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Abstract

There is a tendency in Computer Science, nowadays, to move from single-user instances
of application to web-based programs. With improvements in Information Technology and 
Computer Science fields of science it is possible nowadays to conduct business operations from 
within Internet. Thousands or in some cases millions of sheets of paper and man-hours of work 
can now be substituted by a single web form connected to a database on a certain website.

In recent years a number of new technologies have been introduced to improve usability of 
Internet applications. It is now possible to create a multitenant piece of software that runs as one 
instance but serves different users. Nowadays, web forms, that are created for commercial 
purposes are normally not customisable and lack a possibility to adjust interface in order to suit 
needs of a particular client. Making multitenant web forms customisable is one of the most highly 
prioritised tasks for a number of companies that are working in the field of Internet.

The aim of the study was to investigate means of creating a fully-functioning and customisable 
web form that is intended to be run on a server as a single instance. Through methods of user-
specific configurations a test case was created that is able to serve a number of clients, giving each 
one a set of desired features. Before starting this work a following research question was raised: 
“How to develop the most optimised and the most versatile multitenant web form using JSF and 
MySQL?”. Also, working on this study makes an attempt to answer this question by doing a 
theoretical research first and then developing a working product that could be used on a market.

A part of the study that focuses on development of the test case application is present in the study. 
Difficulties and issues that are faced while working multitenant cloud-enabled applications are 
outlined. Listings of programming code are given as examples where they are essential for 
understanding of the technical aspects of the research. Additionally, different stages of testing are 
described to outline strengths and weaknesses of the final product.
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1 INTRODUCTION

There is a tendency in Computer Science, nowadays, to move from single-user instances

of application to web-based programs. With improvements in Information Technology and 

Computer Science fields of science it is possible nowadays to conduct business operations 

from within Internet. Thousands or in some cases millions of sheets of paper and man-hours 

of work can now be substituted by a single web form connected to a database on a certain 

commercial website.

In recent years a number of new technologies have been introduced to improve usability of 

Internet applications. It is now possible to create a multitenant piece of software that runs as 

one instance but serves different users. Nowadays, web forms, that are created for commercial 

purposes are normally not customisable and lack a possibility to adjust interface in order to 

suit needs of a particular client. Making multitenant web forms customisable is one of the 

most highly prioritised tasks for a number of companies that are working in the field of 

Internet.

The aim of the study is to investigate means of creating a fully-functioning and customisable 

web form that is intended to be run on a server as a single instance. Through methods of user-

specific configurations a test case is created that is able to serve a number of clients, giving 

each one a set of desired features. Before starting this work a following research question was 

raised: “How to develop the most optimised and the most versatile multitenant web form 

using JSF and MySQL?”. Also, working on this study makes an attempt to answer this 

question by doing a theoretical research first and then developing a working product that 

could be used on a market by MHG Systems Oy.

A current description of MHG Systems Oy company, available at MHG Systems (2012), says 

that it is one of the world's leading suppliers of bioenergy ERP systems. The company utilises 

its partner network to produce customer-oriented IT and map service solutions designed for 

developing bioenergy and forest energy, and field work business operations. It is an 

international company with business advisers all over the world. MHG Systems offers its 

customer companies an MHG ERP and MHG Bioenergy ERP systems and also consultation 

and training services on bioenergy and forest energy business operations, and field work 
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management. In addition to the aforementioned, MHG Systems provides its customers with 

its “know-hows” on modern IT technologies, mobile technology and geographical data. It also 

offers a technology platform, which it has developed in-house. MHG Systems' services are 

targeted especially at companies operating in the following sectors: energy, biofuels, 

electricity and heating, harvesting, sawmilling, pellets, forest services and forestry industry.

MHG Systems works in a field of SaaS (Software as a Service) and an extensive layer of 

hardware that provides reliable and fault-tolerant connection for its customers and tenants 

backs up their current system. Solutions that MHG Systems offers for its clients are written in 

Java programming language. This research was commissioned to investigate and implement 

an improvement in customisation of their SaaS ERP system.

According to Spolsky (2001), there are three essential parts of success of an application:

• Features, referring to what the piece of software does for the user. The demands for the 

software.

