of using templates with snippets of

code that were capable of generating unique output for individual clients. This was a time of

first e-commerce and advanced Web 1.0 web-based projects.

According to work done in Goldszmidt & Poddar (2008), there are multiple technical

challenges connected to development of multitenant SaaS solutions:

1. Access control: a problem of separating tenants from each other. Application resources,

such as virtual portals, database tables, workflows are to be shared by users of different

tenants. The technical difficulty is in providing means of controlling areas of access for

users of different tenants of the service. It faces isolation and security of multitenant

software.

2. Customisability: customisation of different elements of multitenant solutions can be

tedious because each time a user from a certain tenant logs into the application a

configuration set for exactly that client, and not for any other, must be loaded and used.

3. Tenant provisioning: an issue of configuring the system to allow addition of new clients

with as few manual steps as possible.

4. Usage-based metering: monitoring usage of the service by tenant can be challenging. It is

required, though, for an intelligent system of charging, where tenants pay money only for

that time when they actually use the service.

Because of these challenges developers of multitenant applications need to pay special

attention to selecting a multitenant server framework. In an article by Keene et al. (2012) one

37

can find main points that need to be considered before starting development of multitenant

software, as seen by IBM:

1. An open, standards-based server framework needs to be chosen. Multiple Platform as a

Service options use proprietary languages and hosting provider. This should be avoided

and open, possibly Java-based framework, should be chosen instead.

2. Per tenant extensions need to be enabled within shared schema. Tenants sometimes

require adding tenant-specific data extensions without affecting the overall state of the

system. Customisation is needed.

3. Per tenant data backup and recovery is needed. Using SaaS means that customers need to

entrust sensitive data to service providers. Ensuring per-tenant backup and recovery as a

part of the multitenant server framework improves trustworthiness of the service.

4. Integration of role-based user security with client-side user interface. A disconnect

between client-side and server-side security frameworks is often a place where malicious

code penetrates the system and deals damage. The server-side role based access control

framework should provide a sufficient level of management of client access to UI widgets,

services and data.

5. Integrated deployment to cloud hosting environments. The multitenant server framework

should allow with ease connections to leading cloud providers such as Amazon EC2,

which have their own APIs and requirements.

6. Transparent failure management. In case of failures of application or database servers

transitions to backup servers should be seamless and painless to end-users.

One may argue that this list made by IBM is biased, since it promotes products developed by

that company. However, the main principles exposed in it will hold true if used with other

proprietary products from other companies, such as Microsoft .NET Framework 4. Keeping

these six aspects of deploying multitenant applications in mind is important and can help with

creation of a successful and promising SaaS application that uses multitenancy. Agile

development can increase quality of software projects and help create multitenant SaaS

solutions.

38

2.9 Agile development of SaaS

There are two main approaches to development of software projects today: “agile” and

“waterfall” development processes. With development that is conducted based on the

waterfall approach a lot of planning is done in the initial stages of the project, which is

typically divided into the following sections, see Figure 11:

1. Requirement analysis and specification.

2. Architectural design.

3. Implementation and integration.

4. Verification.

5. Operation and maintenance.

This model interlaces a lot with a similar approach that is used for development of hardware.

Why? Because with the waterfall model catching malfunctioning and removing bad flaws of

design can be done during all phases of development. Nevertheless, the final outcome cannot

be tested until the very last stage of development. The key principal of this method is

outlining the “big” design of the project upfront, before any actual development has started.

Having malfunctioning in the final version of the hardware product can cause millions and it

can put an end to the project, if competitor teams have succeeded in a similar design. That is

why different teams of specialised professionals using extensive documentation as medium of

cooperation often do these five stages. Another issue with using this technique for

development of software and hardware is little interactions with a client who ordered creation

of the program. If a customer is unsatisfied, the project often needs to be started over from the

starting stage.

The waterfall model works really well for enterprises where specifications do not change fast,

for example: Operating System for a drone sent to Mars or aircraft control. In development of

most modern day software, however, a radically different approach is used because programs

typically need to meet new requirements with dramatic speed. Creating SaaS products utilises

iterative lifecycle heavily. Projects are developed in small iterations (see Figure 14) with

earning money and releasing versions of the software while the project is advancing further.

39

Figure 14. Waterfall and agile development lifecycles. (Shore & Warden 2007, 16)

Interestingly, agile software development started as a movement of programmers in 2001. A

website called “Manifesto for Agile Software Development” was created where they outlined

main principles of what in their opinion was a foundation for a better way of creating

software. And, more than a decade later, the following principles are considered as core

values in organising software development teams (Beck et al. 2001):

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

Values on the left in the list above (highlighted in italics) are core principles of agile software

development, while statements on the right are valued as well, but with smaller respect.

Software development that follows these four lines of manifesto created in 2001 is known to

be the best technique available today for development of customer-oriented software and,

namely, SaaS and it will be put into test in the scope of this research. (Shore & Warden 2007,

9 - 11)

Agile software methodologies are a radical departure from the traditional, document-heavy

waterfall activities that are still in extensive use today. These methodologies share a set of

common techniques. They all try to find a useful compromise between informal development

processes and formalised, traditional ones. (Larman 2003)

40

3 CUSTOMISABLE USER INTERFACE

3.1 User interface in Software Engineering

Information Technology has gone a long way from command line-controlled computers to

modern cross-platform and/or cross-browser applications with polished and user-friendly

interfaces. Myers & Rosson (1992b) has drawn attention to the fact that for the last 40 years

assembling applications from components has been a focus of extensive research and it led to

improvements of knowledge in such areas of Computer Science as Software Engineering

using component-based approach, middleware development and service composition.

However, little amount of studying has been done to the layer of presentation, which includes

user interface (UI) design and applications. User interface is the top-most level of application

and it is the only layer visible to most end-users without knowledge in IT, hence, developers

should be paying substantial attention to this field of human-machine interaction.

Figure 15. Workstation in 1960s. One of the first Graphical user interfaces (GUI). (Foremski

2005)

User interface is a way humans interact with their devices and if usage of programs on a

computer becomes a problem, usually the UI is to be blamed. User interfaces can be rightfully

41

called “a central ingredient of computer user satisfaction”. Research on the UI started in 1945

when the batch interface was invented. The history of progression of UI can be broken into

three parts: batch (1945-1968), command-line (1969-1983) and graphical (1984 till today). An

example of an average computer from 1960s can be seen on Figure 15. All started, according

to multiple sources, with the invention of the digital computer. The opening years on the latter

two eras are the days when new interface technologies were invented and began to transform

users' expectations about interfaces in a serious way, those technologies were interactive

timesharing and the graphical user interface. (Raymond & Landley 2004)

User interface has gone a long way since 1950s and 1960s where a computer with a circular

screen and a one-button mouse presented on the picture above was the top of the range.

Today, UI, almost in its all entirety, used in a form of GUI. Nowadays, according to Bowman

et al. (2004), research is conducted even on development of 3D user interfaces. However, one

aspect of user interfaces has not changed in last 60 years and is unlikely to change in the

future: UI plays a central role in usability of the system. And, taking care about it is an

important task for all programmers, engineers, designers and anyone working with the UI.

One integral part of good usability (according to the dictionary: “The ease of use and

learnability of a human-made object”) is a high degree of user-friendliness. With today’s level

of technological advancements, users interact with a massive amount of variations of UI on

daily basics. And, the less time it takes for a user to get accustomed with the interface of a

certain application, the bigger chances are that the user in question will not choose a

competitor’s solution.

Turning to Spolsky (2001, 7 - 8), one can find a good example about a diversity of the UI in

modern world: a story about a power user, whose area of responsibility covers Microsoft

Windows OS trying to fix a problem in a Mac OS - powered laptop. Because Mac OS is so

different compared to Windows OS, he was faced with a serious of challenged that were

required to be overcome to fix a small issue and a headache for the rest of the day. The moral

of this story is that UI needs to be created in such a way that using it is entirely logical and

effortless. Satisfied user is hard to achieve.

The following points have been reported by many sources as possible reasons for user

frustrations with user interfaces:

42

1. When a program does not work properly or exits with errors.

2. When a system does not do what the user wants it to do.

3. When a user’s requirements are not met.

4. When a system does not provide sufficient information to enable the user to know what to

do.

5. When indistinct, annoying or condemning error messages appear.

6. When appearance of an interface is over-bright, glamorous or patronising.

7. When a system requires users to carry out too many steps to perform a task.

8. Troublesome interference.

Satisfaction of users can be met by creating easy to use software. However, as interfaces

become easier to use, they become harder to create (Myers 1994). Following the work of

Spolsky (2001), designing a good user interface is a challenging process. To succeed, a

designer/developer needs to constantly evaluate his or her work. After designing the UI, one

has to evaluate done job, make necessary adjustments, if any. This process needs to be

repeated until requirements are met or the team ran out of time/money. While design is

important, the most crucial aspect of creating a good user interface is in evaluation

techniques. Evidently, a designer/developer should be able to use his or her own user

interface. If that person cannot use it, how can anyone else?

Daniel et al. (2006) makes clear that one of possible ways of improving a level of quality of

modern user interfaces is integrations of graphical UIs. Integrations of components of UI can

be achieved by combining presentation front-ends. The idea behind it is achieving a

composite application that utilises individual characteristics of components that are put into it.

The need for such applications is manifest and it is already extensively used in modern

software development, for example: real estate information overlay for Google Maps,

personal web-based homepages, etc. Unlike data and application integration, UI integration

composes programs by using their own user interfaces and the presentation layer of the

composed application is composed on its own. This approach can be used in cases where data

of application integration is not practical.

An interesting survey can be found that was done by Myers & Rosson (992a). It is an old

research, but results of it are still valid today. Authors of this work tested 74 companies that

43

work in software development and representing a variety of countries and types of

organisations. They asked them what is a percentage of UI devoted programming in the whole

project. Average value was 47.6%, as can be seen from Figure 16. User interfaces are

extensively more complicated today and thus the number can be expected to be slightly

higher. However, even the original number reported by the authors indicates large importance

of UI programming for a successful project.

Figure 16: The percentage of code devoted to the UI programming, based on 71 test cases.

(Myers & Rosson 1992a)

Unfortunately, there is still a lot of research and using “trial and error” method to be done in

the future in finding “The perfect UI”. Meanwhile, small advancements are being made in the

field and knowing them is important for creating a successful cloud computing application.

3.2 Problem of customisable user interfaces in modern Computer Science

Software developers implementing multitenant web-based systems have all at some point

wondered what the available Customisation Realisation Techniques (CRTs) are. This may lead

to a research question: What are the possible ways of achieving a required level of

customisation and configurability in multitenant web applications? The following sections

discuss this issue from a multitenant application developer’s point of view.

Patent on “Customisable user interfaces” states that: “The goal of these customizing

applications is to provide a more user-friendly interface to potential customers or clients in

addition to attempting to provide a sense of personal service to individuals accessing a

44

company’s web site.” (Halabieh 2003). This patent has been filled in 2003. Since then,

customisation of user interface has been a well-discussed by researchers topic and

development of techniques for improving existing tools of customisation has been a point of

attentions of thousands of companies around the world.

Referencing Myers (2003), customisation of user interface can be achieved by providing

possibilities for users to change or extend applications using languages of programming, for

example, AutoCAD provides Lisp for customisation, and many Microsoft programs use

Microsoft’s on language Visual Basic. More effective mechanisms for users to customise

existing applications and create new ones are required.

It is important to have in mind that the terms customisation and personalisation are often used

distinctively and sometimes interchangeably. Occasionally, personalisation is used to describe

presenting content to individual users based on knowledge of who they are. Another example

might be presentation of a logged in user with information about that particular user of the

application, making it easy for that person to access often-used information. In other cases

personalisation refers to giving users ability to define what parts of the application they need

to use. Customisation is mostly. Updated 12.12.2010. Referred as setting certain preferences

of the program that affect how it behaves. For the purposes of this research these terms are

considered interchangeable and a word “customisation” is used in all cases.

Any software engineer who has background in development of graphical applications would

admit that a stage of working on the user interface component of the program is often the

most time- and effort-consuming stage of the development. Reusing of components can be

beneficial for the UI development. Many application frameworks, such as JavaServer Faces

2.0, offer ready-made components like buttons, menus and bars (Daniel et al. 2006). Having

this in mind, it is worth mentioning that development of custom customisable components

that add a concept of reuse to the UI can save time for software engineers and enhance user

experience.

As Miller (2003) perceptively states, unfortunately, often such aspects of software as scripting

and customisation support get suspended in favour to more vital problems like feature set,

performance, reliability, and usability. However, a problem of improving current methods of

adding customisation to software is a critical for consideration topic. According to Spolsky

45

(2001), if a targeted group of consumers has different user communities (or the same user

with different jobs), one may need different user interfaces, customisable user interfaces or

both.

Customisation may mean compromise, since it is hard to predict what exactly tenants of a

service require to be customisable. Let us turn to Salesforce.com once again. As indicated by

the staff of the company at Salesforce.com (2012), “More power to customise” often is a top-

ranked wish of business application users. The challenge for Information Technology

organisations is that such power usually comes with big expenses, including increased project

costs and ongoing risks. Faced with customisations that are costly, resource intensive, and

difficult to upgrade, IT organisations often must make painful compromises or persuade users

to accept “plain vanilla” programs. However, making users go for compromises may mean

decreased attractiveness of the application and better ways of customisation should be

researched.

Furthermore, the most important topic of research in the field of the presentation layer of

web-based application recently has been a problem of customisation of user interface in web

applications, which is described in the next section.

3.3 Customisable user interfaces in web-based applications

“We’re at a tipping point, where mission-critical applications are moving into the cloud” says

an analyst with Nomura Securities Rick Sherlund (Hardy 2012). And, since, as one might

state that UI is the most important asset in a successful commercial piece of software,

development of customisable UI in SaaS has become a point of interest of a great number of

researchers around the globe.

In situations when desktop application do not provide APIs users that wish to customise their

programs need to resort to automating the UI, often called screen scraping. Cross-application

solutions that record macros allow users to record mouse movements and keystrokes. Once

the action is required again, the macro action can be executed. The downside of this approach

is inability of macro records to know a state of the application they are working with based on

an application’s display. Solution like Triggers Potter (1993) and VisMap Zettlemoyer, St.

46

Amant (1999) deal with this problem by interpreting the display contents at a pixel level, but

this technology is challenging and resource-consuming.

Interpretation of desktop application output is difficult. However, web application provide

their output as easily-readable HTML code, making screen scrapping more accessible. Using

automation is being practised in web development today. Nevertheless, it does not provide a

full level of customisation required for most projects, which needs to be investigated.

Present-day web applications, unlike dedicated desktop solutions, do not employ a concept of

haystack. Turning to Quan et al. (2003), one finds that with the haystack, continuations and

other supporting abstractions could be used to help users store their commands in operation

and continue in convenient time. This technology is difficult to imagine in terms of web-based

applications, since storing such data of user operations on the server side is difficult to

imagine and local storage compatibilities of web browsers are still not perfect and saved

information can be vulnerable.

Web-based user interfaces or web user interfaces (WUI) are a subclass of GUIs which accept

input of users and generate output in a form of either an updated version of the page where

input was entered or a new web page. They are usually viewed with help of a web browsing

program.

Often tenants of a certain company require web forms that have unique for their needs sets of

functions. Customisation of the way the form looks like and feels to end-users is needed.

According to research of Hadlock (2011) it is a common requirement in the world of Internet

today. Popularity of personalised homepages and dashboards, such as MyAOL, MyYahoo!

and iGoogle, has been rising and possibilities for changing user interface of web pages

offered to customers has been in great demand.

People did not have an urgent need to use customisable interfaces in Internet-based

applications straight away. Based on Fox & Patterson (2012b), there was a problem with

classic websites that were done in the early days of Internet: HTTP protocol is stateless and

adding such features as a shopping cart in a eBusiness website or a checkout page was not

possible. In the mid 1990s the problem of adding such features rose and a new technology

was introduced: cookies. One way of providing client-specific interfaces that can supply a

47

satisfactory level of personalisation is enabling cookies for the website. With this technology

users can configure elements of a certain page, for example widgets in a personalised

homepage like My Yahoo and BBC.co.uk (see Figure 17).

Figure 17. Personalised using cookies homepage of BBC (http://bbc.co.uk).

It is important, however, to always check if a client is legit in SaaS. A client could be a

“bot” (AI controlled program that pretends to be a human) or it can be a person with an

outdated browser that does not support required features and have critical flaws. In

development of SaaS a response received from the client must always be checked to avoid

crucial mistakes. Using cookies for customisation of the website is a reasonable choice for a

developer, while it removes workload from the servers by storing configuration information

48

locally. Nevertheless, there are better ways of implementing customisable UI in web

applications.

Dynamic web pages can currently be achieved with both server-side and client-side languages

of programming. It is worth mentioning such server-side technologies as ASP, ColdFusion,

PHP, Perl and JSP. Also, such client-side scripting languages like JavaScript or ActionScript,

Flash are often used to manipulate media elements of the presentation layer of the web page.

Based on the article by Selvitelle (2010), one great example of a modern-looking and properly

working interfaces is Twitter (see Figure 18). The current version of it was done almost

entirely using JavaScript open-source libraries (e.g. jQuery, LABjs). In this website users and

even companies can adjust many settings of the visual appeal of the program to make

personalised profiles that could be used for promoting and business. This website is an

excellent example of a level of customisation that is achievable using primarily client-side

technologies like JavaScript.

Figure 18. A new look of twitter.com, offering great tools for customisation.

Unlike client-side languages of programming, a much greater level of customisation can be

accessed using server-side languages. This level of customisation is usually used in enterprise

49

programming and systems that are used commercially, e.g. ERP systems for bioenergy

management (see Figure 19). In this kind of programs settings that define levels of

customisation are often stored in a remote database, not locally. And they can be fetched from

it using server-side scripting with Java or any other server-side language of programming.

Figure 19. MHG Public web interface for bioenergy ERP system. Customisation is provided

by JSF 2.0 technology. Such elements of the design as a logo, icons, fonts, colours are

customisable. Reordering of the elements of the page can also be implemented, if required by

the tenant.

50

Turning to the work of Miller et al. (1997), web application users, unlike customers of

traditional desktop solutions, can be rather intolerant of unadaptable interface since they

usually have alternatives in form of other websites offering same services.

4 CUSTOMISABLE WEB FORMS IN MULTITENANT APPLICATIONS

Forms play a role of “bridges” between complex record of data and users, average humans.

This role is a very important one, since most users still find computers intimidating, let alone

databases. The easier the interactions between users and the application can be made, the

more successful that application is likely to be. Forms “humanise” the persistence layer of the

application.

Web forms are a type of forms. Web forms allow data that is entered by a user to be sent to a

server that processes it. Similar, to forms used in traditional desktop solutions, web forms

consist of such elements as radio buttons, checkboxes and text fields. For example, web forms

could be used to gather survey data, enter credit card information, or register account on a

website.

Turning to Whitehorn, Marklyn (2006, 14 - 15), forms are devices which allow one to look at

and edit the data stored in the database. One can usually alter the table directly and perform

both editing and viewing, but forms are preferable, since they tend to be more attractive and

easier in use for users. Forms can be thought of as filters between the tables of data in,

usually, relational database and the users of the database. Humans usually prefer to be able to

see each record of the table of data individually and not as rows neighbouring other, often

unnecessary for the specific user in the specific time, data.

Web fields are what web forms consist of. Fields are one of the elements of web forms. Input

fields can contain such elements:

• Text — a simple text box that allows input of a single line of text.

• Checkbox — a check box.

• Radio — a radio button.

• File — a file select control for uploading a file.

51

• Reset — a reset button that, when activated, tells the browser to restore the values to their

initial values.

• Submit — a button that tells the browser to take action on the form.

With combinations of these elements web forms can allow input or almost all types of data

that can be imagined relevant in web-based application solutions. In an ideal Software as a

Service application all of these aforementioned elements of web forms should be fully

customisable.

A problem with web fields in multitenant applications is a strong connection of them to

specific fields in a database. A situation where a piece of information desired to be entered in

a field by one tenant is different from a wish of other tenants concerning data entry in the

same field in a web form can easily be imagined. In situations like that tools allowing

overloading of web fields should make possible configuration of web forms by each tenant

individually.

Today’s UI tools mostly help with the generation of the code of the interface, and presume

that the fundamental user interface design is complete. Tools to help with the generation,

specification, and analysis of the design of the interface are also needed. Creation of

customisable web fields in web-based applications require much more advanced and, often

coded from the scratch, tools.

Additionally, data entry should also be controlled in web form fields. Turning to Whitehorn &

Marklyn (2006), one can find that it is important to specify what kind of information may be

entered in each field of the form. Data control can also be implemented on the database level,

which is more important, because multiple forms can rely on the same table in the database.