• Function, referring to how well the software operates. Perfect program is without any 

malfunctioning in the logical part: without “bugs” it will function perfectly.

• Face, referring to how the application presents itself to the user, the program’s “user 

interface”, and the way application presents itself to the user.

Features, function and face can also be stated as questions:

• Does the application meet the user’s requirements? (Features)

• Does the application work as intended? (Function)

• Is the application easy to use? (Face)

This work’s goal is not only to answer the question put as a topic, but, additionally, help 

science advance with understanding of these three components of software in case of cloud 

computing multitenant applications. This study is organised as described below.

In the chapter Cloud Computing and Multitenancy research on the current situation of cloud 

computing is performed. Recent advancements in providing services to multiple tenants and 

cloud-based services are outlined. Also, theoretical foundations, such as used by Software as a 

Service architectures and implementations of infrastructure behind them, are given. Short 
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descriptions of methodologies used in development of such solutions as well as SWOT 

analysis of case studies are also presented.

Chapter Customisable User Interface is arranged in a way that gives a brief description of the 

concept of the user interface in general and advancements with web-based interfaces in 

particular. Additionally, recent findings of researchers in the field of creating customisable 

user interfaces are written.

Chapter Customisable Web Forms in Multitenant Applications is focused on means of 

research of making web-based input forms configurable and customisable. In other words, it 

describes investigation of ways of giving tenants of the application sets of tools that can be 

used to adjust the user interface of the web forms as well as web fields that are assigned to 

forms. Such modifications are needed to meet as larger amount of possible wishes about 

adjusting properties of forms that come from the client’s side as possible.

In the Chapter Technologies Used for the Test Case a brief description of technology used in 

this study is outlined. Namely, JSF (JavaServer Faces), MySQL, XHTML and CSS 

(Cascading Style Sheets) are described. Furthermore, a programming environment that was 

used to conduct this research - Netbeans IDE - is mentioned.

Chapter The Test Case Application describes a technical part of the study, which deals with 

development of the test case application. This part of the study is focused on outlining a 

process of doing that work. Difficulties and issues that are faced while working on such 

projects are mentioned. Listings of programming code are given as examples where they are 

essential for understanding of the technical aspects of the research. Additionally, different 

stages of testing are described to outline strengths and weaknesses of the final product.

Conclusion summarises work concluded and collects achieved results along with comments 

and suggestions on how to improve the study. Also, in this chapter study gives a description of 

how findings from this research benefit to the world of Computer Science and improve 

existing knowledge on a problem of creation of multitenant web forms. 
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2 CLOUD COMPUTING AND MULTITENANCY

2.1 Cloud computing

“If computers of the kind I have advocated become the computers of the future, then 

computing may someday be organized as a public utility just as the telephone system is a 

public utility... The computer utility could become the basis of a new and important industry.” 

- John McCarthy, the father of cloud computing (speaking at the MIT Centennial in 1961)

Cloud computing is rapidly increasing its popularity. "It's become the phrase du jour," says 

Gartner senior analyst Ben Pring, describing needs and opinions of many of his clients and 

colleges. The term “cloud computing” is used so heavily nowadays that it is now difficult to 

give a solid definition of it. Yet, understanding a phenomena of “Utility Computing” or 

“Software-as-a-Service” or even “Application Service Provider” (which according to 

Aggarwal (2011) are synonyms to the term “cloud computing”) is crucial for advancing in 

knowledge of multitenant architecture and its applications.

Cloud computing was defined by the National Institute of Science and Technology in 2011 as 

“... a model for enabling ubiquitous, convenient, on-demand network access to a shared pool 

of configurable computing resources (e.g., networks, servers, storage, applications, and 

services) that can be rapidly provisioned and released with minimal management effort or 

service provider interaction” (Mell & Grance, 2011). As Aggarwal (2011) points out there are 

at least two popular ways of interpreting a meaning of cloud computing present on the 

scientific scene today. Conservatives argue that cloud computing is merely an addition built 

on top of utility computing. Knorr & Gruman (2008) have drawn attention to the fact that the 

idea of utility computing is not new and by such companies as Amazon.com, Sun and IBM it 

is currently interpreted as offering server farms for their clients as virtual datacenters. Thus 

indicating that utility computing and cloud computing are not identical entities of Computer 

Science. On the other hand, some researches and vendors define this technology as broad as 

including everything that is located outside of a firewall used in the local network of the point 

of access to the global network.

Arguing about a correct definition of terms is not in a purpose of this research, yet it is 

valuable to realise how big a potential of this emerging movement is. As rightfully indicated 
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by Armbrust et al. (2009), cloud computing is making software more attractive than ever as a 

service and it is changing the way hardware is designed and manufactured. Hardware needs 

from the era of cloud computing demands powerful fast backbone servers and elements of 

ICT infrastructure and light clients with excellent network compatibilities. As Hardy (2012) 

perceptively states companies are buying thousands of servers in bulk, carrying less about 

brand. One example of hardware from the era of cloud computing is the browser-based 

Chromebook from Google where all functionality depends on cloud-based applications, it is 

essentially useless without them.

Reference to Hamdaqa et al. (2011) reveals that cloud duties are to provide compute, storage, 

communication and management capabilities for SaaS solutions. Tasks can be cloned into 

multiple virtual machines, and they are usually accessible through application programmable 

interfaces (API). Internet as a whole can be viewed as a giant cloud and even such its key 

component as DNS can be considered to be SaaS, following the work of Fox & Patterson 

(2012a). The growing number of enterprises that use Internet and emerging of broadband 

technologies for high connections opened the way for SaaS to make significant progress in the 

Software Engineering industry. (Blokdijk 2008)

Three implementation models exist for the cloud computing solutions, based on research 

made by Poelker (2011):

1. Private cloud: Created and run internally by an organisation or purchased and stored 

within the organisation and run by a third party.

2. Hybrid cloud: Outsources some but not all elements either internally or externally.

3. Public cloud: No physical infrastructure locally, all access to data and applications is 

external.

Naturally, each of advantages and features of cloud computing, that were described in this 

section, has within it a corresponding disadvantage or concern. First among these is security. 

Miller (2008, 28) Grossman (2009) claim that because cloud-based services are commonly 

hosted remotely (including hosted cloud services), their functionality and reliability can be 

threatened by the latency- and bandwidth-related problems. Furthermore, since hosted cloud 

services operate with large amounts of customers, various issues related to multiple customers 

sharing the same piece of hardware and one instance of application code can arise.
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Smith (2009) correctly argues that plenty of enterprises are undecided about hosting their 

valuable data on a computer that is external to their own company and not located on the 

premises of their office locations. By now, there has been no client-to-client attacks of 

software or data hosted in the cloud. That may be due to necessary security provisions, or it 

may be because there has been no value in this kind of penetration in the past. This situation 

may change in favour of hackers in the future, where cloud computing is likely to become the 

main platform for software distribution. Additionally, another concern is location. Companies 

may be concerned about the physical location of the data that is being stored in the cloud. 

Having said that, it is not problematic to imagine a situation where a poorly designed system 

can be compromised by actions of tenants that produce unintended results. Finally, according 

to Miller (2008, 28) services that work from the cloud require high speed Internet connection 

from their users and might not be suitable for constant use. Cloud-based programs rarely 

require a lot of bandwidth to download, as do large documents.

In conclusion, let us consider one good example that helps with understanding of cloud 

computing, which was given in the article of Aggarwal (2011). In it the author compared 

cloud computing with mobile phones: both of these technologies freed people from using old-

fashioned tools in favour of newly developed approaches and appliances. Nowadays, such 

companies as Oracle and SAP are spending billions in favour of research of cloud computing. 

And, indeed, thanks to IT companies choosing cloud computing in favour of more 

conservative solutions such, as not cross-platform desktop applications, web-based 

multitenant applications became a reality.

2.2 Architecture of cloud computing

As rightfully pointed out by Fox & Patterson (2012a), architecture is a way of organising 

components of a certain system and other architectures are possible. By choosing a specific 

architecture, we reject other ways of organisation. The web uses client-server architecture and 

since cloud computing is a part of Internet, it has clients and servers and the cloud in between. 