Moreover, if the project is developed in a team, database is easier to manage and keep

organised than multiple forms. Theoretically, data control can entirely be implemented on the

form level, but it is a sign of bad design patterns. With JSF 2.0 framework data control

handling can be managed easily.

Several technologies available today can be considered as suitable techniques for creating

customisable web forms in multitenant applications. JavaServer Pages technology was chosen

to produce a test application to support this research. This server-side language of

52

programming reuses CGI (Common Gateway Interface) concepts in their APIs but dispatch

all web requests into a shared virtual machine.

Development of extensively-customisable web-based input fields may seem like an

unimportant and too vague for consideration topic, but it is an important part of Internet of the

future, fully customisable and offering exactly what a user requires to see.

Problems of multitenant architecture, customisable user interfaces and tenant-custom

functionality in web applications are among the most discussed and research topics of

Computer Science today. Thus study on a particular way of implementing multitenant forms

inside of applications written using JSF 2.0 and MySQL technologies was chosen as a topic of

this research to contribute to these topics and to the world of Information Technology and

Computer Science in general.

5 TECHNOLOGIES USED FOR THE TEST CASE

From a developer’s point of view, choosing the suitable architecture and tools for developing

a web application is a vital decision, which assumes thinking about the following dimensions

of the expected program: 1) the size of the database, 2) having dynamic components, 3)

existence of customisation in the website, 4) overall expectation from the design.

A problem of balancing between these four aspects of development of SaaS application is a

difficult one. Achieving high levels of customisation and design can be considerably easily

attained by hard-coding appropriate web pages, but developers using this technique must

sacrifice scalability and responsiveness to updates. On the other hand, automatic HTML

generators, which are capable of returning web pages based on data stored in a database, can

ensure a good level of scalability and responsiveness to updates. Compensating between these

two, it may seem like, opposite approaches is challenging. Detailed consideration of tools to

be used needs to be performed before starting development.

The multitenant SaaS application with customisable web forms, which is developed as a

practical prove of this study tries to be an example of a harmonically working application

utilising main principles of cloud computing and Software Engineering in general. It uses

technologies, which are shortly described in this section.

53

5.1 JSF 2.0

According to Anderson (2006), with time when projects become more complicated, the code

becomes the “tail that wagged the dog”. It steps out of the Web server and most tasks are

handled by frameworks for web development of Web 2.0 websites, which are available in

plenty. Providing the pages, filtering input provided in form fields, and delivering new pages

as a result, must be implemented using some sort of server-side scripting technology as the

back-end of the web page, or by a framework. These tools are normally rather different from

the tools used to work with the client-side pages that the user sees.

The sample program developed as a part of this work uses Java language of programming.

One of the most noticeable aspects of this language is its openness and the large amount of

companies, tools, and technologies use the language. Additionally, a large variety of hardware

depends on Java, starting from handheld devices like mobile phones and ending with large

enterprise systems.

Special significance in Java development plays prior to development phase of selection of

tools. There are thousands of tools, both commercial and open-source, available on the market

today. The selection of the ‘best’ set of tools for a Java project can prove to be a hard task.

Some tools can be changed later in favour to other technologies with acceptable cost (such as,

for example, switching to another issue tracking system, as long as the old one provides some

data export facility), but others cannot be changed without altering most of the done work.

In the scope of this research JavaServer Faces (JSF) 2.0 Java-based Web application

framework is used. This framework is intended for simplification of web-based user interface

development.

JSF is included in the Java EE platform, so engineers can create applications that use JSF 2.0

technology without adding any extra libraries to their Java-based projects. JSF is capable of

using such bean containers as Spring and it works with almost equal performance and output

as a standalone web framework. Developers of various skill levels can build web applications

with ease by utilising such aspects of the technology as assembly of reusable UI components

54

into web pages, connecting these components to an application data source, and wiring client-

generated events to server-side event handlers.

JSF is a request-driven MVC web framework. According to JavaServer Faces (2011), it has

two main functions. The first one is generation of user interfaces, usually using HTML

language. As mentioned before, this UI is represented on the page as a tree of components and

elements in the UI. The actual interface is generated when the component tree is rendered.

The separation between user interface and component tree allows JavaServer Faces to support

such markup languages as XHTML.

The second main function of this framework is responding to user-generated events by calling

server-side listeners. This process is usually followed by generation of another web page with

another UI or an update to already showing UI. JSF can be called an event-driver framework.

For summarisation, a list of advantages of JSF 2.0 compared to other frameworks used in

development of cloud computing can be outlined using the work of Khan (2010):

1. JSF provides a substantial API with associated tags for creating HTML forms with

complex interfaces.

2. Large community of developers and number of external libraries.

3. Event handling.

4. Managed beans. Meaning that Java beans can be automatically populated based on request

parameters. With JSF’s utilities parameter processing is significantly simplified compared

to other MVC frameworks.

5. Form field conversion and validation.

6. Centralised file-based configuration. Rather than hard-coding information into Java

programs, many JSF values are represented in XML or property files.

7. Consistent approach

8. Support for Ajax, jQuery, Dojo and other interface libraries.

Further, interpreted languages like PHP are in almost all cases slower than compiled

languages like JSF. The downside of using JSF technology is that usually files crated by this

technology get compiled and complex, so once the server is up an running and doesn't get

55

changed anymore, the performance will be better than a PHP script that gets interpreted every

time a request comes in.

5.2 XHTML

Implementing user interfaces for Internet generally uses different tools than building GUIs for

desktop usage. Additionally, the technology and tools are changing quite rapidly. Therefore,

this is a brief overview of one of them - XHTML.

One reason for the wide spread acceptance of the World Wide Web was the concept of a

universal client - the web browser, based on the use of a key content language, namely

Hypertext Mark-up Language (HTML), based on W3C-XHTML (1997). Simple sites of Web

1.0 era were collected from static text and images with embedded links, and these can be

created by directly typing the underlying HTML code. As an alternative, the designer/

developer may also use more interactive tools, for example Microsoft FrontPage, which

therefore works as an Interface Builder. Pages that are required to be dynamic can also be

authored by using scripting language embedded in the html code, for example: Javascript or

VBscript (Visual Basic Script). On the other hand, a specialised animation language can be

used, such as Adobe Flash.

According to W3C-XHTML (2004), the first version of XHTML recommended by the W3C -

XHTML 1.0 came in 3 various, namely strict, transitional, and frameset. The main purpose of

XHTML 1.0 was redefining HTML as an XML program, and different variations of it

provided a transaction stage for smooth transformations. The idea of separately defining

content and presentation was not new. The main goal of XHTML 2.0 is to provide a cleaner

and more structural mark-up for describing the content only of a hypertext page. Therefore,

allowing proper marking up of content in a practical way, and a clear defined content, style

and behaviour separation.

In the scope of this research XHTML is used, while it is a common technology used as a way

of representing web pages generated by JSF 2.0 framework. Since, JavaServer Faces is an

MVC - driven application framework, it can be said that XHTML is utilised to output views

of an application.

56

5.3 CSS

Cascading Style Sheets (CSS) is used as a tool for altering the way view pages generated with

help of JSF framework are outputted. It was created in 1996, but it is still a de-facto standard

for styling web pages. Using CSS brings another layer of separation into application

framework. With this technology document content (generated with XHTML) can be

separated from document presentation.

Based on Andrew (2007, 1 - 2), styles can also be defined using standard HTML code.

However, using pure HTML code is insufficient when adding modern-looking elements to the

style of the page. As an example, using ... tag from HTML syntax describes

font that is to be used for text between an opening and a closing tags. On average, hundreds of

just this tag would be used to describe font of an average-looking and with average load on

content page in a modern website. If changing colours, ways of outputting images, positions

of elements on the page is required, a number of HTML tags used for describing style can

easily reach thousands. It is extremely inefficient. Cascading Style Sheets makes designing

pages and web forms easier and faster.

5.4 MySQL

MySQL is chosen as an RDBMS for a test case in this study. It is currently the world’s most

used database management system. MySQL comes with MySQL Workbench which is a tool

developed to be used specifically with MySQL, see Figure 20. This application significantly

simplifies designing a scheme for a database and maintaining the database. This program

provides data modelling, SQL development, and extensive administration tools for server

management, user administration and other tasks.

57

Figure 20. MySQL Workbench 5.2 running on Mac OS.

5.5 Netbeans IDE

The NetBeans IDE (Integrated Development Environment) was the first free and open source

tool providing support for building J2EE web tier applications in the beginning of 2000s.

With the 4.1 release, the NetBeans IDE (see Figure 21) was developed even further and it

include full support for building complete J2EE 1.4 programs, as well as supporting the key

capability of J2EE 1.4 web services. At the moment of doing this study Netbeans IDE was

already in its 7th iteration. It is considered to be one of the best tools for Java development.

(Keegan et al. 2006)

This IDE has full support for Java EE development and that is a main reason why it is chosen

for this research. All key features of development SaaS with Java EE are fully integrated with

this tool, which provides a complete environment for creating and debugging J2EE

applications. It has integrated support for Glassfish 2.x application server that is used. With a

single click the NetBeans IDE can start the application server, deploy the program, and run

the application in a mode ready for real-time debugging.

58

Figure 21. Netbeans IDE 6.9.1 running on Mac OS.

In the middle of development of the test case for this research support for Glassfish 2.x server

in Netbeans 6.9.1 broke down. Netbeans 7.1.1 with Glassfish 3.x and ICEFaces 3.0 was used

for further development. All programming code and a database design described below were

developed having these technologies in use. Most of it should be backward compatible with

Glassfish 2.x and ICEFaces 2.x running on top of JSF 2.0 framework.

Figure 22. Problem with an occupied port in Netbeans IDE.

On the other hand, Netbeans IDE as any software has its flaws. One issue that rises during

development of JSF 2.0 applications for GlassFish server on Mac OS X is a problem with

59

occupied ports. More precisely, if an application is deployed with runtime errors, the second

time that the application is deployed, GlassFish cannot start because a port (in case of Mac

OS X port number 1527) is occupied. An error message that is returned by Netbeans IDE can

be seen on Figure 22.

6 THE TEST CASE APPLICATION

“Every piece of knowledge must have a single, unambiguous, authoritative representation

within a system.” (Hunt & Thomas 1999). It is one of the core principles in modern software

architecture Don’t Repeat Yourself (DRY).

A current world of Information Technology has a gap in terms of applications that provide

means of working with multitenant web forms using MySQL and JSF technologies. To

support this study and answer to the research question “How to develop the most optimised

and the most versatile multitenant web form using JSF and MySQL?” a test case application

was developed. This application serves as a framework for management of web forms that

can be used by multiple tenants. In this chapter a workflow of organisation and management

of forms is described. Additionally, technical aspect of the program such as models, views and

controllers are described. Listings of programming code and various pieces of the application

are given in places where they can contribute to better understanding of logic of the

application. Additionally, references to appendices are given. In the appendices a number of

functions from the application and a MySQL scheme are described in greater details.

The central asset of the test case application is a web form. Web forms can be created,

managed and viewed/filled in. Furthermore, web forms can be inherited from other forms and

used by different tenants, which brings an aspect of multitenancy to the program. Users of

tenants can be granted permissions for working with certain web forms. When a web form is

created all users of the tenant are given rights to manage the form. A process of rendering web

forms can be summarised in a flow chard outlined in Figure 23. Working with web forms is

described in details in this chapter.

Moreover, a concept of “predefined web forms” is described in this study. Predefined fields

can be created and maintained by users of the tenant. These objects can describe commonly

used web fields, such as a list of countries, a group of radio buttons for choosing one’s gender,

60

etc. Later, these fields can be used when new web forms are created; it saves time and

improves usability and performance.

Figure 23. Flow chart describing a process of rendering web forms.

All web forms are compiled from web fields. Web fields are fully-customisable and it allows

tenants configure the test case program for their liking. When web fields are rendered a

number of properties such as label text, type of the field, label colour, etc. are fetched from

the database. Users of tenants can be granted rights for working with certain web fields. When

a web form is created all users of the tenant are given permissions to work with fields of the

form. A process of rendering a web field for a given form can be summarised in a flow char

on Figure 24. Working with web fields is described in details in this chapter.

61

Figure 24. Flow chart describing a process of rendering web fields.

An important asset in the test case application is a tenant. Multitenant applications cannot be

imagined without tenants using them. Additionally, tenants can have users. Users are actual

people that work for tenants and use the application. Different users can have different rights

within the application.

The code in the test case of this research was done with an intention to implement

“RESTful” (Representational State Transfer) programming, which was first described by Roy

Thomas Fielding in his doctoral dissertation in Fielding (2000). Creators and supporters of

REST defined its main goals to be: Scalability of component interactions, Generality of

62

interfaces, Independent deployment of components and Intermediary components reducing

latency, enforcing security and encapsulating legacy systems. This technique has proven to be

incredibly effective in cases of creation of SaaS. The main focus in this research is given to

generalisation of interfaces and building of appropriate easily-extendable APIs.

A common technique of MVC applications - CRUD (Create, Read, Update, Delete) - is used

in the thesis. Fox & Patterson (2012b) state that a matter of good practice of writing

applications using MVC is avoiding adding any logical components into views: having all

“real code” outside of boundaries of view components. Indeed, this principle helps with

organisation of code inside of the application, and it is utilised heavily in the test case. One

exception to this rule is usage of JavaScript for enhancements of the UI.

In section of this chapter below a close look into application code of the test case is taken.

The project consists of Java classes, XHTML views, and CSS files that can be divided into a

number of categories: models, views, logic, DAO etc. These categories are described in

details in the sections below. Additionally, examples with comments and explanations are

given to provide better understanding of processes that take place once the test case is

deployed to the application server. All examples are given with English language set as a

localisation preference in the program. Furthermore, one may find detailed listings of

application code in appendix 1 and a description of the scheme in appendix 2.

The test case application may be found on GitHub.com website where it is stored as a public

repository. A link to the project is https://github.com/Hollgam/multitenant_webforms.

6.1 Description of views and user actions

This section gives short descriptions of all web pages that are present in the test case. It may

be used for reference and better understanding of workflow of managing and using

multitenant web forms. The test case program’s section created for end users consists of a

main part with content and a sidebar on the left (see Figure 26). In the sidebar a user’s avatar

picture and links for a quick access to such sections as the front page (it can be accessed by

clicking on the avatar picture) and management of individual web forms. Web forms that are

listed there are marked with their names and IDs. Also, flags of available translations are

shown in a horizontal menu in the upper right part of the page.

63

All functions described in this sections can be accessed only if a user is logged in (except for

registration).

6.1.1 Registration, login and logout

To register one should follow a “Register” link in a login prompt shown on any other page

providing that no user is logged in from a browser used, see Figure 25. Also, register.jsp can

be accessed directly. To successfully register as a new user, one should fill information for all

fields marked as required. Other fields may be filled as well, but it is optional (it can be

changed later by editing account information of a new account).

Figure 25. Web page used for registration.

In this view entered value for email address is checked using regular expression ”.+@.+\\.[a-

z]+”, which is processed by EmailValidator.java validation bean (see a detailed listing in

appendix 1.5). At the bottom of the page a button to the front page is shown for quick access

along with a button for clearing entered data. Also, a button “Check Availability” can be used

to check if a desired username is not occupied by other users. After successful registration a

user is redirected to the front page with a message about successful registration shown. Users

can log in after successful registration.

To login any page that exists in the program may be opened or login.jsf file may be accessed

directly. “Remember me” option means that on a new session from the same browser no login

64

will be required for a current user. To logout a link “logout” in the upper right corner (next to

translation flags) should be pressed.

6.1.2 Front page

A front page is essentially a window for managing web forms that are accessible to end users.

When a user logs in he/she sees a list of web forms that can be viewed/edited. Additionally, a

request for generating a new form as well as inheriting an existing one may be accessed from

this page. This is a main page in the program, which serves as a dashboard with links to

common tasks that users can do, while logged in to the system, see Figure 26.

Figure 26. Front page.

6.1.3 Creating new web forms

To create a new web form a link “New work form” may be clicked on the home page or

newWebForm.jsf page may be accessed directly, see Figure 27. A person that is using the

test-case program may add new web fields to a new web form. When new web fields are

added to the form, such values of web fields are inputted and processed: label text, type,

whether the field is required for filling in or not and a position in the form. Furthermore, an

65

existing label can be chosen instead of creating a new one. This action can be performed by

user clicking on a green icon next to an input field for a label value. When that icon is pressed

a JavaScript function is invoked. This function makes a list of all available labels appear

below a location for inputting value for a new label. When an existing label is chosen, a

“label_id” property of webfield entity in the database is updated with a value corresponding

to the label that was chosen. Hence, when that label is changed, it is rendered differently in all

web field that use it. And not only for the field that is was initially generated for.

Figure 27. Web page where creating new web forms is handled.

Secondly, new web fields can be added to the form. It can be done by clicking on an empty

field below a list of existing web fields. Once a user clicks on the field, another line for

adding next new field is rendered lower. It is done using jQuery library and a JavaScript

function, a snippet of which can be viewed below.

$(document).ready(function() {

 for (var i = 1, i < 40, i++) {
 var id = "editForm:editList:" + i + ":editPanel",
 $('[id="' + id + '"]').hide(),
 }

 var id = "editForm:editList:" + "0" + ":webFieldLabel",
 $('[id="' + id + '"]').click(function(){

66

 var id = "editForm:editList:" + "1" + ":editPanel",
 $('[id="' + id + '"]').show(500),
 })

... (code omitted) ...

}

A list of 40 web fields is generated in a backing bean, after that they are passed to the page

and get hidden by a jQuery function. A number of members of an array of new web fields can

be extended, if required. Later, all fields, except for a field with zeroth index are hidden

before the rest of the view is rendered. The same approach is used in views that help tenants

edit existing web forms.

A user has another option for creating new web forms. A new form can be generated based on

another web form, the “mother” form. In this case a newly generated form becomes a “child”

web form inheriting its mother’s properties. This process can be performed from a

newChildWebForm.jsf page, or by clicking on the link “New CHILD web field” in the

upper part of the home page. Once a logged in user is redirected to that page he or she needs

to pick a web form that is to be used as a “mother”. It must be noted that only those web

forms that have a positive value of “can_be_mother” property can be used to generate new

web forms.

When a base web form is chosen a view is updated and a user sees a list of all web fields that

the “mother” web form consists of, as can be seen on Figure 28. A user has a choice of having

web fields in the new form inheriting properties of web fields in the “mother” form, it can be

done by triggering “Child” checkbox next to web fields. If such action is performed, web

fields become bound to their “mother” fields and all updates that are performed on mother

fields get copied to the “child” web fields (described in details in section 6.1.5 Editing web

forms).

67

Figure 28. A new web form generated based on a “mother” form.

Such properties of web fields as “type” and “required/not required” cannot be changed in a

process of creating a new web form based on a “mother” form. It is done in this way to

achieve a level of security for an action of inheriting web form’s properties. However, these

properties can be modified for “non child” web fields on later stages by going to

editWebForm.jsf view. Once a “Submit” button is clicked a method public String

newChildWebForm() is invoked. A listing of this method can be found in appendix 1.2.

6.1.4 Viewing and filling web forms

To view an existing web form a link to that form should be clicked. Before being rendered a

web form is parsed in a backing bean class, one may find a method that is responsible for a

process of parsing the form in appendix 1.3. All web forms can be viewed. Users may be

given rights to fill web forms with relevant information. If a user was granted permissions to

do so, a web form may be accessed through fillWebForm.jsf page or by clicking on the link,

see Figures 29 - 31. After information has been put into the form, data leaves the system for

routing to appropriate pieces of the database by external frameworks and modules. A web

form may be filled in by a user once.

Once a user accesses a web page where a web form is shown an ID of the form is recorded in

SessionBean.java and a list of web fields that are paired with the form is generated. Then,

68

web fields are outputted with <ui:repeat>...</ui:repeat> tags from JSF 2.0 framework.

Depending on a type of the field an appropriate set of settings is fetched and used for

rendering objects the web page. In the test case web fields can be of these types (listed in a

form: value of type - description):

• 1 - input field. Rendered with h:inputText.

• 2 - email address input field. External validation is applied. Rendered with h:inputText
and f:validator.

• 3 - text area. Rendered with h:inputTextarea.

• 4 - birth bate picker. External validation is applied. Rendered with ice:selectInputDate

and f:validator.

• 5 - date picker. External validation is applied. Rendered with ice:selectInputDate and
f:validator.

• 6 - drop-down menu. One value may be selected. Rendered with h:selectOneMenu.

• 7 - select one radio button group. Rendered with h:selectOneRadio.

• 8 - select one radio button group. Rendered with h:selectManyCheckbox.

• 9 - checkbox. Rendered with h:selectBooleanCheckbox.

• 10 - embedded map. Google Maps API is used.