Of course, other architectures are possible and no one can tell for sure that people will still be 

using the same architecture in a hundred years from now. But architecture of multitenant 

programs is not a topic of this research, rather practical applications of the architecture that 

lies beneath it is.
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As can be learnt from the online course about SaaS offered by the University of California at 

Fox & Patterson (2012b), cloud computing uses the most popular architecture in the world of 

network distributed systems: Client-Server architecture (Peer-to-Peer being the only likely 

alternative on the market today). Services, which are distributed using cloud computing 

typically consist of five layers: Server, Infrastructure (Infrastructure as a Service), Platform 

(Platform as a Service), Application (Software as a Service) and Client (see Figure 1).

Figure 1. Layers of cloud computing. Wikipedia contributors (2012b)

Let us describe briefly each part of the cloud computing architecture paying special attention 

to the Application layer.

Clients are used by users to access cloud computing services. The essential requirement for 

these devices is network access features. Some of the clients rely on cloud based solutions so 

heavily that virtually all functionality depends on them. Cloud based applications can be 

accessed using special pieces of software such as email managers and RSS news readers, in 

other cases virtual machines are used. Majority of clients, however, do not require special 

programs for access to cloud computing and are capable of running programs using installed 

web browsers.

Application layer is the most interesting part of cloud computing architecture as for this 

research. A main purpose of cloud application service or Software as a Service is to publish 

software in Internet thus eliminating any need for installation of programs as singletenant 

7



applications. According to Blokdijk (2008, 24) sometimes SaaS is also called hosted 

application, application service provider (ASP), hosted solution etc. This study focuses 

primarily on this layer of cloud computing.

Cloud platform services, also known as Platform as a Service (PaaS) solution stacks and/or 

computer platforms as a service. It often utilises offered services of the cloud infrastructure 

and supports cloud application layer. Possibly, the greatest innovation that was brought to 

Computer Science by introduction of cloud computing is migration of developers to cloud 

platforms. Such companies as Force.com and Heroku.com abstract the concept of servers 

entirely, companies of this type focus on core application development from the very first 

stage of project advancement. The application can be deployed with a single button click and 

there is no need for application developers to worry about multitenancy, availability, 

scalability etc.

Cloud infrastructure services, also known as Infrastructure as a Service (IaaS), deliver 

computer infrastructure as a service, extended with means of raw storage and networking. 

Clients may buy these services entirely outsourced instead of purchasing servers, network 

equipment, software and datacenters.

The Server layer contains software and hardware. Products that are specifically designed for 

the delivery of cloud services, including multi-core processors, cloud-specific operating 

systems are present on this layer.

2.3 Software as a Service

Traditional software is represented by binary code that is installed on one machine and runs 

wholly on the client device. Selling software as a subscription service over the Internet is 

another approach to the problem of distribution of IT assistance. Turning to research 

conducted in Blokdijk (2008, 16), one can find an interesting analogy: the authors compare 

SaaS to electricity, air travel and telephone services, clients pay for services to server 

providers in a similar manner as paying to electrical companies for using electricity and as 

buying tickets to use airplanes.
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Many applications, which have been known as purely desktop solutions can now be reached 

in the cloud, for example: Microsoft Office 365, iWorks, TurboTax Online etc. Customers can 

now choose between paying for a license to use traditional software (and often separate 

licenses for each individual device using it) or use a product that can be accessed from the 

cloud. “Why pay more?” - this is a kind of question that can frequently be heard from 

supporters of SaaS. There are multiple advantages of SaaS over traditional software that make 

it a likely candidate for a dominant approach to Software Engineering in the near future. Fox 

& Patterson (2012a). Let us discuss six main advantages of SaaS:

1. No hardware or OS compatibility issues: compatible Internet browser program is enough.

2. Data loss is very unlikely: all data is stored on the remote site.

3. If data used is large and often changed it is simpler to store one copy of it on the remote 

site.

4. Ease of interactions with other users.

5. Compatibility of software more easily achievable for developers.

6. Simplified maintenance of updates for developers and easier process of updating for users.

Using Software as a Service brings a lot of positive innovations to, first of all, end users that 

use bought services every day. Indeed, one of the main advantages of cloud-based 

applications for developers is a high level of compatibility. Hence, there are common tasks 

that are identical for almost all web applications. When a user sends a request to the SaaS 

applications such processes occur:

1. “Mapping” of the URI (Uniform Resource Identifier) to a correct program and function.

2. Passing arguments.

3. Invoking the program on the server.

4. Handling storage and initial exchange of data.

5. Handling cookies.

6. Handling raised errors.

7. Output back to the user.

The description of deployment patterns from Microsoft (2012) states that aforementioned 

duties of SaaS can be categorised into three tiers: 

9



1. Presentation (client). This is the top most layer. The main function of it is to translate 

tasks and processes to understandable to the end user language.

2. Logic (application). This layer coordinates the application, processes commands. It is 

responsible for decision-making and evaluation. It also moves data between other two 

layer. Separation from the Persistence layer is needed because amount of work done by 

this layer is greatly smaller compared to the Server tier.

3. Persistence (server). In this tier information is processed and stored either in the local 

storage or in the database. The ready information is passed back to the logic level and then 

eventually back to the user via presentation layer.

This kind of architecture is often called “Three-tier architecture” (see Figure 2). It is a 

variation of the N-tier architecture. In this architecture communication between layers with 

skipping the middle layer is impossible. With SaaS following the Three-tier architecture, 

developers can use benefits of that system, namely “Shared nothing” principle. What is means 

is that all three tiers of the architecture that lie behind SaaS application are independent and 

isolated from each other. It gives a benefit for scalability and development. Understanding of 

principles of its work is crucial for development of efficient and well-designed multitenant 

applications.

Figure 2. Example of Tree-tier architecture. IBM (2010)

One might confuse the three-tier architecture to model-view-controller (MVC) approach. It is 

a well-known architectural pattern. However, these two systems are different in their 
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fundamentals. Unlike three-tier architecture communication between the top layer and the 

lowest layer is possible without calling the middle layer. MVC is a programming design 

pattern where different portions of code are responsible for representing the Model, View, and 

controller in some application (see Figure 3).

Figure 3. MVC concept. Wikipedia contributors (2012a)

These two concepts are related because, for instance, the Model layer may have an internal 

implementation that calls a database for storing and retrieving data. The controller may reside 

on the webserver and remotely call application servers to retrieve data. MVC abstracts away 

the details of how the architecture of an application is implemented. N-tier architecture just 

refers to the physical structure of an implementation. These two technologies are sometimes 

confused because an MVC design is often implemented using an N-tier architecture. Both 

concepts are used in development of multitenant SaaS applications. In the practical part of 

this work MVC approach is used for demonstration purposes.

Model-view-controller is the way of organising applications that an end-user is seeing. 

Presentation layer and UI are separated from the data layer and logical components of the 

program that are operating on it. With MVC whenever a user interacts with the application, 

the action is passed to a certain controller that has access to a certain model in the program. 

Essentially, everything in the program that follows MVC goes via controllers. Models in the 

MVC can communicate with each other. For example, in a hypothetical bioenergy ERP 

(Enterprise Resource Planning) system a model of web forms for chipping might be present. 

However, organising them without information about location of the sight and details about 

the task is difficult to implement. In this case communication with different models that store 

data about the location and details about the chipping task would be required.

11



It is hard to imagine SaaS applications without a term Service Oriented Architecture (SOA). It 

nearly disappeared from use because it is so unspecific and hard to define with absolute 

certainty. In this architecture all of the components are designed to be services. In it every 

component can be used by someone else, not just by its creator, every part of it is 

independent. For Software Engineering it means ability to create programs, which consist of 

components that are developed separately. With this architecture creation of a situation-

specific pieces of software based on an existing solutions is easier. It is possible to take a 

ready-made program and change only a few components to make a new solution ready to be 

used in a new environment by new clients of the company. Mistakes in design are also easier 

to recover from. Based on the work of Fox & Patterson (2012a), the most distinguished 

difference between software implemented using SOA and programs that work as standard silo 

versions is that no service can access or name another service’s data. Only requests for data 

through APIs are possible.