Different settings for web fields are processed in runtime. Namely, web fields are marked as

required or not required for filling in. This property of the field is fetched from a column

“required” in the table webfield in the database. An example of this assignment can be seen

from this piece of code: <h:outputLabel styleClass="required#{webField.required}" ... /

>. Fields are made compulsory by assigning class attribute to ”required1”, which is described

in a CSS style sheet as follows (note: in case of the field set to be not compulsory for filling in

the class is set to “required0” and processed differently by CSS rules):

.required1 {
 background:url(./css-images/required.gif),
 background-position: 0% 50%,
 background-repeat:no-repeat,
 margin-left:auto,
 margin-right:auto,
 padding-left:7px !important,
 padding-right:2px !important,
 padding-bottom:1px,

69

}

Further, labels of fields can have such attributes as text colour, font size and family, etc.

changed to meet needs of tenants. Such personalisation is achieved by utilising inline CSS

styling as can be seen in this fragment of XHTML code: <h:outputLabel styleClass =

"required#{webField.required}" style = "color: ##{webField.colour}, font-family:
#{webField.labelFont}, font-size: #{webField.labelFontSize}px," for =

"webfield#{webField.type}" value="#{webField.label.en}"/>. Values for CSS attributes are

fetched from a webField object, as was described above. These settings are tenant-specific,

they cannot be modified to meet wishes of specific users. However, such adjustment is

possible with little modifications to program’s logic.

Moreover, a CAPTCHA image can be shown on the view. This image may be added to the

form to achieve a layer of protection from hackers and bot programs. Rendering of it can be

disabled for web forms, if required.

On Figures 29 and 30 one may see a web form ready to be filled in by users of a certain tenant

(let us call it “tenant1” and its users “user1” and “user2”). In the sidebar on the left side of the

version of the program viewable by these two users one may see “Tenant: MAMK” indicating

that they are indeed assigned to the same tenant. Web fields in this form have its labels and

other aspects configured to represent possibilities for configuration available in the test case

application.

Views that are responsible for adjustments of properties of that web form are shown on

Figures 32 - 34. By comparing these Figures one may get a better understanding of logic of

working with web forms implemented in the test case for this study. In section 6.1.5 Editing

web forms a process of configuring multitenant forms is described having a web from

outlined on Figure 28 as an example.

70

Figure 29. Registration web form ready to be filled in as seen by user1 from tenant1.

User2‘s version of the form viewable on Figure 29 is inherited from the instance of user1‘s

form. One may notice that user2’s version has a field “Location” overwritten, where its type is

different form user1‘s version. Additionally, field “More information” was added. Moreover,

styling rules for labels and ordering of web field are different. Further, no CAPTCHA

("Completely Automated Public Turing test to tell Computers and Humans Apart") image is

required to be filled in by users.

71

Figure 30. Registration web form ready to be filled in as seen by user2 from tenant1.

On Figure 30 one may see another iteration of the same web form. This time it is a form that

is owned by another tenant (let us call it “tenant2”), it is not only viewed by users of tenant2.

Any web for can be created based on an instance made by another tenant, providing that

appropriate privileges are given to the tenant. In this web form new fields “Gender”,

“Country” and “Address” have been appended. Further, fields “Administrator”, “Birthday”

and “Email” (with edited style options) are inherited from the “Registration” form created by

users in tenant1. One may notice a small red icon on Figure 30, which indicates a validation

error raised by the fact that a required field “Birthday” had not been filled in before a

“Submit” button was pressed.

72

Figure 31. Registration web form ready to be filled in as seen by user3 from tenant2.

Once the web form is populated with data a user can submit it. Before information is

processed and passed away from the web form module to other frameworks, data is validated.

Validation is performed using Java-style validators. If errors are found an icon is shown

next to web fields, which generated errors. Additionally, if required for filling in fields have

not been entered and a web form is submitted with them being empty, the same error icon is

rendered, but with a different error message. If a web form that one tries to view or fill in does

not exist, an error message is shown indicating that a logged in user have no permissions for

working with the form of a given ID.

6.1.5 Editing web forms

To edit an existing web form a link to that web form should be clicked. Alternatively, if a user

was granted permissions to do so, a web form may be accessed through editWebForm.jsf

page. Editing web forms is similar to creating new ones. All fields may be changed. Lists of

web forms that are visible to a particular user are present at the home page. On the front page

one may see a list of web forms that can be viewed or edited. A sidebar on the left side of

views also has a shorten list of the most recently created web forms that should be given

higher priority for processing. By clicking on “Edit form” button in a list of web forms, a user

73

is sent to a page where management of the web forms is possible, see Figure 32. On this view

a logged in person can change such aspects of the form:

• Web form’s name.

• User privileges for working with the form.

• Whether or not the form requires its users to fill in CAPTCHA image. Triggered by

checking “Captcha required” checkFbox.

• Possibility of the form to provide inheritance for other web forms. Triggered by checking

“Can be mother” checkbox.

• All web fields that are present in the form and their properties.

Figure 32. View for editing web forms.

If management of users that have rights for working with the form is required a list labeled

with “User rights for the form” can be used. In this list one can see a list of all users of the

tenant. By checking names of users privileges are granted, by unchecking them rights are

revoked. One may find a method that generates this list in Appendix 1.4.

74

A web form can also be requested to be deleted. When a user checks a checkbox next to

“Delete Form” label a warning message appears. The message is generated using a JavaScript

command attached to “onclick” property of HTML tag rendering a checkbox:

onclick="return confirm('#{ui.doYouWantToDeleteForm}'),". This message is used to

guarantee that no forms are deleted without intension by checking a “Delete Form” box.

The biggest part of the view responsible for editing web forms occupies a list of web fields

that are assigned to the web form in question. These web fields are fully customisable with

such elements ready to changed:

• Label’s text that is assigned to the field.

• Type of the field.

• Whether or not the field is required to be filled in by users.

• Position in the form.

Moreover, further changes to web fields can be made by following links that are attached to

web fields in a list. Different approaches can be utilised to outline elements of web fields that

can be edited. In the test case the most important aspects of web fields such as type, label

value, etc. are represented in “Edit Web Form” view. Less important and less frequently

changed values such as label font colour, user privileges for the field, etc. are rendered in

separate popup windows. These windows are opened by clicking on links that call a

JavaScript function described in a header of editWebForm.jsf:

function doPopup(source) {
 popup = window.open(source, "popup", "height=460,width=540)"),
 popup.focus(),
}

However, it is worth mentioning, that other ways are possible for achieving same results. With

utilising such dynamic UI technologies as Ajax less cluttered and more usable web pages can

be created. Nevertheless, with pure JSF 2.0 separating logically-connected elements in

different views is a reasonable approach.

One of the popup windows that can be accesses for web fields is used for management of

styling properties of web fields. This window can be accessed by following “Style” links on

75

the page responsible for editing web forms, see Figure 33. On that page rendered structure is

also utilised, where appropriate properties of different types of web fields can be changed. An

alternative approach is possible for achieving the same result: <c:if>...</c:if>. Using this

tag gives similar output.

Figure 33. View for editing web field style.

Such properties of appearance of web fields as label text, font size and family, font colour etc.

are editable in the test case program. Integer input sliders and a colour picker utilise elements

of PrimeFaces library. A list of fonts is hard-coded and it can be populated with additional

fonts. Another option for achieving similar user experience is creating a separate view for

managements of tenant-specific values for the list of fonts.

The second link for additional adjustments of web field’s properties is called “Rights”. When

a user clicks on the link an XHTML passed to the browser program, which shows a list of

users of the tenant that is operating the web field. If user’s rights for the web field in question

are revoked, whenever a web form that contains that web field is rendered for the user, he/she

does not see that field and no information is required to be filled in for the web field. The way

users are granted rights for viewing web fields is similar to a list that manages rights of users

76

for web forms in editWebForm.jsf view. When a button “Submit” is pressed a method that

edits user privileges is invoked. One may find a listing of this method in Appendix 1.7.

To edit values that are rendered in web fields that require multiple options, one may click a

link “List”. This action opens a view where users can manage list options (see Figure 34). In

this view a value that is given to the field by selecting an option in question and text to be

rendered in the list that is assigned to the option can be adjusted. Additionally, a checkbox

next to each new label is rendered: be setting it to TRUE, an option in the field is selected to

be a default value when the field is outputted. It should be noted that if a user tries to manage

list values for a field that does not require multiple options, nothing is shown on the view for

management of list options.

Figure 34. View for changing list options for fields that require selecting values from multiple

elements.

After list options are edited for the web field, they can be rendered got end users. If the web

field is a list of options (type is equal to “6”), values for options are gathered from list_value

table. Moreover, same rules are applied for web fields of types “select one radio group” (type

77

property is equal to “7”) and “select one checkbox group” (type property is equal to “8”). The

following method is responsible for fetching options for the list and adding them to the field:

/**
* Get values for a list (type = 6)
*
* @return the value of listOptions
*/
public List getListOptions() {
 if (listOptions == null) {
 listOptions = new ArrayList(),
 UITextHandler uiTextHandler = new UITextHandler(),

 ListValueLogic listValueLogic = new ListValueLogic(),
 ListValue listValue = new ListValue(),
 listValue.setWebfieldId(id),
 List<ListValue> list = listValueLogic.list(listValue, null),

 for (ListValue valueList : list) {
 listOptions.add(new SelectItem(valueList.value,
uiTextHandler.getText(valueList.text))),
 }
 }
 return listOptions,
}

In this list a variable ListOptions of type List is returned. Members of this list are fetched

using list method of ListValueLogic. This method can be extended further by dynamically

locating values, which are common for a particular localisation used in the tenant’s instance

of the program. In the aforementioned version of this method values are picked using

UITextHandler uiTextHandler.

The last link that is assigned to web fields in a view where web forms are managed is called

“Preset”. It is responsible for selecting a preset field. By following that link a user can select a

previously created field, such as a list of countries or a radio button group for selecting

gender. These fields are created by administrators in a separate application module.

Additionally, web fields that have a red letter “M” rendered next to them are “mother” fields.

It indicates that changes made to those fields will also be applied to “child” web fields.

Further, web fields that are inherited from other “mother” fields have such properties as

78

“type” and “required” locked. Mother-child relationships between web fields is described in

greater details in 6.1.3 Creating new web forms.

New web fields can be added to the web form. The process of adding new web fields is also

described in section 6.1.3 Creating new web forms. There is one difference to adding new

web fields to a new web form, however. Instead of an array of 40 new web fields, an array of

20 is generated to improve performance. This value can also be adjusted.

Once a “Submit” button is clicked a method editWebForm is invoked. A listing of this method

can be found in Appendix 1.1.

6.1.6 Managing account information

To manage user’s account information a link “Account” in the front page can be clicked. Also,

users can go directly to account.jsf page (see Figure 35). At that page all information

previously entered may be edited and new pieces of information may be added. A model

Account.java was designed in a way that allows further extension that allows appending new

columns for adding more information. A test case program described in this study has a

limited set of parameters ready to be filled in by users for their account settings.

79

Figure 35. Account management page.

If a password needs to be changed a previous one must be entered and a new password must

be inputted twice for success. Once a new set of account settings was recorded and inserted

into the database, a user is redirected to a page that shows a message indicating successful

changes to the program, see Figure 36.

6.1.7 Changing tenant-specific configuration

Configuration of a tenant can be changed following “Configuration” link at the top of the

page or by directly accessing configuration.jsf page. Configuration serves a purpose of

changing different aspects of the program to meet specific needs of tenants. For example,

limitations on numbers of shown objects in lists can be altered in this section. A list of settings

that can be configured in the test case application can be seen below:

• Number of web forms in sidebar - web forms that are shown to end users in the sidebar on

the left.

• Number of web forms per page - amount of web forms shown per page.

80

• Instance URL - an URL that users can access a tenant-specific version of the program. It can

be used by external modules.

• API Key - a key that is used by the tenant to access modules of the test-case application.

These settings are individual for every tenant that uses the test case program. It must be noted

that if changes to the tenant’s configurations of the test case application are made, users of the

tenant must log out and log back in to see changes. Moreover, this are only an example of

what settings can be attached to a multitenant application like the test-case program.

Extensions to a list of configurable components of the program are possible.

Once a new set of configuration was recorded and inserted into the database, a user is

redirected to a page that shows a message indicating successful changes to the application, see

Figure 36.

Figure 36. A view with confirmation message.

6.2 Comments and Javadoc

For comments and descriptions of code in the test case application, Javadoc framework is

used. Turning to Kramer (1999), one may find that "doc comments" format used by Javadoc

is the de facto industry guideline for documenting classes and methods written with Java. An

example of a function with a Javadoc description from the DAO object can be seen below:

81

/**
* Get a list of accounts from database according to searchAccount.
* When user is not known.
*
* @param searchAccount
* @param tenant
* @param options
* @param listOptions
* @return
* @throws DataAccessException
*/
public List<Account> list(Account searchAccount, Tenant tenant, Map options,
ListOptions listOptions) throws DataAccessException {
 //Getting list of users
 this.searchOptions = new ArrayList<SearchOption>(),
 if (searchAccount.getVerified() != -1)
 searchOptions.add(new SearchOption("verified", new
Integer(searchAccount.getVerified()), SearchOption.EQUAL)),
 String sql = "SELECT * FROM account WHERE tenant_id=:tenant_id "
 + SQLFactory.generateSQL(searchOptions, true)
 + " ORDER BY user_id ASC",
 MapSqlParameterSource parameters = new MapSqlParameterSource(),
 parameters.addValue("tenant_id", tenant.getId()),
 return jdbcTemplate.query(sql, parameters, new AccountRowMapper()),
}

All methods and all classes in the test case have respective Javadoc entries, which were

entered manually and maintained by Netbeans IDE. Pre-defined tags are used for describing

programming logic, specifically:

1. @author [author name] - identifies author(s) of a class or interface.

2. @version [version] - version info of a class or interface.

3. @param [argument name] [argument description] - describes an argument of method or

constructor.

4. @return [description of return] - describes data returned by method (unnecessary for

constructors and void methods).

5. @ throws [exception thrown] [exception description] - describes exception thrown by

method.

82

Moreover, Java-style inline comments are put into code, where it helps keep track of logic in

the program. As an addition, remarks on further improvements of the test-case project are

placed into comments in code with a keyword TODO from Netbeans IDE.

6.3 Description of application code from the test case

As stated earlier, the test case application is developed using Netbeans Integrated

Development Environment. In this program JSF projects have well-established groups of

files. XHTML views of the program are stored in Web Pages folder, all Java code along with

resource files are located in Source Packages, test packages are stored in Test Packages,

libraries in Libraries folder, test libraries in Test Libraries folder and project configuration

files in Configuration Files location (refer to Figure 37 with the test case program exposed as

a project in Netbeans IDE). This section is organised in a manner that corresponds to the way

files are organised in the Netbeans project.

Figure 37. Project organisation in Netbeans IDE.

Netbeans IDE Java EE projects store settings in XML file format. Files with settings are

stored in a folder WEB-INF. The one may find the main portion of project-specific

preferences in faces-config.xml file. This XML document is crucial for proper functionality

of JSF 2.0-powered applications. The file consists of XML tags, which describe such

properties of a Java EE application as managed beans, resource bundles, localisation files, etc.

83

As an example, one may see below a description of a managed bean responsible for a

registration page taken from the faces-config.xml file:

<managed-bean>
 <managed-bean-name>register</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.Register</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

In this piece of code a name of the managed bean, a class responsible for it and a scope of the

bean are given. Similar to a listing described above other elements of Java EE programs are

given attributes, which are processed on the stage of compiling. For more details, one may

look at the listing of faces-config.xml used in the test case project in Appendix 3.

Classes in the test case are designed having further extension in mind. Namely, some of

methods that are described in classes have been defined but not implemented. Instead, they

raise an exception, as can be seen from the example below:

/**
* Activation of tenants. May be used later
*
* @param object
* @param user
* @return
* @throws DataAccessException
*/
public int activate(Tenant object, User user) throws DataAccessException {
 throw new UnsupportedOperationException("Not supported yet."),
}

Once, a compiler gets to a line that raises the exception, a program execution continues

(providing no critical errors are returned). And, the exception may be seen in log files and

appropriate changes to the code may be made.

6.3.1 Model classes

A model is an essential part of any MVC application. Model serves a role of a “foundation”

that describes “stones” that the solution consists of. Practically any action described in the

Logic layer in a SaaS application deals with a model/models. In JSF 2.0 framework

84

persistences are used. By adding such tags as @Table and @Column programmers can put

bookmarks for an application server to link variables that are fetched from the database to

specific types of data. A simple implementation of a model that corresponds to a webform

entity in the database is described next:

@Table(name = "webform")
public class WebForm implements Serializable {
 protected UITextHandler uiTextHandler,
 public WebForm() {
 this.uiTextHandler = new UITextHandler(),
 }

 @Id
 @Column(name = "webform_id")
 private int id,
 public int getId() {
 return id,
 }
 public void setId(int id) {
 this.id = id,
 }

 @Column(name = "name")
 private String name,
 public String getName() {
 return name,
 }
 public void setName(String name) {
 this.name = name,
 }
}

In the example above each column in a webform entity (described in section 6.6 The database

scheme used) is linked to a Java variable. By using @Table(name = "webform") one indicates

what table (or entity) in the database the model needs to be connected to. @Id corresponds to a

primary key that is used in the database. Then, @Column(name = "webform_id") shows

columns in the table that need to be processed.

It is a really simple model that is easy to comprehend and understand. In production-ready

applications, however, a single model can often occupy thousands of lines of code and

maintenance of them can be a time-consuming process. It is important to keep values given to

85

the tags described higher up to date because IDEs currently have no means of checking them

and once the database is altered all values must be corrected by hard-coding.

In Appendix 1.6 one may find examples of fetching objects of models for rendering. Two

methods in the Appendix together are good examples of one of the most important paradigms

in Object-Oriented Programming (OOP) - abstraction. Additionally, it outlines inheritance and

usage of interfaces in Java.

Additionally, all models that are present in the test case have corresponding DAO classes.

Furthermore, all other CRUD functions are described in Logic classes.

6.3.2 Logic classes

Classes from this group contribute to the Controller layer of the application. Classes that are

stored in the Logic category serve as “bridges” between View Java classes and DAO objects.

Often a method from a Logic file that is called from the View class invokes a method in a

DAO class that has an identical name and a list of parameters. Usage of Logic layer is

important in cloud-based solutions because it creates an extra layer of security between users

and sensitive information accessed by Data Access Objects. For example, here is a listing of a

list method in AccountLogic.java:

public List<Account> list(Account object, Tenant tenant) {
 try {

 return accountDao.list(object, tenant,null,null),

 } catch (DataAccessException daex){
 return null,
 } catch (Exception ex) {
 Logger.getInstance().log(ex),
 return null,
 }
}

Where accountDao is described as a variable of the same class: private AccountDao

accountDao = new AccountDao().

86

This method calls public List<Account> list(Account searchAccount, User user, Map

options, ListOptions listOptions), which is described in section 6.3.3 Database Access

Object (DAO) classes. It passes an object of type Account and tenant of type Tenant and

returns a list of accounts associated with tenant. Additionally, all other CRUD functions are

described in Logic classes.

6.3.3 Database Access Object (DAO) classes

All Database Access Object (DAO) classes inherit an interface GenericDao<T>, where T is a

model that is connected to a database entity that the DAO class works with. In this interface a

number of methods are described that must be overridden once inheritance is established,

namely:

• public T get(int id, User user) throws DataAccessException
• public List<T> list(T object, User user, Map options, ListOptions listOptions)
throws DataAccessException

• public int insert(T object, User user) throws DataAccessException
• public int update(T object, User user) throws DataAccessException
• public int activate(T object, User user) throws DataAccessException
• public int deactivate(T object, User user) throws DataAccessException
• public List findByNamedQuery(Object object, int namedQuery) throws
DataAccessException

• public int delete(T object, User user) throws DataAccessException

These methods are self-explanatory based on their names and return value types. Here

DataAccessException is an exception that is raised when errors with working with the

database rise. For example, when wrong settings are set in the DataSourceLocator.java

class. Naturally, other methods can be described and existing ones may be overloaded in

classes that inherit GenericDao<T> interface. Also, in DAO object in the test case, sensitive

information such as user passwords is converted into MD5 hashes before it is sent to the

database.

As an example, let us consider an implementation of public T get(int id, User user)

throws DataAccessException method in WebFieldDao.java class that deals with

WebField.java model described in section 6.3.1 Model classes. From this example one may

see that a signature of a method corresponds to a method that is described in the interface. In

87

Java in order for a class to successfully inherit an interface all methods must be overridden

and fully implemented:

public WebField get(int id, int tenantId, User user) throws DataAccessException {
 String sql = "SELECT * FROM webfield WHERE webfield_id=:webfield_id AND
tenant_id=:tenant_id",
 MapSqlParameterSource parameters = new MapSqlParameterSource(),
 parameters.addValue("webfield_id", id),
 parameters.addValue("tenant_id", tenantId),

 return jdbcTemplate.queryForObject(sql, parameters, new
WebFieldRowMapper()),
}

As another example of implementation of DAO classes in the test case, one may consider two

implementations of a method public list in AccountDao.java model described in Appendix

1.6.