Continuing a topic of SOA architecture one can mention a curious situation that happened a 

few years ago. This interesting situation happened once in the world of online blogging. Steve 

Yegge, who has worked both in Amazon.com and Google posted a public blog post, which 

was intended to be viewed only by the staff of Google (his then current employer) and not 

outside of the company, copy of it available at Microsoft (2012). In that post he argued that 

despite all the weaknesses that Amazon.com has compared to Google (which is 

comprehensively a much larger and more successful company) they have a fully developed 

and functioning SOA and Google does not. "Start with a platform, and then use it for 

everything," Yegge demanded, referencing to Google+ as a main example of Google wrongly 

creating a mere product instead of a Facebook-style platform upon which products can be 

added and connected. As rightly pointed by the author, creation of SaaS based extendable 

platforms is the future of programming. Once it was discovered that the post was viewable in 

entire world, it was shortly deleted. However, it spread quickly over Internet and it was clear 

from it that even such giants as Google are incorporating the SOA into their products and how 

important that system for the modern world of software development is.

An absorbing email is worth mentioning in the scope of this research. It perspicuously shows 

how important and urgent moving to the Service Oriented Architecture is considered by the 
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key players in the world of IT. It can be backed up by Yegge’s description of an email from 

Amazon.com’s CEO Jeff Bezos that he received when Mr. Bezos was his employer:

1. All teams will henceforth expose their data and functionality through service interfaces.

2. Teams must communicate with each other through these interfaces.

3. There will be no other form of interprocess communication allowed: No direct linking, no 

direct reads of another team's data store, no shared-memory model, no back doors 

whatsoever. The only communication allowed is via service interface calls over the 

network.

4. It doesn't matter what technology they use. HTTP, Corba, Pubsub, custom protocols -- 

doesn't matter. Bezos doesn't care.

5. All service interfaces, without exception, must be designed from the ground up to be 

externalizable. That is to say, the team must plan and design to be able to expose the 

interface to developers in the outside world. No exceptions.

6. Anyone who doesn't do this will be fired.

It can be assumed that the last point made by Jeff Bezos is to ensure that all engineers without 

exception would follow these suggestions. Points 1-5 are more interesting, however, since 

they define steps required to take to make a SaaS, which emphasises all key aspects of SOA. 

This email was a beginning of a new strategy acquired by Amazon.com, which brought that 

company billions in earnings and is a part of one of many success stories of usage of cloud 

computing in eBusiness.

Turning to Amazon (2008), one can find that in less than two years after launch of the system, 

Amazon Web Services increased the number of different types of compute servers 

(“instances”) from one to five, and in less than one year they added seven new infrastructure 

services and two new operational support options.

Cloud computing is becoming more and more popular with every month. Multiple analysis of 

growth of cloud computing have been made. One of the most notable of them is research 

conducted by the company called Forrester, which, based on research of Columbus (2011) 

and Kisker et al. (2011), investigated that SaaS will outgrow all other cloud services, 

achieving 50% adoption rate in companies (meaning that half of enterprises dealing with IT 

would have SaaS as parts of their strategies) in 2012, see Figure 4. In previous studies 
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Forrester has shown that SaaS is a major growth catalyst of ongoing investment in IaaS, PaaS 

and BPaaS (Business Process as a Service) in enterprises.

Figure 4. Cloud computing adoption in 2011-2012. Kisker et al. (2011)

Scientists that made their research on SaaS in Fox & Patterson (2012a) predict that virtually 

all software will be offered as a service by the end of this decade. Thousands of businesses 

around the world, large enterprises and freelance developers, share the same view on the 

situation of software development today. Arguably the most famous and known SaaS 

development company is Salesforce.com. The company’s founders Marc Benioff and Parker 

Harris opened their business in 1999 in California, USA. According to Swartz (2007), this 

3000-person company, which mainly focuses on tracking prospects of sales and share 

information, is “credited with turning the software industry on its head”. It has contributed to 

the revolution that happened in the way software is designed and distributed. Based on the 

press release from the company at Salesforce.com (2002), after a decade the company has 

grown so much that they opened their own charity foundation, which in 2011 gave $100,000 

to projects conducted in Tibet. In 2008 Salesforce.com suppressed a $1 billion mark in sales 
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and at the moment of writing this paragraph it was reported that the company raised $632 in 

revenue in the last quarter of year 2012, as Rao (2012) has indicated. Moreover, analytics 

predict that earning of Salesforce.com will be growing by up to 30% each year.