6.3.4 Database rowmapper classes

Database RowMapper classes inherit from RowMapper.java that is a part of Spring library

that is used in the project. This interface has only one method that needs to be overloaded:

public T mapRow(ResultSet rs, int i) throws SQLException. This method helps to translate

a table in the database and turn it into values that can be linked to a model. A challenge with

writing classes of type RowMapper is linking SQL types such as INT(10) and

VARCHAR(100) into standard Java types of data.

An example may be considered. Let us take an implementation of public Tenant

mapRow(ResultSet rs, int i) throws SQLException in TenantRowMapper class into

consideration. It deals with Tenant.java model described in section 6.3.1 Model classes:

public Tenant mapRow(ResultSet rs, int i) throws SQLException {
 Tenant tenant = new Tenant(),

 //Main parameters
 tenant.setId(rs.getInt("tenant_id")),
 tenant.setName(rs.getString("name")),

 //Settings
 tenant.setNumberWebFormsPerPage(rs.getInt("number_webforms_per_page")),

88

 tenant.setNumberUsersPerPage(rs.getInt("number_users_per_page")),
 tenant.setNumberWebFormsVerified(rs.getInt("number_webforms_verified")),
 tenant.setNumberWebFormsUnverified(rs.getInt("number_webforms_unverified")),
 tenant.setInstanceUrl(rs.getString("instance_url")),
 tenant.setApiKey(rs.getString("api_key")),
 tenant.setSecurityKey(rs.getString("security_key")),

 return tenant,
}

This method demonstrates how columns in a MySQL table are linked with variables of a Java

class. ResultSet rs parameter is an object returned by a call to a method in jdbcTemplate in

a DAO class. mapRow receives an object of type NamedParameterJdbcTemplate and returns

an object of a model that it is linked to.

6.3.5 Views, CSS styling and UI classes

Program logic that is described in this section can be used for references for better

understanding of processes that are described in 6.1 Description of views and user actions.

This group of files is, perhaps, the most distributed and essential part of the program that is

outlined on the pages of this study. In order for views to work and look how

intended, .XHTML view file, .Java class and a .CSS style sheet must cooperate and use the

same namespace and rules. Each XHTL view must have a Java class linked to it, CSS styling

is not compulsory. Moreover, CSS rules might be described inside of XHTML files, with no

creation of separate CSS style sheets.

First, a view is described using XHTML language of markup. On this stage User Interface

designers can be separated from logic programmers since no application logic is stored on

View level. View pages are described using standard HTML/XHTML tags. An example of a

Login view described using XHTML can be seen in Appendix 1.8.

Properties are used in backing bean classes for views. Property is a variable that has a getter

and a setter methods (in the case of a class described in Appendix 1.8: public String

getPassword() and public void setPassword(String password)). Getters and setters allow

greater level of control over operations performed on the variable. Once a user clicks on

submit button a value put into h:inputSecret is sent to the Login.java class and a variable

gets String password initialised.

89

Additionally, styling rules are applied to the view. In the mentioned example styles are linked

to elements of XHTML code by describing objects by their tags. For instance, a submit button

is described using the following CSS rule that is bid to all elements that have id =

“buttonSubmit”:

.buttonSubmit
{

display:inline-block,
-webkit-box-shadow:0 0 0 1px rgba(0,0,0,.6),
-webkit-border-radius:3px,
-moz-box-shadow:0 0 0 1px rgba(0,0,0,.6),
-moz-border-radius:3px,
box-shadow:0 0 0 1px rgba(0,0,0,.6),
border-radius:3px,
background-image:url('img/buttonEdit.png'),
background-repeat:no-repeat,
background-position:center right,
padding-left:10px,
padding-right:30px,
margin-right:3px,

 margin-left:10px,
text-align:center,
line-height:10px,
position:relative,
min-width:100px,
cursor:pointer,

}

It results in the submit button looking differently compared to a corresponding element in all

web browsers (see Figure 26). It should be noted that, unfortunately, CSS rules are translated

in separate ways by web browsers. Receiving the same output from the same CSS file applied

to the same file is a matter of complex styling rules, utilisation of frameworks and style-reset

files, this study does not focus on this problem. In this thesis styling of web pages is done to

be compatible with Google Chrome (version 18.0) browser running on Operating System Mac

OS X Lion.

“Remember me” option is present in the view to enable saving of session parameters such as a

username and a password. Then, when a submit button is clicked by a user, loginAction()

method is invoked, which can be seen in action="#{login.loginAction}" action description

in login.xhtml. The method is outlined in Appendix 1.9.

90

Further, in such views as fillWebForm.xhtml and register.xhtml validation beans are used.

In Java such classes extend a class Validator.java. In these files a value is received as input

and a decision is made if it passes tests for validation. Each validation bean must implement a

method called validate. This method can be implemented with logical checks (as can be seen

in a code listing below) or with validation using regular expressions. As an example, a

validate methods that validates an inputted data against checks that determine if the date can

be accepted as a birth date:

public void validate(FacesContext context, UIComponent toValidate, Object value)
throws ValidatorException {
 Date myDate = (Date)value,
 Date today = new Date(),
 if (myDate.after(today)) {
 ((UIInput) toValidate).setValid(false),
 FacesMessage message = new FacesMessage(ERROR_MESSAGE.replaceAll("\\{0\
\}", this.uiTextHandler.getText("dateIsFuture"))),
 context.addMessage(toValidate.getClientId(context), message),
 } else {
 ((UIInput) toValidate).setValid(true),
 }
 }

This validation bean is used when web fields that are used for inputting birth dates are added

to web forms. Further, in Appendix 1.5 one may find a listing of a validation bean that

validates inputted email addresses.

6.3.6 Techniques for localisation and session control utilised

All session-specific variables are stored in a Java class SessionBean.java. An object of this

class is created each time a user opens the test case application. A default constructor gets

called for each user, which makes creation of user- and session-specific variables possible. A

listing of the constructor is presented below:

public SessionBean() {
 this.messageHandler = new MessageHandler(),

 locales = new HashMap<String, Locale>(2),
 locales.put("english", new Locale("en", "UK")),
 locales.put("finnish", new Locale("fi", "FI")),

91

 locales.put("russian", new Locale("ru", "RU")),
 locales.put("ukrainian", new Locale("uk", "UA")),
 setLanguage("en"),

 setSearchWebForm(new WebForm()),
 setSearchAccount(new Account()),
 getSearchAccount().setVerified(0),
}

In this listing of code one can see an initialisation of localities used in the projects. Such

languages as English, Finnish, Russian and Ukrainian are put into a pool of localisation

options. Localisation is presented as a group of flag icons in the upper part of each view (see

Figure 26). Localisation files are made using Java resource files. There are multiple possible

techniques that can be used to achieve storing values for localisation strings, e.g. JSON files.

However, Java resource files have an advantage of having high support from Netbeans IDE.

In files of Java resource type values are separated by “=” and a list of values has the following

look:

main=main
contact=contact
login=login
logout=Logout
register=Register
fillFieldsBelow=Please fill fields below. Fields labeled with a '*' are compulsory.
username=Username
checkAvailability=Check Availability

Additionally, after localisation has been loaded and configured, objects used as a default web

form and a default account that a logged in user later gets assigned to are created in the

constructor: setSearchAccount(new Account()) and setSearchAccount(new Account()).

Further, an important part of any Software as a Service solution is error message handling. A

technique used in the test case not only works with logical errors that might rise during

program execution, but also it is capable of handling messages that serve as notifications to

end-users of the program. A separate file called message.xhtml serves as a web page that can

be included into any view in the application. The file utilises a Java EE tag ui:composition

and the main part of it is represented in this way:

92

<ui:composition>
 <ice:panelGroup id="alertPanelGroup"
visible="#{sessionBean.messageHandler.visible}"
styleClass="#{sessionBean.messageHandler.message.messageType}">
 <h:outputText id="messageInfo"
value="#{sessionBean.messageHandler.message.messageText}"/>
 </ice:panelGroup>
</ui:composition>

A message is passed to the file handling error messages and notifications. A variable

sessionBean.messageHandler.message.messageText is fetched from SessionBean.java bean.

Later, it is passed to the language handler, where an appropriate value in a language that is

used as a localisation preference is used. Additionally, styling rules are applied from style.css

CSS file.

6.4 Debugging in SaaS

“Program testing can be used to show the presence of bugs, but never show their absense!”

Edsgar W. Dijkstra

As stated by Fox & Patterson (2012a), debugging of Software as a Service applications can be

difficult. Such methods of showing malfunctioning in programs as outputting error messages

into the Terminal console are difficult to implement in cloud-based solutions. Because actions

in a SaaS application usually path a long list of steps before output is rendered (example from

Ruby on Rails framework: URI - route - controller - model - view - render) a specific piece of

logic that generates the error is problematic to determine. For example, a wrongly rendered

view might be caused by a line of code that is stored in a controller class.

When a project is in the development stage, any action (namely, printing error messages to the

terminal, logging using external libraries, interactive debugging etc.) can be used. However,

once a project is transferred into production, only logging should be utilised.

6.5 The database and the application server

The database used in the test case application is using replication, which is briefly described

in Chapter 2. Usage of sharding is an option as well, but the test case described in this

93

research is a relatively small application highlighting benefits of using multitenant

architecture along with customisable web forms. Hence, replication can be utilised with better

results. Additionally, Tocker (2009) found that turning to sharding is not profitable in small

cases and if performance could be enhanced by optimisation of the codebase.

Furthermore, ensuring secure tenant access to shared data is important in projects dealing with

cloud computing. A robust SaaS application requires secure data access to ensure each user

sees only data that belongs to their tenant.

GlassFish Server 3.1 application server from Oracle is utilised for the test case described in

this thesis. For connecting it to the database a JDBC Connection Pool and a JDBC Resource

are set up. The JDBC resource is connected to the pool of type javax.sql.DataSource and a

classname set to com.mysql.jdbc.jdbc2.optional.MysqlDataSource (which is a class used

for connecting to MySQL database that is used for storing data). Otherwise, all settings that

are used in the project are default values given by Oracle Corporation.

When the application is deployed to the server, a class DataSourceLocator.java from a

package com.mhgsystems.db (which is a part of MHG Systems framework) locates an object

of type DataSource that is required for establishing connection to the database. A function that

performs this search is listed in Appendix 1.10. After an object of type DataSource is found,

GlassFish server can locate the database that is stored in MySQL database server.

6.6 The database scheme used

MySQL Workbench object notation and Crow’s Foot (IE) relationship notation are used to

describe Entity Relationship Diagrams. Providing M:N (Many-to-Many) relationships is

achieved by decomposing them into two 1:M relationships.

As a base for designing a scheme for the database a model developed by Veli-Matti Plosila for

MHG Systems is used (see Figure 38). In this relatively simple model web forms can be

overwritten for populating them with work order-related data such as deadlines, latitude and

longitude of working sites, etc.

94

Figure 38. EER diagram of the database utilised in MHG Systems.

After research on possible implementation of a scheme for the test case a more complex

model was designed. The model described on Figure 39 is used in the test case application. As

can be seen from the Figure web forms are represented as a separated entity, unlike in the

previous scheme described. Web forms consist of objects of type webfield. Additionally,

support for several not-trivial featured is outlined:

1. Mother-child relationship for fields where users have ability to use a field that has already

been used in other web forms. It copies data over and in case of changing of mother field

child web fields also receive changes. This functionality is described with

mother_child_webfield table.

2. Users can be granted or not granted privileges of viewing/filling web forms. More

precisely, users within one company may have different lists of accessible web forms.

This functionality is described with user_webform.

95

3. Users can be granted or not granted privileges of seeing particular fields in a form. As an

example, a certain user1 sees and is required to fill three fields in a certain form and user2

sees five fields. This functionality is described with user_webfield.

4. A separate table label is present to add reuse of labels and support for localisation.

5. By separating properties connected with information stored in list-boxes, a table

list_value is created that adds an ability to have list-boxes with unlimited numbers of

values to pick from (e.g. more than 200 countries in predefined list).

Figure 39. EER diagram of the database for the test case.

For synchronising and storing backups of the database MySQL Workbench MWB models are

used. These files allow forward and backward engineering of databases. As can be seen from

96

Figure 40 during synchronisation process both updates of the database and of models are

possible.

Figure 40. Synchronisation of the database with a MySQL Workbench MWB model.

One may find a detailed list of entities in Appendix 4. The aforementioned design of the

database for a project concentrating on multitenant web forms is not the only variation of the

scheme. One may wish to extend the design. For example, separate entities for each type of

the web field (radio button, checkbox, list etc.) may be described and connected to the main

entity webfield. This approach will reduce dimensions of webfield table and it may improve

performance. However, the design described in this study is not a production-ready model, it

is a research case.

Is is assumed that properties added and updated of type TIMESTAMP may be used on later

stages of advancement in the project for statistical purposes.

One may find a listing of SQL commands that are required for reproducing the database that

is utilised for the test case application in Appendix 2.

97

7 CONCLUSION

Scalable multitenancy is an important asset for development of cloud-based Software as a

Service solutions. Nevertheless, building multitenant solutions requires facing a few technical

challenges. Achieving a comprehensible level of multitenantness in pieces of software applies

complicated demands that are, sometimes, hard to meet by software engineers and difficult to

develop into finished products. Furthermore, if the system is well-balanced and stable

achieved results are likely to exceed all expectations. Additionally, a larger amount of

financial saves can be achieved.

Software as a Service proved to be the best platform for development of multitenant web form

enabled applications currently available on the market. SaaS is capable of providing relatively

inexpensive computing solutions and acceptable flexibility on software use, which is

important for modern businesses and enterprises. Software as a Service is practically in all

phases of lives of people nowadays. Even for writing of this work multiple SaaS solutions

were used: cloud reference management system, cloud writing and citation tools, cloud code

compilers etc. Our world is becoming more and more dependant on cloud-based software

solutions with every day, yet little research has been done on various aspects of cloud

computing. This is the main reason why such study is an important asset to the world of

science.

Results and findings from this research attempt to claim that creation of multitenant web

forms by using MySQL and JSF 2.0 is, indeed, possible. Moreover, the simple test case

application that is described on pages of this research can be used as a base for development

of a commercial application. The test case application tries to benefit to the research question

about development of optimised and versatile multitenant web forms using JSF and MySQL.

The main focus of the test case application is creation of a module that can be attached to

ERP systems. Such resource management systems as MHG Bioenergy are very important for

a successful company. In his work Blokdijk (2008) claims that without a well-designed and

programmed ERP system, a company would “suffocate” with a number of software

applications that do not synchronise with each other. Such process may lead to a failure in

98

effective interface. This research makes an attempt to contribute into the world of SaaS and its

“Multitenant ERP systems” branch especially.

On pages of this study an idea that creation of multitenant web forms is an achievable task

can be found. Moreover, an author of this research thinks that such element can be an

important asset to most modern cloud-based software solutions. Meeting requirements of all

clients of a company can require a great deal of endurance and tight deadlines from

company’s employees but it is hard to imagine that in a hundred years from now people will

need to compensate on their needs while filling out web-based forms.

8 BIBLIOGRAPHY

Abramson, David, Buyya, Rajkumar & Giddy, Jonathan 2002. A computational economy for
grid computing and its implementation in the Nimrod-G resource broker. Future
Gener.Comput.Syst., vol. 18, no. 8. 1061 - 1074.

Aggarwal, Nitin 2011. The Rise of Cloud Computing. WWW-document. http://w3c-
compliant.com/2011/03/the-rise-of-cloud-computing. Updated 12.12.2010. Referred 9.2.2012.

Amazon 2008. Public Data Sets on AWS2008. WWW-document. http://aws.amazon.com.
Updated 10.2.2012. Referred 28.2.2012.

Anderson, Chris 2006. The Long Tail: Why the Future of Business Is Selling Less of More.
New York: Hyperion.

Andrew, Rachel 2007. The CSS anthology. Melbourne: Sitepoint.

Armbrust, Michael, Fox, Armando, Griffith, Rean, Joseph, Anthony D., Katz, Randy H.,
Konwinski, Andrew, Lee, Gunho, Patterson, David A., Rabkin, Ariel, Stoica, Ion, Zaharia &
Matei 2009. Above the Clouds: A Berkeley View of Cloud Computing. Berkley: University of
California, EECS Department.

BBC News 2010. Finland makes broadband a 'legal right'. WWW-document. http://
www.bbc.co.uk/news/10461048. Updated 1.7.2010. Referred 15.3.2012.

Beck, Kent , Grenning, James, Martin, Robert C., Beedle, Mike & Highsmith, Jim 2001.
Manifesto for Agile Software Development. WWW-document. http://agilemanifesto.org.
Updated 1.1.2001. Referred 27.2.2012.

Bezemer, Cor-Paul & Zaidman, Andy 2010. Multi-tenant SaaS applications: maintenance
dream or nightmare?. Proceedings of the Joint ERCIM Workshop on Software Evolution
(EVOL) and International Workshop on Principles of Software Evolution (IWPSE). New
York: ACM. 88.

99

http://w3c-compliant.com/2011/03/the-rise-of-cloud-computing/
http://w3c-compliant.com/2011/03/the-rise-of-cloud-computing/
http://w3c-compliant.com/2011/03/the-rise-of-cloud-computing/
http://w3c-compliant.com/2011/03/the-rise-of-cloud-computing/
http://aws.amazon.com/
http://aws.amazon.com/
http://www.bbc.co.uk/news/10461048
http://www.bbc.co.uk/news/10461048
http://www.bbc.co.uk/news/10461048
http://www.bbc.co.uk/news/10461048
http://agilemanifesto.org/
http://agilemanifesto.org/

Blokdijk, Gerard 2008. SaaS 100 Success Secrets - How companies successfully buy,
manage, host and deliver software as a service. London: Emereo Pty.

Bowman, Doug A., Kruijff, Ernst, LaViola, Joseph J. & Poupyrev, Ivan 2004. 3D User
Interfaces: Theory and Practice. Redwood City: Addison Wesley Longman Publishing Co.

Chong, Frederick & Garraro, Gianpaolo 2006. Architecture strategies for catching the long
tail, Microsoft white paper. WWW-document. http://msdn.microsoft.com/en-us/library/
aa479069.aspx. Updated 1.4.2006. Referred 14.3.2012.

Columbus, Louis 2011. Predicting Cloud Computing Adoption Rates . WWW-document.
http://softwarestrategiesblog.com/2011/07/24/predicting-cloud-computing-adoption-rates/3/5.
Updated 25.7.2011. Referred 14.3.2012.

Daniel, Florian, Yu, Jin, Benatallah, Boualem, Casati, Fablo, Matera, Maristella & Saint-paul,
Regis 2006. Understanding UI integration: A survey of problems, technologies, and
opportunities. IEEE Internet Computing May 2006.

de Heide, Marcel 2007. Country Review Finland. Technopolis: United Nations University.

Engelsen, Nathaniel 2011. Multi Tenant Architecture via Dependency Injection: Part 1.
WWW-document. http://blog.tallan.com/2010/07/11/multi-tenant-architecture-via-
dependency-injection-part-1. Updated 11.7.2011. Referred 8.2.2012.

Fielding, Roy Thomas 2000. Architectural styles and the design of network-based software
architectures. Irvine: University of California.

Finfacts 2011. Google chooses cool Finland for latest data centre, Facebook said to be
considering Swedish location. WWW-document. http://www.finfacts.ie/irishfinancenews/
article_1023105.shtml. Updated 9.11.2011. Referred 15.3.2012.

Foremski, Tom 2005. A tribute to one of Silicon Valley's most influential and forgotten
researchers at Xerox Parc event. WWW-document. http://www.siliconvalleywatcher.com/mt/
archives/2005/06/a_tribute_to_on.php. Updated 9.6.2005. Referred 9.3.2012.

Fox, Armando & Patterson, David A. 2012a. Engineering Long-Lasting Software: An Agile
Approach Using SaaS and Cloud Computing. Los Angeles: Strawberry Canyon LLC.

Fox, Armando & Patterson, David A. 2012b. Video lectures for Software as a Service online
class. WWW-document. https://www.coursera.org/saas/lecture/index. Updated 20.2.2012.
Referred 21.2.2012. Video.

Goldszmidt, German & Poddar, Indrajit 2008. Develop and Deploy Multi-Tenant Web-
delivered Solutions using IBM middleware. WWW-document. http://www.ibm.com/
developerworks/webservices/library/ws-middleware/index.html. Updated 24.4.2008. Referred
6.3.2012.

Google 2012a. World Development Indicators and Global Development Finance - Google
Public Data Explorer. WWW-document. http://www.google.com/publicdata/explore?

100

http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://softwarestrategiesblog.com/2011/07/24/predicting-cloud-computing-adoption-rates/
http://softwarestrategiesblog.com/2011/07/24/predicting-cloud-computing-adoption-rates/
http://blog.tallan.com/2010/07/11/multi-tenant-architecture-via-dependency-injection-part-1/
http://blog.tallan.com/2010/07/11/multi-tenant-architecture-via-dependency-injection-part-1/
http://blog.tallan.com/2010/07/11/multi-tenant-architecture-via-dependency-injection-part-1/
http://blog.tallan.com/2010/07/11/multi-tenant-architecture-via-dependency-injection-part-1/
http://www.finfacts.ie/irishfinancenews/article_1023105.shtml
http://www.finfacts.ie/irishfinancenews/article_1023105.shtml
http://www.finfacts.ie/irishfinancenews/article_1023105.shtml
http://www.finfacts.ie/irishfinancenews/article_1023105.shtml
http://www.siliconvalleywatcher.com/mt/archives/2005/06/a_tribute_to_on.php
http://www.siliconvalleywatcher.com/mt/archives/2005/06/a_tribute_to_on.php
http://www.siliconvalleywatcher.com/mt/archives/2005/06/a_tribute_to_on.php
http://www.siliconvalleywatcher.com/mt/archives/2005/06/a_tribute_to_on.php
http://www.ibm.com/developerworks/webservices/library/ws-middleware/index.html
http://www.ibm.com/developerworks/webservices/library/ws-middleware/index.html
http://www.ibm.com/developerworks/webservices/library/ws-middleware/index.html
http://www.ibm.com/developerworks/webservices/library/ws-middleware/index.html
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:UKR&dl=en&hl=en&q=population+ukraine
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:UKR&dl=en&hl=en&q=population+ukraine

ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:UKR&dl=en&hl=en&q=population
+ukraine. Referred 15.3.2012.

Google 2012b. World Development Indicators and Global Development Finance - Google
Public Data Explorer. WWW-document. http://www.google.com/publicdata/explore?
ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:FIN&dl=en&hl=en&q=population
+finland. Referred 15.3.2012.

Google 2012c. World Development Indicators and Global Development Finance - Google
Public Data Explorer. WWW-document. http://www.google.com/publicdata/explore?
ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:GBR&dl=en&hl=en&q=population
+uk. Referred 15.3.2012.

Grossman, Robert L. 2009. The Case for Cloud Computing. IT Professional, vol. 11, no. 2. 23
- 27.

Hadlock, Kris 2011. Create customizable web interfaces with the jQuery UI and Ajax. WWW-
document. http://www.ibm.com/developerworks/web/library/wa-jqueryui/index.html?ca=drs-.
Updated 8.3.2011. Referred 8.2.2012.

Halabieh, Abdul 2003, Customizable User Interfaces, 702/181 edn, G06F 19/00, USA.

Hamdaqa, Mohammed, Livogiannis, Tassos & Tahvildari, Laden 2011. A Reference Model
for Developing Cloud Applications. CLOSER 2011. SciTePress. 98.

Hardy, Quenty 2012. The Week the Cloud Won. WWW-document. http://
bits.blogs.nytimes.com/2012/02/24/the-week-the-cloud-won. Updated 24.2.2012. Referred
25.2.2012.

Hatch, Ralph 2008. SaaS Architecture, Adoption and Monetization of SaaS Projects using
Best Practice Service Strategy, Service Design, Service Transition, Service Operation and
Continual Service Improvement Processes. London: Emereo Pty Ltd.

Helsingin Sanomat 2010. Itella to begin opening letters and delivering them via email.
WWW-document. http://www.hs.fi/english/article/Itella+to+begin+opening+letters+and
+delivering+them+via+email/1135255790584. Updated 30.3.2010. Referred 15.3.2012.

Hingley, Martin 2011. UK Cloud Computing Forecast - Recession-Busting Growth. WWW-
document. http://itcandor.net/2011/09/21/cc-uk-q311. Updated 21.9.2011. Referred 15.3.2012.

Hoff, Todd 2009. High Scalability - An Unorthodox Approach to Database Design : The
Coming of the Shard. WWW-document. http://highscalability.com/unorthodox-approach-
database-design-coming-shard. Updated 6.8.2009. Referred 5.3.2012.

Hunt, Andrew & Thomas, David 1999. The pragmatic programmer: from journeyman to
master. Boston: Addison-Wesley Longman Publishing.

101

http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:UKR&dl=en&hl=en&q=population+ukraine
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:UKR&dl=en&hl=en&q=population+ukraine
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:UKR&dl=en&hl=en&q=population+ukraine
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:UKR&dl=en&hl=en&q=population+ukraine
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:FIN&dl=en&hl=en&q=population+finland
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:FIN&dl=en&hl=en&q=population+finland
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:FIN&dl=en&hl=en&q=population+finland
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:FIN&dl=en&hl=en&q=population+finland
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:FIN&dl=en&hl=en&q=population+finland
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:FIN&dl=en&hl=en&q=population+finland
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:GBR&dl=en&hl=en&q=population+uk
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:GBR&dl=en&hl=en&q=population+uk
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:GBR&dl=en&hl=en&q=population+uk
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:GBR&dl=en&hl=en&q=population+uk
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:GBR&dl=en&hl=en&q=population+uk
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&met_y=sp_pop_totl&idim=country:GBR&dl=en&hl=en&q=population+uk
http://www.ibm.com/developerworks/web/library/wa-jqueryui/index.html?ca=drs-
http://www.ibm.com/developerworks/web/library/wa-jqueryui/index.html?ca=drs-
http://bits.blogs.nytimes.com/2012/02/24/the-week-the-cloud-won/
http://bits.blogs.nytimes.com/2012/02/24/the-week-the-cloud-won/
http://bits.blogs.nytimes.com/2012/02/24/the-week-the-cloud-won/
http://bits.blogs.nytimes.com/2012/02/24/the-week-the-cloud-won/
http://www.hs.fi/english/article/Itella+to+begin+opening+letters+and+delivering+them+via+email/1135255790584
http://www.hs.fi/english/article/Itella+to+begin+opening+letters+and+delivering+them+via+email/1135255790584
http://www.hs.fi/english/article/Itella+to+begin+opening+letters+and+delivering+them+via+email/1135255790584
http://www.hs.fi/english/article/Itella+to+begin+opening+letters+and+delivering+them+via+email/1135255790584
http://itcandor.net/2011/09/21/cc-uk-q311/
http://itcandor.net/2011/09/21/cc-uk-q311/
http://highscalability.com/unorthodox-approach-database-design-coming-shard
http://highscalability.com/unorthodox-approach-database-design-coming-shard
http://highscalability.com/unorthodox-approach-database-design-coming-shard
http://highscalability.com/unorthodox-approach-database-design-coming-shard

IBM 2010. Three-tier architectures. WWW-document. http://publib.boulder.ibm.com/
infocenter/wasinfo/v6r0/index.jsp?topic=%2Fcom.ibm.websphere.base.doc%2Finfo%2Faes
%2Fae%2Fcovr_3-tier.html. Updated 20.9.2010. Referred 21.2.2012.

ICPC 2011. ICPC - Results World Finals 2011. WWW-document. http://cm.baylor.edu/
ICPCWiki/Wiki.jsp?page=Results%20World%20Finals%202011. Updated 7.11.2011.
Referred 15.3.2012.

International Monetary Fund 2011. United Kingdom. WWW-document. http://www.imf.org/
external/pubs/ft/weo/2011/02. Updated 1.4.2011. Referred 15.3.2012.

Jansen, Slinger, Houben, Geert-Jan & Brinkkemper, Sjaak 2010. Customization realization in
multi-tenant web applications: case studies from the library sector. Proceedings of the 10th
international conference on Web engineering. Berlin: Springer-Verlag. 445.

JavaServer Faces 2011. JSF in a nutshelld. WWW-document. http://www.javaserverfaces.org.
Updated 23.6.2011. Referred 13.3.2012.

Keegan, Patrick, Champenois, Ludovic, Crawley, Gregory, Hunt, Charlie & Webster,
Christopher 2006. NetBeans(TM) IDE Field Guide: Developing Desktop, Web, Enterprise,
and Mobile Applications, 2nd edn, Upper Saddle River: Prentice Hall PTR.

Keene, Chris, Poddar, Indrajit, Nicke, Joe & Budnik, Uri 2012. Cloud Quick Start: A
Roadmap For Adopting Cloud Computing. WWW-document. http://www.wavemaker.com/
ibm-quickstart.pdf. Referred 5.3.2012.

Khan, Qasim 2010. JSF 2.0: Introduction and Overview. WWW-document. http://
developerarticles.com/jsf-2-0-introduction-and-overview. Updated 30.5.2010. Referred
13.3.2012.

Kisker, Holger, Matzke, Pascal, Ried, Stefan, Lisserman, Miroslaw 201. Forrsights: The
Software Market In Transformation, 2011 And Beyond. Cambridge: Forrester.

Knorr, Eric & Gruman, Galen 2008. What cloud computing really means. WWW-document.
http://www.infoworld.com/d/cloud-computing/what-cloud-computing-really-means-031.
Updated 9.9.2008. Referred 9.2.2012.

Kramer, Douglas 1999. API documentation from source code comments: a case study of
Javadoc. Proceedings of the 17th annual international conference on Computer
documentation. New York: ACM. 147.

Larman, Craig 2003. Agile and Iterative Development: A Manager's Guide. Glasgow: Pearson
Education.

Leon, Alexis 2008. Enterprise Resource Planning. New Delhi: Tata McGraw-Hill Education.

Mell, Peter & Grance, Timothy 2011. The NIST Definition of Cloud Computing.
Gaithersburg: National Institute of Standards and Technology.

102

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=%2Fcom.ibm.websphere.base.doc%2Finfo%2Faes%2Fae%2Fcovr_3-tier.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=%2Fcom.ibm.websphere.base.doc%2Finfo%2Faes%2Fae%2Fcovr_3-tier.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=%2Fcom.ibm.websphere.base.doc%2Finfo%2Faes%2Fae%2Fcovr_3-tier.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=%2Fcom.ibm.websphere.base.doc%2Finfo%2Faes%2Fae%2Fcovr_3-tier.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=%2Fcom.ibm.websphere.base.doc%2Finfo%2Faes%2Fae%2Fcovr_3-tier.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=%2Fcom.ibm.websphere.base.doc%2Finfo%2Faes%2Fae%2Fcovr_3-tier.html
http://cm.baylor.edu/ICPCWiki/Wiki.jsp?page=Results%20World%20Finals%202011
http://cm.baylor.edu/ICPCWiki/Wiki.jsp?page=Results%20World%20Finals%202011
http://cm.baylor.edu/ICPCWiki/Wiki.jsp?page=Results%20World%20Finals%202011
http://cm.baylor.edu/ICPCWiki/Wiki.jsp?page=Results%20World%20Finals%202011
http://www.imf.org/external/pubs/ft/weo/2011/02/weodata/weorept.aspx?pr.x=57&pr.y=9&sy=2011&ey=2011&scsm=1&ssd=1&sort=country&ds=.&br=1&c=512%2C941%2C914%2C446%2C612%2C666%2C614%2C668%2C311%2C672%2C213%2C946%2C911%2C137%2C193%2C962%2C122%2C674%2C912%2C676%2C313%2C548%2C419%2C556%2C513%2C678%2C316%2C181%2C913%2C682%2C124%2C684%2C339%2C273%2C638%2C921%2C514%2C948%2C218%2C943%2C963%2C686%2C616%2C688%2C223%2C518%2C516%2C728%2C918%2C558%2C748%2C138%2C618%2C196%2C522%2C278%2C622%2C692%2C156%2C694%2C624%2C142%2C626%2C449%2C628%2C564%2C228%2C283%2C924%2C853%2C233%2C288%2C632%2C293%2C636%2C566%2C634%2C964%2C238%2C182%2C662%2C453%2C960%2C968%2C423%2C922%2C935%2C714%2C128%2C862%2C611%2C716%2C321%2C456%2C243%2C722%2C248%2C942%2C469%2C718%2C253%2C724%2C642%2C576%2C643%2C936%2C939%2C961%2C644%2C813%2C819%2C199%2C172%2C184%2C132%2C524%2C646%2C361%2C648%2C362%2C915%2C364%2C134%2C732%2C652%2C366%2C174%2C734%2C328%2C144%2C258%2C146%2C656%2C463%2C654%2C528%2C336%2C923%2C263%2C738%2C268%2C578%2C532%2C537%2C944%2C742%2C176%2C866%2C534%2C369%2C536%2C744%2C429%2C186%2C433%2C925%2C178%2C869%2C436%2C746%2C136%2C926%2C343%2C466%2C158%2C112%2C439%2C111%2C916%2C298%2C664%2C927%2C826%2C846%2C542%2C299%2C967%2C582%2C443%2C474%2C917%2C754%2C544%2C698&s=NGDPD%2CPPPGDP&grp=0&a=
http://www.imf.org/external/pubs/ft/weo/2011/02/weodata/weorept.aspx?pr.x=57&pr.y=9&sy=2011&ey=2011&scsm=1&ssd=1&sort=country&ds=.&br=1&c=512%2C941%2C914%2C446%2C612%2C666%2C614%2C668%2C311%2C672%2C213%2C946%2C911%2C137%2C193%2C962%2C122%2C674%2C912%2C676%2C313%2C548%2C419%2C556%2C513%2C678%2C316%2C181%2C913%2C682%2C124%2C684%2C339%2C273%2C638%2C921%2C514%2C948%2C218%2C943%2C963%2C686%2C616%2C688%2C223%2C518%2C516%2C728%2C918%2C558%2C748%2C138%2C618%2C196%2C522%2C278%2C622%2C692%2C156%2C694%2C624%2C142%2C626%2C449%2C628%2C564%2C228%2C283%2C924%2C853%2C233%2C288%2C632%2C293%2C636%2C566%2C634%2C964%2C238%2C182%2C662%2C453%2C960%2C968%2C423%2C922%2C935%2C714%2C128%2C862%2C611%2C716%2C321%2C456%2C243%2C722%2C248%2C942%2C469%2C718%2C253%2C724%2C642%2C576%2C643%2C936%2C939%2C961%2C644%2C813%2C819%2C199%2C172%2C184%2C132%2C524%2C646%2C361%2C648%2C362%2C915%2C364%2C134%2C732%2C652%2C366%2C174%2C734%2C328%2C144%2C258%2C146%2C656%2C463%2C654%2C528%2C336%2C923%2C263%2C738%2C268%2C578%2C532%2C537%2C944%2C742%2C176%2C866%2C534%2C369%2C536%2C744%2C429%2C186%2C433%2C925%2C178%2C869%2C436%2C746%2C136%2C926%2C343%2C466%2C158%2C112%2C439%2C111%2C916%2C298%2C664%2C927%2C826%2C846%2C542%2C299%2C967%2C582%2C443%2C474%2C917%2C754%2C544%2C698&s=NGDPD%2CPPPGDP&grp=0&a=
http://www.imf.org/external/pubs/ft/weo/2011/02/weodata/weorept.aspx?pr.x=57&pr.y=9&sy=2011&ey=2011&scsm=1&ssd=1&sort=country&ds=.&br=1&c=512%2C941%2C914%2C446%2C612%2C666%2C614%2C668%2C311%2C672%2C213%2C946%2C911%2C137%2C193%2C962%2C122%2C674%2C912%2C676%2C313%2C548%2C419%2C556%2C513%2C678%2C316%2C181%2C913%2C682%2C124%2C684%2C339%2C273%2C638%2C921%2C514%2C948%2C218%2C943%2C963%2C686%2C616%2C688%2C223%2C518%2C516%2C728%2C918%2C558%2C748%2C138%2C618%2C196%2C522%2C278%2C622%2C692%2C156%2C694%2C624%2C142%2C626%2C449%2C628%2C564%2C228%2C283%2C924%2C853%2C233%2C288%2C632%2C293%2C636%2C566%2C634%2C964%2C238%2C182%2C662%2C453%2C960%2C968%2C423%2C922%2C935%2C714%2C128%2C862%2C611%2C716%2C321%2C456%2C243%2C722%2C248%2C942%2C469%2C718%2C253%2C724%2C642%2C576%2C643%2C936%2C939%2C961%2C644%2C813%2C819%2C199%2C172%2C184%2C132%2C524%2C646%2C361%2C648%2C362%2C915%2C364%2C134%2C732%2C652%2C366%2C174%2C734%2C328%2C144%2C258%2C146%2C656%2C463%2C654%2C528%2C336%2C923%2C263%2C738%2C268%2C578%2C532%2C537%2C944%2C742%2C176%2C866%2C534%2C369%2C536%2C744%2C429%2C186%2C433%2C925%2C178%2C869%2C436%2C746%2C136%2C926%2C343%2C466%2C158%2C112%2C439%2C111%2C916%2C298%2C664%2C927%2C826%2C846%2C542%2C299%2C967%2C582%2C443%2C474%2C917%2C754%2C544%2C698&s=NGDPD%2CPPPGDP&grp=0&a=
http://www.imf.org/external/pubs/ft/weo/2011/02/weodata/weorept.aspx?pr.x=57&pr.y=9&sy=2011&ey=2011&scsm=1&ssd=1&sort=country&ds=.&br=1&c=512%2C941%2C914%2C446%2C612%2C666%2C614%2C668%2C311%2C672%2C213%2C946%2C911%2C137%2C193%2C962%2C122%2C674%2C912%2C676%2C313%2C548%2C419%2C556%2C513%2C678%2C316%2C181%2C913%2C682%2C124%2C684%2C339%2C273%2C638%2C921%2C514%2C948%2C218%2C943%2C963%2C686%2C616%2C688%2C223%2C518%2C516%2C728%2C918%2C558%2C748%2C138%2C618%2C196%2C522%2C278%2C622%2C692%2C156%2C694%2C624%2C142%2C626%2C449%2C628%2C564%2C228%2C283%2C924%2C853%2C233%2C288%2C632%2C293%2C636%2C566%2C634%2C964%2C238%2C182%2C662%2C453%2C960%2C968%2C423%2C922%2C935%2C714%2C128%2C862%2C611%2C716%2C321%2C456%2C243%2C722%2C248%2C942%2C469%2C718%2C253%2C724%2C642%2C576%2C643%2C936%2C939%2C961%2C644%2C813%2C819%2C199%2C172%2C184%2C132%2C524%2C646%2C361%2C648%2C362%2C915%2C364%2C134%2C732%2C652%2C366%2C174%2C734%2C328%2C144%2C258%2C146%2C656%2C463%2C654%2C528%2C336%2C923%2C263%2C738%2C268%2C578%2C532%2C537%2C944%2C742%2C176%2C866%2C534%2C369%2C536%2C744%2C429%2C186%2C433%2C925%2C178%2C869%2C436%2C746%2C136%2C926%2C343%2C466%2C158%2C112%2C439%2C111%2C916%2C298%2C664%2C927%2C826%2C846%2C542%2C299%2C967%2C582%2C443%2C474%2C917%2C754%2C544%2C698&s=NGDPD%2CPPPGDP&grp=0&a=
http://www.javaserverfaces.org/
http://www.javaserverfaces.org/
http://www.wavemaker.com/ibm-quickstart.pdf
http://www.wavemaker.com/ibm-quickstart.pdf
http://www.wavemaker.com/ibm-quickstart.pdf
http://www.wavemaker.com/ibm-quickstart.pdf
http://developerarticles.com/jsf-2-0-introduction-and-overview/
http://developerarticles.com/jsf-2-0-introduction-and-overview/
http://developerarticles.com/jsf-2-0-introduction-and-overview/
http://developerarticles.com/jsf-2-0-introduction-and-overview/
http://www.infoworld.com/d/cloud-computing/what-cloud-computing-really-means-031
http://www.infoworld.com/d/cloud-computing/what-cloud-computing-really-means-031

MHG Systems 2012. MHG Systems Oy Ltd in a nutshell. WWW-document. http://
www.mhgsystems.com/en/company. Updated 17.12.2010. Referred 7.3.2012.

Microsoft 2012. Deployment Patterns. WWW-document. http://msdn.microsoft.com/en-us/
library/ms998478.aspx. Referred 24.2.2012.

Miller, Michael 2008. Cloud Computing: Web-Based Applications That Change the Way You
Work and Collaborate Online. New York: Que Publishing.

Miller, Renée J., Miller, Ren'ee J., Tsatalos, Odysseas G., Williams, John H. 1997. DataWeb:
Customizable Database Publishing for the Web. IEEE Multimedia, vol. 4. 14-21.

Miller, Robert C. 2003. End User Programming for Web Users. IST PROGRAMME.
Proceedings Workshop on End-User Development held in conjunction with the ACM CHI
2003 Conference. 61.

Myers, Brad 1994. Challenges of HCI design and implementation. Interactions, vol. 1, no. 1.
73-83.

Myers, Brad 2003. Graphical User Interface Programming. Pittsburgh: Carnegie Mellon
University.