According to Hardy (2012), a long-known IT giant Dell, on the other hand, reported a 7% fall 

in earnings, similar reports came from HP who claimed that a planned transformation in 

favour of SaaS of the company would take as many as five years. This example clearly shows 

that research and development in the area of cloud computing and Software as a Service can 

be beneficial for both entrepreneurs and the welfare of peoples of the world in general.

The evidence seems to indicate that a concept of Software as a Service is not an entirely 

positive technology, it has negative sides as well. Compared to more traditional ways of 

offering software, some of its disadvantages are a threat to its further development as a 

dominating way of offering IT services with help of Internet. Firstly, SaaS applications 

depend heavily on connection to the network. Secondly, it is a fresh technology and 

community of developers that are following it is still not as big as of those who create desktop 

solutions. Further, a range of tools that are offered by development community is in a process 

of maturing and improvement. Finally, Miller (2008, 29) states that not all tasks can be 

represented in the cloud, some services rely heavily on special hardware and software.

Blokdijk (2008) states erroneously that Software as a Service is now experiencing 

transformation into SaaS 2.0, which is arguable. What can you call as SaaS 2.0 if the term is 

so vastly large and far from a definite definition? No matter what iteration of SaaS is the 

world of programming in right now, one thing is clear: this architecture will be dominating in 

the near future.

In conclusion, let us give a quote of a futurist Jack Uldrich: “My prediction is that the term 

'cloud' will have disappeared from the phrase 'cloud computing' by 2020, because the majority  

of computing will simply assumed to be done in the cloud. As a result of this transition, the 

market capitalization of major networking firms will be slashed to less than one-third of their 

2012 levels, and 50% of all of today's IT vendors will be out of business by the decade's end.”
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2.4 Software as a Service business model

Reference to Fox & Patterson (2012a) Chong & Garraro (2006) reveals that developers who 

switch to working with off-premises software need to keep in mind aspects of three 

interrelated areas: business model, application architecture, and operational structure (see 

Figure 5).

Figure 5. Areas for consideration for SaaS developers. Chong & Garraro (2006)

As application architecture and operational structure of cloud-based services are described 

extensively throughout this research, let us briefly discuss changes in a business model of an 

enterprise that need to be undertaken by software engineers before moving from offering on-

premise software to offering Software as a Service.

The business model of SaaS has multiple differences compared to traditional software. A 

question of ownership of the program rises: ownership shifts from the customer to a service 

provider, responsibility for infrastructure (see section 2.6 Infrastructure for SaaS) and 

managements is given to a service provider, the cost of providing software services is reduced 

by means of specialisation and economical scaling, a new target can be chosen - "long tail" of 

smaller businesses by cutting prices for services.

In an average Software Engineering firm, a budget is divided into following categories, 

(Chong & Garraro 2006):

• Software - expenses on actual projects, all software and data related problems and costs.
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• Hardware - desktop computers, networking components, servers and mobile devices that 

provide users with access to the software.

• Professional services - staff of the company that is responsible for maintenance of projects 

and ensuring reliability and customer support.

Figure 6. Typical budget for on-premises software environment. (Chong, Garraro 2006)

On Figure 6, one can see a typical division of budget for using projects that are implemented 

as traditional on-premises software. It is clear from the diagram that expenses on actual 

functionality of software are gradually lower that on hardware that supports it, and means of 

professional services. The hardware budget is spent in the direction of desktop and mobile 

computers for end users, servers that host data and programs, and components of networking. 

The professional services budget pays for supporting staff to deploy and support software and 

hardware. Also, consultants and development resources’s salaries are paid from the 

“Professional Services” sector that helps design and build custom systems.