Myers, Brad & Rosson, Mary B. 1992. Survey on User Interface Programming. Pittsburgh:
Carnegie Mellon University.

Nationmaster 2012. Europe area statistics - countries compared. WWW-document. http://
www.nationmaster.com/graph/geo_eur_are-geography-europe-area. Updated 6.1.2012.
Referred 15.3.2012.

Poelker, Chris 2011. The three layers of cloud computing.WWW-document. http://
blogs.computerworld.com/18338/the_three_layers_of_cloud_computing. Updated 24.5.2012.
Referred 15.3.2012.

Potter, Richard 1993. Watch what I do: Programming by Demonstration. Cambridge: MIT
Press. 361 - 380.

Quan, Dennis, Huynh, David, Karger, David R., Miller, Robert 2003. User interface
continuations. Proceedings of the 16th annual ACM symposium on User interface software
and technology. New York: ACM. 145.

Rangan, Kash, Cooke, Alan, Post, Justin & Schindler, Nat 2008. The Cloud Wars : 100 +
billion at stak. The Analyst. May 2008. 1 - 90.

Rao, Leena 2012. Salesforce Beats, Q4 Revenue Up 38 Percent to $632 Million, Raises
Guidance. WWW-document. http://techcrunch.com/2012/02/23/salesforce-beats-q4-revenue-
up-38-percent-to-632-million-raises-guidance. Updated 23.2.2012. Referred 24.2.2012.

Raymond, Eric, Steven & Landley, Rob 2004. The Art of Unix Usability. WWW-document.
http://catb.org/~esr/writings/taouu/html. Referred 24.2.2012.

103

http://www.mhgsystems.com/en/company
http://www.mhgsystems.com/en/company
http://www.mhgsystems.com/en/company
http://www.mhgsystems.com/en/company
http://msdn.microsoft.com/en-us/library/ms998478.aspx
http://msdn.microsoft.com/en-us/library/ms998478.aspx
http://msdn.microsoft.com/en-us/library/ms998478.aspx
http://msdn.microsoft.com/en-us/library/ms998478.aspx
http://www.nationmaster.com/graph/geo_eur_are-geography-europe-area
http://www.nationmaster.com/graph/geo_eur_are-geography-europe-area
http://www.nationmaster.com/graph/geo_eur_are-geography-europe-area
http://www.nationmaster.com/graph/geo_eur_are-geography-europe-area
http://techcrunch.com/2012/02/23/salesforce-beats-q4-revenue-up-38-percent-to-632-million-raises-guidance/
http://techcrunch.com/2012/02/23/salesforce-beats-q4-revenue-up-38-percent-to-632-million-raises-guidance/
http://techcrunch.com/2012/02/23/salesforce-beats-q4-revenue-up-38-percent-to-632-million-raises-guidance/
http://techcrunch.com/2012/02/23/salesforce-beats-q4-revenue-up-38-percent-to-632-million-raises-guidance/

Roy, Rahul 2008. Shard – A Database Design. WWW-document. http://
technoroy.blogspot.com/2008/07/shard-database-design.html03/05. Updated 28.7.2008.
Referred 24.2.2012.

Salesforce.com 2002. Salesforce.com and salesforce.com/foundation sponsor 12th annual
tibet house benefit concert held at new york city's famed carne. WWW-document. http://
www.salesforcefoundation.org/node/77. Updated 22.2.2002. Referred 24.2.2012.

Salesforce.com 2012. Customization. WWW-document. http://www.salesforce.com/platform/
customization/. Updated 10.3.2012. Referred 15.3.2012.

Selvitelle, Britt 2010. The Tech Behind the New Twitter.com. WWW-document. http://
engineering.twitter.com/2010/09/tech-behind-new-twittercom.html. Updated 20.9.2010.
Referred 9.3.2012.

Shore, James & Warden, Shane 2007. The art of agile development. New York: O'Reilly.

Smith, Roger 2009. Computing in the cloud. Research Technology Management. September
2009. 1 - 6.

Spolsky, Joel 2001. User Interface Design for Programmers. New York: Apress.

Swartz, Jon 2007. Salesforce CEO leads charge against software. WWW-document. http://
www.usatoday.com/money/companies/management/2007-07-22-benioff_N.htm. Updated
24.7.2010. Referred 24.2.2012.

Tiihonen, Seppo 2003. The history of corruption in central government. Amsterdam: IOS
Press.

Tocker, Morgan 2009. Why you don't want to shard - MySQL Performance Blog. WWW-
document. http://www.mysqlperformanceblog.com/2009/08/06/why-you-dont-want-to-shard/.
Updated 6.8.2009. Referred 5.3.2012.

Tsai, Chang-Hao, Ruan, Yaoping, Sahu, Sambit, Shaikh, Anees, Shin, Kang G. 2007.
Virtualization-based techniques for enabling multi-tenant management tools. Proceedings of
the Distributed systems: operations and management 18th IFIP/IEEE international conference
on Managing virtualization of networks and services. Berling: Springer-Verlag. 171.

W3C-XHTML 2004. Extensible HyperText Markup Language XHTML 2.0. WWW-
document. http://www.w3.org. Referred 11.3.2012.

W3C-XHTML 1997. HyperText Markup Language (HTML4.01). WWW-document. http://
www.w3.org. Referred 11.3.2012.

Weber, Tin 2010. Cloud computing for business goes mainstream. WWW-document. http://
www.bbc.co.uk/news/10097450. Updated 5.5.2010. Referred 15.3.2012.

104

http://technoroy.blogspot.com/2008/07/shard-database-design.html
http://technoroy.blogspot.com/2008/07/shard-database-design.html
http://technoroy.blogspot.com/2008/07/shard-database-design.html
http://technoroy.blogspot.com/2008/07/shard-database-design.html
http://www.salesforcefoundation.org/node/77
http://www.salesforcefoundation.org/node/77
http://www.salesforcefoundation.org/node/77
http://www.salesforcefoundation.org/node/77
http://www.salesforce.com/platform/customization/
http://www.salesforce.com/platform/customization/
http://www.salesforce.com/platform/customization/
http://www.salesforce.com/platform/customization/
http://engineering.twitter.com/2010/09/tech-behind-new-twittercom.html
http://engineering.twitter.com/2010/09/tech-behind-new-twittercom.html
http://engineering.twitter.com/2010/09/tech-behind-new-twittercom.html
http://engineering.twitter.com/2010/09/tech-behind-new-twittercom.html
http://www.usatoday.com/money/companies/management/2007-07-22-benioff_N.htm
http://www.usatoday.com/money/companies/management/2007-07-22-benioff_N.htm
http://www.usatoday.com/money/companies/management/2007-07-22-benioff_N.htm
http://www.usatoday.com/money/companies/management/2007-07-22-benioff_N.htm
http://www.mysqlperformanceblog.com/2009/08/06/why-you-dont-want-to-shard/
http://www.mysqlperformanceblog.com/2009/08/06/why-you-dont-want-to-shard/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/
http://www.bbc.co.uk/news/10097450
http://www.bbc.co.uk/news/10097450
http://www.bbc.co.uk/news/10097450
http://www.bbc.co.uk/news/10097450

Weissman, Craig D. & Bobrowski, Steve 2009. The design of the force.com multitenant
internet application development platform. Proceedings of the 35th SIGMOD international
conference on Management of data. New York: ACM. 889.

Whitehorn, Mark & Marklyn, Bill 2006. Inside Relational Databases with Examples in
Access. Secaucus: Springer-Verlag New York.

Wikipedia contributors 2012a. Model–view–controller. WWW-document. http://
en.wikipedia.org/wiki/Model-view-controller. Updated 1.5.2010. Referred 24.2.2012.

Wikipedia contributors 2012b. Cloud computing. WWW-document. http://en.wikipedia.org/
wiki/Cloud_computing. Updated 12.2.2010. Referred 24.2.2012.

WorldApp 2010. SaaS (Software-as-a-Service) in Ukraine. WWW-document. http://
www.slideshare.net/Rinky25/saas-softwareasaservice-in-ukraine. Updated 21.5.2010.
Referred 15.3.2012.

Zettlemoyer, Luke S. & St. Amant, Robert 1999. A visual medium for programmatic control
of interactive applications. Proceedings of the SIGCHI conference on Human factors in
computing systems: the CHI is the limit. New York : ACM. 199.

105

http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing
http://www.slideshare.net/Rinky25/saas-softwareasaservice-in-ukraine
http://www.slideshare.net/Rinky25/saas-softwareasaservice-in-ukraine
http://www.slideshare.net/Rinky25/saas-softwareasaservice-in-ukraine
http://www.slideshare.net/Rinky25/saas-softwareasaservice-in-ukraine

APPENDICES

1: SELECTED LISTINGS OF APPLICATION CODE

The test case program has about 19200 lines of code. Because of a relatively large size of the

project only selected pieces of code are given in this Appendix as examples. Next to

descriptions of listings of code names of classes where they are stored are given in brackets.

1.1. Method for editing web forms (WebFormView.java)

/**
* Function called when web form needs to be edited.
*
* @return String
* @throws DataAccessException
*/
public String editWebForm() throws DataAccessException {
WebFormLogic webFormLogic = (WebFormLogic)
LogicFactory.getNewGenericLogic(WebForm.class),
LabelLogic labelLogic = (LabelLogic) LogicFactory.getNewGenericLogic(Label.class),
WebFieldLogic webFieldLogic = (WebFieldLogic)
LogicFactory.getNewGenericLogic(WebField.class),
UserWebFieldLogic userWebFieldLogic = (UserWebFieldLogic)
LogicFactory.getNewGenericLogic(UserWebField.class),
UserWebFormLogic userWebFormLogic = (UserWebFormLogic)
LogicFactory.getNewGenericLogic(UserWebForm.class),
MotherChildWebFieldLogic motherChildWebFieldLogic = new MotherChildWebFieldLogic(),
LogicResponse logicResponse = null,
boolean success = true,

if (getSessionBean().isDeleteForm()) {
// Delete web fields of the form that is to be deleted.
WebField webField = new WebField(),
webField.setWebformId(getSessionBean().getWebForm().getId()),
List<WebField> fieldsDelete = webFieldLogic.list(webField, getUser()),
for (WebField field : fieldsDelete) {
 // Delete user rights for web field.
 UserWebField userWebField = new UserWebField(),
 userWebField.setWebFieldId(field.getId()),
 logicResponse = userWebFieldLogic.deleteAllUsersForForm(userWebField, null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }

APPENDIX 1(1)

 // Delete mother child assignments for web field.
 MotherChildWebField motherChild = new MotherChildWebField(),
 motherChild.setChildId(field.getId()),
 logicResponse = motherChildWebFieldLogic.deleteAllForChild(motherChild, null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
 motherChild.setMotherId(field.getId()),
 logicResponse = motherChildWebFieldLogic.deleteAllForMother(motherChild, null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
 // Delete web field
 logicResponse = webFieldLogic.delete(field, null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
}
// Delete user rights for web form.
UserWebForm userWebForm = new UserWebForm(),
userWebForm.setWebFormId(getSessionBean().getWebForm().getId()),
logicResponse = userWebFormLogic.deleteAllUsersForForm(userWebForm, null),
if (!logicResponse.isSucceeded()) {
 success = false,
}
// Delete form if delete was checked.
logicResponse = webFormLogic.delete(getSessionBean().getWebForm(), null),
if (!logicResponse.isSucceeded()) {
 success = false,
}
// If no errors return to the view. Otherwise, show error message.
if (success) {
 getSessionBean().setConfirmation("formDeleted"),
 return "confirmation",
} else {
 getSessionBean().getMessageHandler().createMessage("errorEditWebForm"),
 return null,
}
} else {
// Update form.
// Toggle captcha
if (getSessionBean().getWebForm().isCaptchaRequired()) {
 getSessionBean().getWebForm().setCaptcha(1),
} else {
 getSessionBean().getWebForm().setCaptcha(0),
}
// Toggle can be mother

APPENDIX 1(2)

if (getSessionBean().getWebForm().isCanBeMotherBool()) {
 getSessionBean().getWebForm().setCanBeMother(1),
} else {
 getSessionBean().getWebForm().setCanBeMother(0),
}
logicResponse = webFormLogic.update(getSessionBean().getWebForm(), null),
if (!logicResponse.isSucceeded()) {
 success = false,
}
// Add new web fields.
for (WebField newField : getSessionBean().newWebFieldsInForm) {
 if (!newField.getLabel().getEn().isEmpty()) {
 logicResponse = labelLogic.insert(newField.getLabel(), null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
 int newLabelId = labelLogic.getMaxLabelId(),
 newField.setLabelId(newLabelId),
 newField.setWebformId(getSessionBean().getWebForm().getId()),
 newField.setTenantId(getSessionBean().getUser().getTenantId()),
 logicResponse = webFieldLogic.insert(newField, null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
 int newWebFieldId = webFieldLogic.getMaxWebFieldId(),
 newField.setId(newWebFieldId),
 // Allow users of the tenant use the web field.
 logicResponse = userWebFieldLogic.insertForAllTenantUsers(newField,
getSessionBean().getTenant()),
 if (!logicResponse.isSucceeded()) {
 success = false,
 }
 }
}
// Update old fields.
for (WebField field : getSessionBean().webFieldsInFormForUser) {
 if (field.isToBeDeleted()) {
 // Delete field if required.
 // Delete user rights for web field.
 UserWebField userWebField = new UserWebField(),
 userWebField.setWebFieldId(field.getId()),
 logicResponse = userWebFieldLogic.deleteAllUsersForForm(userWebField,
null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
 // Delete mother child assignments for web field.

APPENDIX 1(3)

 MotherChildWebField motherChild = new MotherChildWebField(),
 motherChild.setChildId(field.getId()),
 logicResponse = motherChildWebFieldLogic.deleteAllForChild(motherChild,
null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
 motherChild.setMotherId(field.getId()),
 logicResponse = motherChildWebFieldLogic.deleteAllForMother(motherChild,
null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
 // Delete web field
 logicResponse = webFieldLogic.delete(field, null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
 } else {
 // Update field.
 logicResponse = webFieldLogic.update(field, null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
 logicResponse = labelLogic.update(field.getLabel(), null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
 // Update child field. Possibly recursion can be used here.
 // Check if field is a mother from another field.
 MotherChildWebField tempMotherChildWebField = new MotherChildWebField(),
 MotherChildWebField motherChildWebField = new MotherChildWebField(),
 motherChildWebField.setMotherId(field.getId()),
 tempMotherChildWebField = null, // Set to null after check fo child above.
 tempMotherChildWebField =
motherChildWebFieldLogic.checkIfFieldIsMother(motherChildWebField, getUser()),
 if (tempMotherChildWebField != null) { // Web field is a mother
 // Get list of all fields that are children to the field.
 List<MotherChildWebField> listChildren =

motherChildWebFieldLogic.listChildredToMother(motherChildWebField,
getSessionBean().getUser()),
 // Loop through list of fields and update values.
 for (MotherChildWebField child : listChildren) {

APPENDIX 1(4)

 WebField childField = webFieldLogic.get(child.getChildId(),
getSessionBean().getUser()),
 // Set new values
 childField.setInputWidth(field.getInputWidth()),
 childField.setInputHeight(field.getInputHeight()),
 childField.setInputSize(field.getInputSize()),
 childField.setTextareaCol(field.getTextareaCol()),
 childField.setTextareaRow(field.getTextareaRow()),
 childField.setType(field.getType()),
 // Update child field
 logicResponse = webFieldLogic.update(childField, null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
 }
 }
 }
}
// Update user rights for the form
UserWebForm userWebForm = new UserWebForm(),
userWebForm.setWebFormId(getSessionBean().getWebForm().getId()),
// Delete all user rights for the form.
logicResponse = userWebFormLogic.deleteAllUsersForForm(userWebForm,
getSessionBean().getUser()),
if (!logicResponse.isSucceeded()) {
 success = false,
}
// Add updated rights.
userWebForm.setWebFormId(getSessionBean().getWebForm().getId()),
for (String userRight : userRightsSelected) {
 userWebForm.setUserId(Integer.parseInt(userRight)),
 logicResponse = userWebFormLogic.insert(userWebForm,
getSessionBean().getAccount()),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
}
// If no errors return to the view. Otherwise, show error message.
if (success) {
 getSessionBean().setConfirmation("formEdited"),
 return "confirmation",
} else {
 getSessionBean().getMessageHandler().createMessage("errorEditWebForm"),
 return null,
}
}
}

APPENDIX 1(5)

1.2. Method for creating new “child” web forms (WebFormView.java)

/**
* Create new Web Form based on another web form.
*
* @return String
* @throws DataAccessException
*/
public String newChildWebForm() throws DataAccessException {
 // Logic class declarations.
 WebFormLogic webFormLogic = (WebFormLogic)
LogicFactory.getNewGenericLogic(WebForm.class),
 LabelLogic labelLogic = (LabelLogic)
LogicFactory.getNewGenericLogic(Label.class),
 WebFieldLogic webFieldLogic = (WebFieldLogic)
LogicFactory.getNewGenericLogic(WebField.class),
 UserWebFormLogic userWebFormLogic = (UserWebFormLogic)
LogicFactory.getNewGenericLogic(UserWebForm.class),
 UserWebFieldLogic userWebFieldLogic = (UserWebFieldLogic)
LogicFactory.getNewGenericLogic(UserWebField.class),
 MotherChildWebFieldLogic motherChildWebFieldLogic = (MotherChildWebFieldLogic)
LogicFactory.getNewGenericLogic(MotherChildWebField.class),
 boolean success = true, // Trigger of errors.
 // Insert new web form.
 LogicResponse logicResponse =
webFormLogic.insert(getSessionBean().getWebForm(), null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 }
 int newWebFormId = webFormLogic.getMaxWebFormId(),
 getSessionBean().getWebForm().setId(newWebFormId),

 // Allow users of the tenant use the web form.
 logicResponse =
userWebFormLogic.insertForAllTenantUsers(getSessionBean().getWebForm(),
getSessionBean().getTenant()),
 if (!logicResponse.isSucceeded()) {
 success = false,
 }
 // Add web fields from the mother web form.
 for (WebField newField : getSessionBean().webFieldsInFormMotherForm) {
 if (!newField.getLabel().getEn().isEmpty()) {
 logicResponse = labelLogic.insert(newField.getLabel(), null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
 int newLabelId = labelLogic.getMaxLabelId(),

APPENDIX 1(6)

 newField.setLabelId(newLabelId),
 newField.setWebformId(newWebFormId),
 newField.setTenantId(getSessionBean().getUser().getTenantId()),
 logicResponse = webFieldLogic.insert(newField, null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
 int newWebFieldId = webFieldLogic.getMaxWebFieldId(),
 newField.setIdInMotherForm(newField.getId()),
 newField.setId(newWebFieldId),
 // Allow users of the tenant use the web field.
 logicResponse = userWebFieldLogic.insertForAllTenantUsers(newField,
getSessionBean().getTenant()),
 if (!logicResponse.isSucceeded()) {
 success = false,
 }
 // Determine if a web filed is generated based on another field (child
set to TRUE).
 if (newField.isChild()) {
 MotherChildWebField motherChildWebField = new
MotherChildWebField(),
 motherChildWebField.setMotherId(newField.getIdInMotherForm()),
 motherChildWebField.setChildId(newField.getId()),

 // Insert mother-child pair. No logic response is retrieved because
breaks in logic it generates at this place. TODO fix it.
 motherChildWebFieldLogic.insert(motherChildWebField,
getSessionBean().getUser()),
 }
 }
 }
 // Add new web fields.
 for (WebField newField : getSessionBean().newWebFieldsInForm) {
 if (!newField.getLabel().getEn().isEmpty()) {
 logicResponse = labelLogic.insert(newField.getLabel(), null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
 int newLabelId = labelLogic.getMaxLabelId(),
 newField.setLabelId(newLabelId),
 newField.setWebformId(newWebFormId),
 newField.setTenantId(getSessionBean().getUser().getTenantId()),
 logicResponse = webFieldLogic.insert(newField, null),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
 int newWebFieldId = webFieldLogic.getMaxWebFieldId(),

APPENDIX 1(7)

 newField.setId(newWebFieldId),
 // Allow users of the tenant use the web field.
 logicResponse = userWebFieldLogic.insertForAllTenantUsers(newField,
getSessionBean().getTenant()),
 if (!logicResponse.isSucceeded()) {
 success = false,
 }
 }
 }
 // If there were no errors, go back to edit web form view.
 if (success) {

getSessionBean().getMessageHandler().createMessage("editWebFormSuccessful"),
 return "editWebForm",
 } else {
 getSessionBean().getMessageHandler().createMessage("errorEditWebForm"),
 return null,
 }
}

1.3. Method for parsing a web form (WebFormView.java)

/**
* Parse web form via f:param. e.g. <f:param name="idWork"...
*
* @return String
*/
public String parseFillWebForm() {
 FacesContext context = FacesContext.getCurrentInstance(),
 Map requestMap = context.getExternalContext().getRequestParameterMap(),
 String idWork = (String) requestMap.get("idWork"),
 int id = Integer.parseInt(idWork),
 WebFormLogic WebFormLogic = (WebFormLogic)
LogicFactory.getNewGenericLogic(WebForm.class),
 getSessionBean().setWebForm(WebFormLogic.get(id, getUser())),
 if (getSessionBean().getWebForm().getNumberWebfields() < 1) {
 getSessionBean().getMessageHandler().createMessage("noWebFields"),
 return "fillWebForm",
 } else {
 return "fillWebForm",
 }
}

APPENDIX 1(8)

1.4. Method for generating a list of user rights for a form (WebFormView.java)

/**
* Get the value of userRightsOptions
*
* @return the value of userRightsOptions
*/
public List getUserRightsOptions() {
if (userRightsOptions == null) {
 userRightsOptions = new ArrayList(),
 AccountLogic accountLogic = (AccountLogic)
LogicFactory.getNewGenericLogic(Account.class),
 Account tempUser = new Account(),
 tempUser.setTenantId(getSessionBean().getTenant().getId()),
 tempUser.setVerified(-1),
 // Get list of all users for a given form.
 List<Account> listUsers = accountLogic.list(tempUser,
getSessionBean().getTenant()),
 Logger.getInstance().log("tenant " + tempUser.getTenantId()),
 Logger.getInstance().log("size " + listUsers.size()),
 for (Account user : listUsers) {
 // Filter users from other tenants.
 if (user.getTenantId() != getSessionBean().getTenant().getId()) {
 continue,
 }
 // Build name of the user: ID-FIRST-SECOND.
 String nameUser = Integer.toString(user.getId()) + ": "
 + user.getFirstname() + " " + user.getSurname(), // Add id first second.
 userRightsOptions.add(new SelectItem(user.getId(), nameUser)), // TODO: add
support for localisation.
 }
}
return userRightsOptions,
}

1.5. Method for validating email address (EmailValidator.java)

public void validate(FacesContext context,
 UIComponent toValidate,
 Object value) {
 try {
 String enteredEmail = (String) value,
 //Set the email pattern string
 Pattern p = Pattern.compile(".+@.+\\.[a-z]+"),
 //Match the given string with the pattern
 Matcher m = p.matcher(enteredEmail),
 //Check whether match is not found

APPENDIX 1(9)

 ValidationBean validationBean = new ValidationBean(),
 if (!m.matches()) {
 throw new Exception("regex"),
 } else if (!validationBean.checkFreeEmail(enteredEmail)) {
 //Check if email is availiable
 throw new Exception("taken"),
 }
 ((UIInput) toValidate).setValid(true),
 } catch (Exception ex) {
 if (ex.getMessage().equals("taken")) {
 //Email is taken
 ((UIInput) toValidate).setValid(false),
 FacesMessage message = new FacesMessage(ERROR_MESSAGE.replaceAll("\\{0\
\}", this.uiTextHandler.getText("emailIsTaken"))),
 context.addMessage(toValidate.getClientId(context), message),
 } else if (ex.getMessage().equals("regex")) {
 //Regex validation failed
 ((UIInput) toValidate).setValid(false),
 FacesMessage message = new FacesMessage(ERROR_MESSAGE.replaceAll("\\{0\
\}", this.uiTextHandler.getText("notValidEmail"))),
 context.addMessage(toValidate.getClientId(context), message),
 }
 }
}

1.6. Methods for fetching lists of users (AccountDao.java)

/**
* Get a list of accounts from database according to searchAccount.
* When user is not known.
*
* @param searchAccount
* @param tenant
* @param options
* @param listOptions
* @throws DataAccessException
*/
public List<Account> list(Account searchAccount, Tenant tenant, Map options,
ListOptions listOptions) throws DataAccessException {
 //Getting list of users
 this.searchOptions = new ArrayList<SearchOption>(),
 if (searchAccount.getVerified() != -1)
 searchOptions.add(new SearchOption("verified", new
Integer(searchAccount.getVerified()), SearchOption.EQUAL)),
 String sql = "SELECT * FROM account WHERE tenant_id=:tenant_id "
 + SQLFactory.generateSQL(searchOptions, true)
 + " ORDER BY user_id ASC",
 MapSqlParameterSource parameters = new MapSqlParameterSource(),
 parameters.addValue("tenant_id", tenant.getId()),

APPENDIX 1(10)

 return jdbcTemplate.query(sql, parameters, new AccountRowMapper()),
}

/**
* Get list of accounts from database according to searchAccount with limitations on
* the size of returned list.
*
* @param limitStart
* @param limitLength
* @param searchAccount
* @param tenant
* @param options
* @param listOptions
* @throws DataAccessException
*/
public List<Account> list(int limitStart, int limitLength, Account searchAccount,
Tenant tenant, Map options, ListOptions listOptions) throws DataAccessException {
 //Getting list of users
 this.searchOptions = new ArrayList<SearchOption>(),
 if (searchAccount.getVerified() != -1)
 searchOptions.add(new SearchOption("verified", new
Integer(searchAccount.getVerified()), SearchOption.EQUAL)),
 String sql = "SELECT * FROM account WHERE tenant_id=:tenant_id "
 + SQLFactory.generateSQL(searchOptions, true)
 + " ORDER BY user_id ASC LIMIT "
 + limitStart
 + ", "
 + limitLength,
 MapSqlParameterSource parameters = new MapSqlParameterSource(),
 parameters.addValue("tenant_id", tenant.getId()),
 return jdbcTemplate.query(sql, parameters, new AccountRowMapper()),
}

Where, String sql is an SQL statements that is executed using jdbcTemplate.query(sql,

parameters, new AccountRowMapper()) method, which returns a list of objects of type

Account that is afterwards returned from the list method.

1.7. Method for editing web field privileges (WebFormView.java)

/**
* Edit user privileges for getSessionBean().getWebField().
*
* @return
*/
public String editWebFieldRights() {
UserWebFieldLogic userWebFieldLogic = new UserWebFieldLogic(),

APPENDIX 1(11)

// Update user rights for the form
UserWebField userWebField = new UserWebField(),
userWebField.setWebFieldId(getSessionBean().getWebField().getId()),
// Delete all user rights for the form.
boolean success = true,
LogicResponse logicResponse = userWebFieldLogic.deleteAllUsersForForm(userWebField,
getSessionBean().getUser()),
if (!logicResponse.isSucceeded()) {
 success = false,
}
// Add updated rights.
userWebField.setWebFieldId(getSessionBean().getWebField().getId()),
for (String userRight : userRightsWebFieldSelected) {
 userWebField.setUserId(Integer.parseInt(userRight)),
 logicResponse = userWebFieldLogic.insert(userWebField,
getSessionBean().getAccount()),
 if (!logicResponse.isSucceeded()) {
 success = false,
 break,
 }
}
if (success) {
 return "closePopup",
} else {
 getSessionBean().getMessageHandler().createMessage("errorEditWebField"),
 return null,
}
}

1.8. Login view and its backing bean (login.xhtml, Login.java)

<h:body>
<div id="content">
<ui:include src="include/hmenu.xhtml"/>

 <h:form onkeypress="if (event.keyCode == 13) this.submit(),">
 <div id="box" class="loginBox">
 <div id="boxHeader"><h:outputText value="#{ui.loginToTheSystem}"/></
div>
 <div id="loginBoxContent">
 <h:panelGrid columns="2" styleClass="loginTable"
columnClasses="loginCol1,loginCol2">
 <f:facet name="header">
 <ui:include src="include/message.xhtml"/>
 </f:facet>
 <h:outputLabel id="passwordLbl" value="#{ui.password}"/>
 <h:inputSecret id="password" value="#{login.password}"/>
 <h:outputLabel id="rememberMe" value="#{ui.rememberMe}"/>

APPENDIX 1(12)

 <h:selectBooleanCheckbox title="Remember Me"
value="#{login.rememberMe}" />
 <h:outputLabel value=" "/>
 <h:commandButton styleClass="buttonSubmit"
value="#{ui.loginBUTTON}" action="#{login.loginAction}" id="buttonSubmit" />
 </h:panelGrid>
 <div class="alignedCenter">

 <h:commandLink value="#{ui.register}"
action="#{login.registerAction}"/>
 </div>
 </div>
 </div>
 </h:form>

</div>
</h:body>

Here f:facet is a tag used by JSF framework, this framework uses f: and ui: to describe its

custom elements and h: for describing common HTML tags. Further, PrimeFaces framework

is utilised to render custom complex elements of GUI, such as sliders and colour pickers. In

this example lines outline web field that receive values from a user and then pass them to a

corresponding Java class in UI package. For example, <h:inputSecret id="password"

value="#{login.password}"/> describes an input field used for inputting sensitive

information such as user passwords (it hides entered symbols by showing asterisks ‘*’

instead). #{login.password} part of the line indicates that a value is passed to a variable

password. This variable is described as a property in Login.java:

private String password,

/**
 * Get the value of password
 *
 * @return the value of password
 */
public String getPassword() {
 return password,
}

/**
 * Set the value of password
 *
 * @param password new value of password

APPENDIX 1(13)

 */
public void setPassword(String password) {
 this.password = password,
}

1.9. Method that manages users logging in (Login.java)

/**
* Call AccountLogic to login to the system
*
* @return String view to navigate
*/
public String loginAction() {

 AccountLogic accountLogic =
(AccountLogic)LogicFactory.getNewGenericLogic(Account.class),
 Account account = accountLogic.get(username, password),

 if (account != null) {
 //Account found
 getSessionBean().setAccount(account),
 getSessionBean().setUser(accountLogic.createUser(account)),
 TenantLogic tenantLogic =
(TenantLogic)LogicFactory.getNewGenericLogic(Tenant.class),
 Tenant tenant = tenantLogic.get(account.getTenantId()),
 Logger.getInstance().log("tenant name: " + tenant.getId()),
 getSessionBean().setTenant(tenant),
 getSessionBean().setLoggedIn(true),
 // Save the userid and password in a cookie
 FacesContext facesContext = FacesContext.getCurrentInstance(),
 Cookie btuser = new Cookie("btuser", username),
 Cookie btpasswd = new Cookie("btpasswd", password),
 if (rememberMe == false) {
 rememberMe1 = "false",
 } else {
 rememberMe1 = "true",
 }
 Cookie btremember = new Cookie("btremember", rememberMe1),
 btuser.setMaxAge(3600),
 btpasswd.setMaxAge(3600),
 ((HttpServletResponse)
facesContext.getExternalContext().getResponse()).addCookie(btuser),
 ((HttpServletResponse)
facesContext.getExternalContext().getResponse()).addCookie(btpasswd),
 ((HttpServletResponse)
facesContext.getExternalContext().getResponse()).addCookie(btremember),
 return "home",
 } else {
 getSessionBean().getMessageHandler().createMessage("wrongUsername"),

APPENDIX 1(14)

 return null,
 }
}

In this piece of code two possibilities are possible: either a user provided correct credentials

(username, password) or they were wrong. If the first option holds true, than the username

and the password are remembered as browser cookies (providing the user clicked on

“Remember me” option), as described by lines Cookie btuser = new Cookie("btuser",

username) and Cookie btpasswd = new Cookie("btpasswd", password). If either the

username or the password (or both) are incorrect, the user is redirected back to the login

prompt, where an error message is shown. Also, an instance of Account.java class is used in

the described example. The line Account account = accountLogic.get(username, password)

invokes a get method in the logic class that in its turn calls a get method in the DAO class,

which passes back either an object of type Account or raises an exception.

1.10. Method for locating DataSource object (DataSourceLocator.java)

/**
* Get DataSource object with given name
* @param name of the data source
* @return DataSource object
*/
public DataSource getDataSource(String name) {
 DataSource dataSource = null,
 try {
 //Try to find DataSource from cache
 dataSource = cache.get(name),

 //DataSource not found from cache. Let's try to add it to the cache
 if (dataSource == null) {
 InitialContext initialContext = new InitialContext(),
 dataSource = (DataSource) initialContext.lookup(JNDI_PREFIX + name),
 if (dataSource == null) {
 throw new Exception("DataSource not found with name " + name),
 }

 if (!cache.containsKey(name)) {
 Logger.getInstance().log("DataSource " + name + " added to the
cache"),
 cache.put(name, dataSource),
 }
 }
 return dataSource,
 } catch (Exception ex) {

APPENDIX 1(15)

 Logger.getInstance().log(ex),
 return null,
 }
}

APPENDIX 1(16)

2: SQL STATEMENTS FOR CREATION OF THE DATABASE

SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0;
SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0;
SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='TRADITIONAL';
CREATE SCHEMA IF NOT EXISTS `multitenant_webforms` DEFAULT CHARACTER SET latin1 ;
USE `multitenant_webforms` ;

-- ---
-- Table `multitenant_webforms`.`tenant`
-- ---
DROP TABLE IF EXISTS `multitenant_webforms`.`tenant` ;

CREATE TABLE IF NOT EXISTS `multitenant_webforms`.`tenant` (
 `tenant_id` INT(10) NOT NULL AUTO_INCREMENT ,
 `name` VARCHAR(100) NOT NULL ,
 `added` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ,
 `updated` TIMESTAMP NULL DEFAULT NULL ,
 `number_webforms_per_page` INT(10) NOT NULL DEFAULT '10' ,
 `number_webforms_sidebar` INT(10) NOT NULL DEFAULT '5' ,
 `number_webforms_verified` INT(10) NOT NULL DEFAULT '20' ,
 `number_webforms_unverified` VARCHAR(45) NOT NULL DEFAULT '3' ,
 `instance_url` CHAR(200) NULL DEFAULT NULL ,
 `api_key` CHAR(36) NULL DEFAULT NULL ,
 `security_key` CHAR(36) NULL DEFAULT NULL ,
 PRIMARY KEY (`tenant_id`))
ENGINE = InnoDB
AUTO_INCREMENT = 3
DEFAULT CHARACTER SET = utf8;

-- ---
-- Table `multitenant_webforms`.`account`
-- ---
DROP TABLE IF EXISTS `multitenant_webforms`.`account` ;

CREATE TABLE IF NOT EXISTS `multitenant_webforms`.`account` (
 `user_id` INT(10) NOT NULL AUTO_INCREMENT ,
 `username` VARCHAR(65) NOT NULL ,
 `password` CHAR(32) NOT NULL ,
 `firstname` VARCHAR(40) NOT NULL ,
 `surname` VARCHAR(40) NOT NULL ,
 `email` VARCHAR(200) NOT NULL ,
 `avatar` VARCHAR(100) NULL DEFAULT NULL ,
 `admin` TINYINT(1) NOT NULL DEFAULT '0' ,
 `added` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP ,
 `updated` TIMESTAMP NULL DEFAULT NULL ,

APPENDIX 2(1)

 `tenant_id` INT(10) NULL DEFAULT NULL ,
 `verified` TINYINT(1) NULL DEFAULT NULL ,
 PRIMARY KEY (`user_id`) ,
 UNIQUE INDEX `username_UNIQUE` (`username` ASC) ,
 INDEX `user_tenant` (`tenant_id` ASC) ,
 CONSTRAINT `user_tenant`
 FOREIGN KEY (`tenant_id`)
 REFERENCES `multitenant_webforms`.`tenant` (`tenant_id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)
ENGINE = InnoDB
AUTO_INCREMENT = 8
DEFAULT CHARACTER SET = latin1;

-- ---
-- Table `multitenant_webforms`.`label`
-- ---
DROP TABLE IF EXISTS `multitenant_webforms`.`label` ;

CREATE TABLE IF NOT EXISTS `multitenant_webforms`.`label` (
 `label_id` INT(10) NOT NULL AUTO_INCREMENT ,
 `en` VARCHAR(200) NULL DEFAULT NULL ,
 `ru` VARCHAR(200) NULL DEFAULT NULL ,
 `fi` VARCHAR(200) NULL DEFAULT NULL ,
 `uk` VARCHAR(200) NULL DEFAULT NULL ,
 PRIMARY KEY (`label_id`) ,
 INDEX `webfield_table11` (`ru` ASC))
ENGINE = InnoDB
AUTO_INCREMENT = 162
DEFAULT CHARACTER SET = latin1;

-- ---
-- Table `multitenant_webforms`.`preset_field`
-- ---
DROP TABLE IF EXISTS `multitenant_webforms`.`preset_field` ;

CREATE TABLE IF NOT EXISTS `multitenant_webforms`.`preset_field` (
 `preset_field_id` INT(10) NOT NULL AUTO_INCREMENT ,
 `name` VARCHAR(200) NOT NULL ,
 `type` VARCHAR(45) NOT NULL DEFAULT 'text_field' ,
 `popup_message` VARCHAR(200) NULL DEFAULT NULL ,
 `default_value` VARCHAR(200) NULL DEFAULT NULL ,
 `colour` VARCHAR(45) NULL DEFAULT NULL ,
 `label_font` VARCHAR(45) NULL DEFAULT NULL ,
 `label_font_size` INT(10) NULL DEFAULT NULL ,
 `input_width` INT(10) NULL DEFAULT NULL ,
 `input_height` INT(10) NULL DEFAULT NULL ,
 `input_size` INT(10) NULL DEFAULT NULL ,
 `label_id` INT(10) NOT NULL ,
 `textarea_col` INT(10) NULL DEFAULT NULL ,

APPENDIX 2(2)

 `textarea_row` INT(10) NULL DEFAULT NULL ,
 PRIMARY KEY (`preset_field_id`) ,
 INDEX `preset_field_label` (`label_id` ASC) ,
 CONSTRAINT `preset_field_label`
 FOREIGN KEY (`label_id`)
 REFERENCES `multitenant_webforms`.`label` (`label_id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)
ENGINE = InnoDB
AUTO_INCREMENT = 3
DEFAULT CHARACTER SET = latin1;

-- ---
-- Table `multitenant_webforms`.`webfield`
-- ---
DROP TABLE IF EXISTS `multitenant_webforms`.`webfield` ;

CREATE TABLE IF NOT EXISTS `multitenant_webforms`.`webfield` (
 `webfield_id` INT(10) NOT NULL AUTO_INCREMENT ,
 `type` INT(10) NOT NULL DEFAULT '1' ,
 `popup_message` VARCHAR(200) NULL DEFAULT NULL ,
 `default_value` VARCHAR(200) NULL DEFAULT NULL ,
 `colour` VARCHAR(45) NULL DEFAULT NULL ,
 `label_id` INT(10) NULL DEFAULT NULL ,
 `label_font` VARCHAR(150) NULL DEFAULT 'Cambria,''Times New Roman'',''Nimbus
Roman No9 L'',''Freeserif'',Times,serif' ,
 `label_font_size` INT(10) NULL DEFAULT '12' ,
 `input_width` INT(10) NULL DEFAULT '20' ,
 `input_height` INT(10) NULL DEFAULT NULL ,
 `input_size` INT(10) NULL DEFAULT '50' ,
 `required` TINYINT(1) NOT NULL ,
 `added` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP ,
 `updated` TIMESTAMP NULL DEFAULT NULL ,
 `position_in_webform` INT(10) NOT NULL ,
 `preset_field_id` INT(10) NULL DEFAULT NULL ,
 `webform_id` INT(10) NOT NULL ,
 `tenant_id` INT(10) NOT NULL ,
 `textarea_col` INT(10) NULL DEFAULT '40' ,
 `textarea_row` VARCHAR(45) NULL DEFAULT '5' ,
 `default_value1` VARCHAR(200) NULL DEFAULT NULL ,
 `default_value2` VARCHAR(200) NULL DEFAULT NULL ,
 `default_value3` VARCHAR(200) NULL DEFAULT NULL ,
 `default_value4` VARCHAR(200) NULL DEFAULT NULL ,
 `default_value5` VARCHAR(200) NULL DEFAULT NULL ,
 PRIMARY KEY (`webfield_id`) ,
 INDEX `webfield_preset_field` (`preset_field_id` ASC) ,
 INDEX `webfield_webform` (`webform_id` ASC) ,
 INDEX `webfield_tenant` (`tenant_id` ASC) ,
 INDEX `webfield_label` (`label_id` ASC) ,

APPENDIX 2(3)

 INDEX `webfidl_label` (`label_id` ASC) ,
 CONSTRAINT `webfield_label`
 FOREIGN KEY (`label_id`)
 REFERENCES `multitenant_webforms`.`label` (`label_id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION,
 CONSTRAINT `webfield_preset_field`
 FOREIGN KEY (`preset_field_id`)
 REFERENCES `multitenant_webforms`.`preset_field` (`preset_field_id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION,
 CONSTRAINT `webfield_tenant`
 FOREIGN KEY (`tenant_id`)
 REFERENCES `multitenant_webforms`.`tenant` (`tenant_id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)
ENGINE = InnoDB
AUTO_INCREMENT = 164
DEFAULT CHARACTER SET = latin1;

-- ---
-- Table `multitenant_webforms`.`list_value`
-- ---
DROP TABLE IF EXISTS `multitenant_webforms`.`list_value` ;

CREATE TABLE IF NOT EXISTS `multitenant_webforms`.`list_value` (
 `list_value_id` INT(10) NOT NULL AUTO_INCREMENT ,
 `value` VARCHAR(200) NOT NULL ,
 `text` VARCHAR(200) NOT NULL ,
 `position_in_list` INT(10) NOT NULL ,
 `default_value` TINYINT(1) NOT NULL DEFAULT '0' ,
 `added` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP ,
 `updated` TIMESTAMP NULL DEFAULT NULL ,
 `en` VARCHAR(200) NULL DEFAULT NULL ,
 `fi` VARCHAR(200) NULL DEFAULT NULL ,
 `ru` VARCHAR(200) NULL DEFAULT NULL ,
 `uk` VARCHAR(200) NULL DEFAULT NULL ,
 `webfield_id` INT(10) NULL DEFAULT NULL ,
 `preset_field_id` INT(10) NULL DEFAULT NULL ,
 PRIMARY KEY (`list_value_id`) ,
 INDEX `list_value_webfield` (`webfield_id` ASC) ,
 INDEX `list_value_preset_field` (`preset_field_id` ASC) ,
 CONSTRAINT `list_value_preset_field`
 FOREIGN KEY (`preset_field_id`)
 REFERENCES `multitenant_webforms`.`preset_field` (`preset_field_id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION,
 CONSTRAINT `list_value_webfield`
 FOREIGN KEY (`webfield_id`)

APPENDIX 2(4)

 REFERENCES `multitenant_webforms`.`webfield` (`webfield_id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)
ENGINE = InnoDB
AUTO_INCREMENT = 52
DEFAULT CHARACTER SET = latin1;

-- ---
-- Table `multitenant_webforms`.`mother_child_webfield`
-- ---
DROP TABLE IF EXISTS `multitenant_webforms`.`mother_child_webfield` ;

CREATE TABLE IF NOT EXISTS `multitenant_webforms`.`mother_child_webfield` (
 `mother_id` INT(10) NOT NULL ,
 `child_id` INT(10) NOT NULL ,
 PRIMARY KEY (`mother_id`, `child_id`) ,
 INDEX `mother` (`mother_id` ASC) ,
 INDEX `child` (`child_id` ASC) ,
 CONSTRAINT `child`
 FOREIGN KEY (`child_id`)
 REFERENCES `multitenant_webforms`.`webfield` (`webfield_id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION,
 CONSTRAINT `mother`
 FOREIGN KEY (`mother_id`)
 REFERENCES `multitenant_webforms`.`webfield` (`webfield_id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)
ENGINE = InnoDB
DEFAULT CHARACTER SET = latin1;

-- ---
-- Table `multitenant_webforms`.`received_value`
-- ---
DROP TABLE IF EXISTS `multitenant_webforms`.`received_value` ;

CREATE TABLE IF NOT EXISTS `multitenant_webforms`.`received_value` (
 `received_value_id` INT(10) NOT NULL AUTO_INCREMENT ,
 `value` VARCHAR(1000) NOT NULL ,
 `model` VARCHAR(100) NULL DEFAULT NULL COMMENT 'Model that this data is assigned
to.' ,
 `added` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP ,
 `webfield_id` INT(10) NOT NULL ,
 `user_id` INT(10) NOT NULL ,
 PRIMARY KEY (`received_value_id`) ,
 INDEX `received_value_webfield_tenant` (`webfield_id` ASC) ,
 INDEX `received_value_user` (`user_id` ASC) ,
 CONSTRAINT `received_value_user`
 FOREIGN KEY (`user_id`)

APPENDIX 2(5)

 REFERENCES `multitenant_webforms`.`account` (`user_id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION,
 CONSTRAINT `received_value_webfield`
 FOREIGN KEY (`webfield_id`)
 REFERENCES `multitenant_webforms`.`webfield` (`webfield_id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)
ENGINE = InnoDB
DEFAULT CHARACTER SET = latin1;

-- ---
-- Table `multitenant_webforms`.`user_webfield`
-- ---
DROP TABLE IF EXISTS `multitenant_webforms`.`user_webfield` ;

CREATE TABLE IF NOT EXISTS `multitenant_webforms`.`user_webfield` (
 `user_id` INT(10) NOT NULL ,
 `webfield_id` INT(10) NOT NULL ,
 PRIMARY KEY (`user_id`, `webfield_id`) ,
 INDEX `user_webfield_user` (`user_id` ASC) ,
 INDEX `user_webfield_webfield` (`webfield_id` ASC) ,
 CONSTRAINT `user_webfield_user`
 FOREIGN KEY (`user_id`)
 REFERENCES `multitenant_webforms`.`account` (`user_id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION,
 CONSTRAINT `user_webfield_webfield`
 FOREIGN KEY (`webfield_id`)
 REFERENCES `multitenant_webforms`.`webfield` (`webfield_id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)
ENGINE = InnoDB
DEFAULT CHARACTER SET = latin1;

-- ---
-- Table `multitenant_webforms`.`webform`
-- ---
DROP TABLE IF EXISTS `multitenant_webforms`.`webform` ;

CREATE TABLE IF NOT EXISTS `multitenant_webforms`.`webform` (
 `webform_id` INT(10) NOT NULL AUTO_INCREMENT ,
 `name` VARCHAR(100) NULL DEFAULT NULL ,
 `added` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ,
 `updated` TIMESTAMP NULL DEFAULT NULL ,
 `captcha` TINYINT(1) NULL DEFAULT '0' ,
 `can_be_mother` TINYINT(1) NULL DEFAULT '1' ,
 PRIMARY KEY (`webform_id`))
ENGINE = InnoDB
AUTO_INCREMENT = 57

APPENDIX 2(6)

DEFAULT CHARACTER SET = utf8;

-- ---
-- Table `multitenant_webforms`.`user_webform`
-- ---
DROP TABLE IF EXISTS `multitenant_webforms`.`user_webform` ;

CREATE TABLE IF NOT EXISTS `multitenant_webforms`.`user_webform` (
 `user_id` INT(10) NOT NULL ,
 `webform_id` INT(10) NOT NULL ,
 PRIMARY KEY (`user_id`, `webform_id`) ,
 INDEX `webform_tenant_webform` (`webform_id` ASC) ,
 INDEX `webform_tenant_user` (`user_id` ASC) ,
 CONSTRAINT `webform_tenant_user`
 FOREIGN KEY (`user_id`)
 REFERENCES `multitenant_webforms`.`account` (`user_id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION,
 CONSTRAINT `webform_tenant_webform`
 FOREIGN KEY (`webform_id`)
 REFERENCES `multitenant_webforms`.`webform` (`webform_id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)
ENGINE = InnoDB
DEFAULT CHARACTER SET = latin1;

SET SQL_MODE=@OLD_SQL_MODE;
SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS;
SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;

APPENDIX 2(7)

3: FACES-CONIG.XML PROJECT CONFIGURATION FILE

<?xml version='1.0' encoding='UTF-8'?>
<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://
java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd" version="2.0">
 <application>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>en</supported-locale>
 <supported-locale>fi</supported-locale>
 <supported-locale>ru</supported-locale>
 <supported-locale>uk</supported-locale>
 <supported-locale>zh</supported-locale>
 </locale-config>
 <resource-bundle>
 <base-name>com.mhgsystems.ui.resources.UIResources</base-name>
 <var>ui</var>
 </resource-bundle>
 <message-bundle>com.mhgsystems.ui.resources.JSFResources</message-bundle>
 <render-kit>
 <renderer>
 <component-family>javax.faces.Message</component-family>
 <renderer-type>javax.faces.Message</renderer-type>
 <renderer-class>com.mhgsystems.commons.jsf.MessageRendererImpl</
renderer-class>
 </renderer>
 </render-kit>
 </application>
 <!--Managed beans-->
 <managed-bean>
 <managed-bean-name>login</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.Login</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>register</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.Register</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>home</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.Home</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <managed-bean>

APPENDIX 3(1)

http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd

 <managed-bean-name>webFormView</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.WebFormView</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>editWebForm</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.EditWebForm</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>newWebForm</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.NewWebForm</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>viewWebForm</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.ViewWebForm</managed-bean-class>

 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>account</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.AccountView</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>vmenu</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.VerticalMenu</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>editWebFieldStyle</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.EditWebFieldStyle</managed-bean-
class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>editWebFieldRights</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.EditWebFieldRights</managed-bean-
class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>listOptions</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.ListOptions</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>presetFieldView</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.PresetFieldView</managed-bean-class>

APPENDIX 3(2)

 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>chooseLabel</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.ChooseLabel</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>hmenu</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.HorizontalMenu</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>confirmation</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.Confirmation</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <!--Validation managed beans-->
 <managed-bean>
 <managed-bean-name>validationBean</managed-bean-name>
 <managed-bean-class>com.mhgsystems.commons.jsf.ValidationBean</managed-
bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <!--Validation-->
 <validator>
 <validator-id>birthdayValidator</validator-id>
 <validator-class>com.mhgsystems.commons.jsf.BirthdayValidator</validator-
class>
 </validator>
 <validator>
 <validator-id>deadlineValidator</validator-id>
 <validator-class>com.mhgsystems.commons.jsf.DeadlineValidator</validator-
class>
 </validator>
 <validator>
 <validator-id>emailValidator</validator-id>
 <validator-class>com.mhgsystems.commons.jsf.EmailValidator</validator-
class>
 </validator>
 <!--Administration-->
 <managed-bean>
 <managed-bean-name>configuration</managed-bean-name>
 <managed-bean-class>com.mhgsystems.ui.Configuration</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
 <!-- Sessions -->
 <managed-bean>
 <managed-bean-name>sessionBean</managed-bean-name>

APPENDIX 3(3)

 <managed-bean-class>com.mhgsystems.ui.SessionBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
 <!--Navigation-->
 <navigation-rule>
 <from-view-id>/*</from-view-id>
 <navigation-case>
 <from-outcome>register</from-outcome>
 <to-view-id>/register.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>login</from-outcome>
 <to-view-id>/login.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>home</from-outcome>
 <to-view-id>/home.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>newWebForm</from-outcome>
 <to-view-id>/newWebForm.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>newChildWebForm</from-outcome>
 <to-view-id>/newChildWebForm.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>editWebFieldStyle</from-outcome>
 <to-view-id>/editWebFieldStyle.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>editWebFieldRights</from-outcome>
 <to-view-id>/editWebFieldRights.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>listOptions</from-outcome>
 <to-view-id>/listOptions.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>presetField</from-outcome>
 <to-view-id>/presetField.xhtml</to-view-id>
 <redirect/>

APPENDIX 3(4)

 </navigation-case>
 <navigation-case>
 <from-outcome>chooseLabel</from-outcome>
 <to-view-id>/chooseLabel.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>closePopup</from-outcome>
 <to-view-id>/closePopup</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>editWebForm</from-outcome>
 <to-view-id>/editWebForm.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>viewWebForm</from-outcome>
 <to-view-id>/viewWebForm.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>fillWebForm</from-outcome>
 <to-view-id>/fillWebForm.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>account</from-outcome>
 <to-view-id>/account.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>confirmation</from-outcome>
 <to-view-id>/confirmation.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 <!--Administration-->
 <navigation-case>
 <from-outcome>admin</from-outcome>
 <to-view-id>/admin/home.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-outcome>configuration</from-outcome>
 <to-view-id>/configuration.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 </navigation-rule>
</faces-config>

APPENDIX 3(5)

4: DESCRIPTION OF ENTITIES OF THE DATABASE

Let us discuss briefly each entity in the database. All entities (or tables) are listed with their

attributes described in details. Each attribute is indicated by its name and its type. Attributes

that are underlined serve as primary keys.

• webform: this entity represents a web form that can be created by users and later be used by

different tenants of the program.

Attributes:

- webform_id INT(10) - Primary key, automatically incremented, not NULL.

- name VARCHAR(100) - Name of the form.

- added TIMESTAMP - Timestamp indicating time of creation.

- updated TIMESTAMP - Timestamp indicating time of last update (if any).

- captcha TINYINT(1) - Boolean variable indicating if the form requires CAPTCHA image.

- can_be_mother TINYINT(1) - Boolean variable indicating if other web forms can inherit

from the form in question.

• webfield: this entity represents a web field that is a part of a web form. One web field may

be used by different users. It is the biggest and possibly the most important table in the

database. It describes web fields that are paired with a tenant that uses it, web form that the

field is a part of and a label that is rendered next to the field. It holds information about

customisation that is applied to the field, such as colour of the label, width of text inputs,

label font, etc. It is designed in a way that makes further improvements and extension

possible. If one wanted to add new ways of customising web forms and web fields in them,

adding a new column to this table should be enough.

Attributes:

- webfield_id INT(10) - Primary key, automatically incremented, not NULL.

- type INT(10) - Defines type of the web field. The same web field returning one defined

piece of data may be presented in different ways. For example, location can be received by

inputting text into an input field, picking point on embed map or by manually inputting

APPENDIX 4(1)

latitude and longitude in two input fields, which can be presented by one object of type

webfield. Type is represented by a code of type Integer.

- popup_message VARCHAR(200) - Optional popup message that appears when users hover on

the web field.

- default_value VARCHAR(200) - Value that is given by default. Not compulsory.

- colour VARCHAR(45) - It allows setting colour of the label, if applicable.

- label_id INT(10) - ID of the label that is used with the field.

- label_font VARCHAR(150) - Font of the label assigned to the field.

- label_font_size INT(10) - Size of text, if text can be entered into the web field.

- input_width INT(10) - Width of the element. If applicable.

- input_height INT(10) - Height of the element. If applicable.

- input_size INT(10) - Amount of characters that users may input.

- required TINYINT(10) - Shows if the field is required for filling in by users.

- added TIMESTAMP - Timestamp indicating time of creation.

- updated TIMESTAMP - Timestamp indicating time of last update (if any).

- position_in_webform INT(10) - Position relative to other elements of the web form.

- preset_field_id INT(10) - Foreign key to preset_field’s preset_field_id INT(10).

- webform_id INT(10) - Foreign key to webform’s webform_id INT(10).

- tenant_id INT(10) - Foreign key to tenant’s tenant_id INT(10).

- textarea_col INT(10) - Number of columns in text areas. If applicable.

- textarea_row INT(10) - Number of rows in text areas. If applicable.

- default_value1 VARCHAR(200) - Value that is given by default to the second element in the

field. Not compulsory.

- default_value2 VARCHAR(200) - Value that is given by default to the third element in the

field. Not compulsory.

- default_value3 VARCHAR(200) - Value that is given by default to the forth element in the

field. Not compulsory.

- default_value4 VARCHAR(200) - Value that is given by default to the fifth element in the

field. Not compulsory.

- default_value5 VARCHAR(200) - Value that is given by default to the sixth element in the

field. Not compulsory.

• tenant: this entity describes companies that use the application as its tenants. Each tenant

has users (represented by an entity account) that use web forms. Tenants, in this case, may

APPENDIX 4(2)

be viewed as groups of users. Tenants may exist without any users, although no users may

work without a hosting tenant. A more simplified case may be considered, where tenants act

as users. Although adding this extra layer of control of those who use the application gives

bigger flexibility and a more extended set of features.

Attributes:

- tenant_id INT(10) - Primary key, automatically incremented, not NULL.

- name VARCHAR(100) - Name of the tenant (company).

- added TIMESTAMP - Timestamp indicating time of creation.

- updated TIMESTAMP - Timestamp indicating time of last update (if any).

- number_webforms_per_page INT(10) - A number of web forms shown per page for users of

the tenant.

- number_webforms_sidebar INT(10) - A number of web forms shown in a sidebar for users

of the tenant.

- number_webforms_verified INT(10) - A number of verified web forms shown per page for

users of the tenant. May be used in further enhancements of the test case program.

- number_webforms_unverified INT(10) - A number of unverified web forms shown per

page for users of the tenant. May be used in further enhancements of the test case program.

- instance_url CHAR(200) - An URL address by which users of the tenant can access the test

case program.

- api_key CHAR(36) - API key given to the tenant.

- security_key CHAR(200) - Security key given for enhanced security.

• account: this entity describes users that use the application as members of enterprises

represented by an entity tenant. Many users can be members of one company. Separating

users in this way allows giving privileges and usage of different web forms within one

company, not just on a firm level.

Attributes:

- user_id INT(10) - Primary key, automatically incremented, not NULL.

- username VARCHAR(65) - Username used for authenticating.

- password CHAR(32) - Password encrypted using MD5 checksum. Used for authenticating.

- firstname VARCHAR(40) - User’s first name.

- surname VARCHAR(40) - User’s surname.

APPENDIX 4(3)

- email VARCHAR(200) - User’s email address.

- avatar VARCHAR(100) - Address by which a user’s avatar image can be retrieved.

- admin TINYINT(1) - Boolean variable that indicates that the user has administrative

privileges. May be used in further enhancements of the test case program.

- added TIMESTAMP - Timestamp indicating time of creation.

- updated TIMESTAMP - Timestamp indicating time of last update (if any).

- tenant_id INT(10) - Foreign key to tenant’s tenant_id INT(10).

- verified TINYINT(1) - Boolean variable that indicates that the user has been verified by

administrators. May be used in further enhancements of the test case program.

• user_webfield: it serves as a link for M:N relationship that users and web fields share. It

has a combined primary key. By using this table privileges are granted to users concerning

access control to web fields that are members of web forms. Additionally, it serves as a

layer of security separating data from other users and tenants.

Attributes:

- user_id INT(10) - Foreign key to account’s user_id INT(10).

- webfield_id INT(10) - Foreign key to webfield’s webfield_id INT(10).

• user_webform: it serves as a link for M:N relationship that users and web forms share. It

has a combined primary key. By using this table privileges are granted to users concerning

access control to web forms. Additionally, it serves as a layer of security separating data

from other users and tenants.

Attributes:

- user_id INT(10) - Foreign key to account’s user_id INT(10).

- webform_id INT(10) - Foreign key to webform’s webform_id INT(10).

• mother_child_webfield: it served as a table that list all web fields that are inherited from

“mother” fields.

Attributes:

- mother_id INT(10) - Foreign key to webfield’s webfield_id INT(10).

- child_id INT(10) - Foreign key to webfield’s webfield_id INT(10).

APPENDIX 4(4)

• preset_field: it holds data about preset web fields that users may choose instead of creating

custom ones. When used a value of preset_field_id foreign key in webfield is set to an ID

of the field.

Attributes:

- preset_field_id INT(10) - Primary key, automatically incremented, not NULL.

- name VARCHAR(200) - Name of the field that appears in a list that users see.

- type VARCHAR(45) - Type of the list. May be a set of radio buttons, a list of values, etc.

Note: a custom domain may be used, though it would limit further extension and

customisation of preset web fields.

• label: it holds labels that are used for web fields. Current implementation of the entity

supports four localisation. This table may be extended to provide support for a bigger

number of languages.

Attributes:

- label_id INT(10) - Primary key, automatically incremented, not NULL.

- en VARCHAR(200) - Text of the label in English.

- ru VARCHAR(200) - Text of the label in Russian.

- fi VARCHAR(200) - Text of the label in Finnish.

- uk VARCHAR(200) - Text of the label in Ukrainian.

• list_value: it holds values for elements of lists that are used for web fields. They may or

may not be used. One element of the list may be used for different fields. Additionally,

preset fields may utilise this entity.

Attributes:

- list_value_id INT(10) - Primary key, automatically incremented, not NULL.

- value VARCHAR(200) - Value that is assigned to the element.

- text VARCHAR(200) - Text in default language of a label assigned to the list option.

- position_in_list INT(10) - Position in the list.

- default_value TINYINT(1) - Boolean variable. It set to “1” if the list option is a default

one in the list.

APPENDIX 4(5)

- added TIMESTAMP - Timestamp indicating time of creation.

- updated TIMESTAMP - Timestamp indicating time of last update (if any).

- webfield_id INT(10) - Foreign key to webfield’s webfield_id INT(10).

- preset_field_id INT(10) - Foreign key to preset_field’s preset_field_id INT(10).

• received_value: this is a table that is used as a bridge between a customisable web field and

a piece of database that is meant to be used for storing received from the field data.

Attributes:

- received_value_id INT(10) - Primary key, automatically incremented, not NULL.

- value VARCHAR(200) - Value that is assigned to the element.

- model VARCHAR(100) - name of a model that represents received data. Not compulsory in

this test case.

- added TIMESTAMP- Timestamp indicating time of creation.

- webfield_id INT(10) - Foreign key to webfield’s webfield_id INT(10).

- user_id INT(10) - Foreign key to account’s user_id INT(10).

APPENDIX 4(6)

View publication statsView publication stats

https://www.researchgate.net/publication/312948358