In a company that deals with off-premises cloud-based solutions, a division of money looks 

significantly different (refer to Figure 7).
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Figure 7. Typical budget for a Software as a Service business. (Chong & Garraro 2006)

Typical budget in an SaaS environment is represented by a much more complex model. In this 

model SaaS vendor hosts their applications and related data on centralised servers which are 

supported by dedicated staff. Moreover, applications delivered over Internet place 

significantly less demand on hardware, which enables the customer to extend the desktop 

technology lifecycle greatly. However, two new kinds of expenses can be seen in this model: 

fees for SaaS vendor hardware and fees for SaaS vendor services. On the other hand, it can be 

concluded that expenses on Software part of the service are largely higher than in the on-

premises software model.

By lowering prices for services, Software as a Service solutions can now target a so called 

“long tail” of business, described in Anderson (2006). By removing a large amount of costs 

for maintenance, and using scalability in services to combine and centralise customers' 

hardware and services requirements, SaaS dealers can offer solutions at a much lower cost 

than traditional vendors.Also, it allows tenants to avoid using complex IT infrastructures. 

These features give SaaS access to customers for whom using traditional solutions has always 

been too expensive and unaffordable. Effectively targeting these clients can bring large 

profits.

Conclusively, the end result of the SaaS business model is that a much higher part of the IT 

budget is available to spend on actual software, typically in the form of subscription fees to 

SaaS providers. It can be stated that one of the main breakthroughs received with coming of 

Software as a Service is its business model that allows customers of such solutions to receive 
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much better functionality than from comparable on-premises traditional solutions. 

Furthermore, even accounting for new costs exposed by SaaS vendors, tenants can still obtain 

significantly greater software functionality. Additionally, turning to Chong & Garraro (2006) 

Anderson (2006), one can say that SaaS is uniquely positioned to fill a gap in demand that has 

not been filled by traditional retailers known as “long tail”.

2.5 SWOT analysis of SaaS markets in Ukraine, Finland and the UK

The author of this research had an opportunity to reside in the UK, Finland and Ukraine 

during working on this study, see Figure 8. As a result a chance to make analysis of situations 

with Software as a Service markets in these very different countries was used.

Figure 8. Finland, Ukraine and the UK highlighted on the map of Europe.

These three countries are all from Europe. However, it can be stated that local situations with 

such high-end technologies as SaaS are rather different. Finland is from Scandinavia, the UK 

is from the West and Ukraine is an Eastern European country. Finland and the UK are 

members of the European Union and Ukraine is not. Demographic and political aspects of 

these countries are also extremely dissimilar from each other.
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The UK has the biggest population of 62 million people (data for 2010, based on Google 

(2012c)), yet it has the smallest area among these countries: 243,610 sq. km (Nationmaster 

2012). Ukraine, on the other hand, has a population of 45.8 million people (data for 2010, 

based on Google (2012a)), and it is the largest country in Europe with area of 603,628 sq. km. 

And Finland has the smallest population among these three countries, 5.3 million people (data 

for 2010, based on Google (2012b)), however, it is the 6th largest country in Europe. 

Meaning, that these three test cases have very contrasting markets for such businesses as 

SaaS: Finland is a country with small density of population, when the UK is becoming 

overpopulated, especially in Southern England. Ukraine is in the middle with a large area and 

average (decreasing) population.

Finland and the UK are highly-developed industrial countries with very high standards of 

living and Ukraine is a developing nation still struggling to rebuild itself after the collapse of 

the USSR. Finland has a rapidly-developing market for new technologies and more and more 

spheres of life are converted into cloud-based enterprises. The UK, on the other hand, is a 

country with a bigger diversity of population: a gap between rich and poor is larger. 

Nevertheless, the government in London is increasing levels of interactions with computing in 

many areas of life in the country, sometimes turning whole departments of interactions with 

citizens of government agencies into, fundamentally, websites.

2.5.1 Analysis of SaaS market in Ukraine

Strengths:

Turning to WorldApp (2010), Ukraine has a big technological potential. Its software industry 

is a fast growing global market. It is a country with a large population and its location 

between Europe and Asia has been a source of success for international companies.

Weaknesses:

Ukrainian software market develops unsystematically and with a moderate pace. The market 

for Software as a Service is only emerging now. It can be explained by lack of interest to SaaS 

from companies of the IT “long tail”. Estimates claim that Ukrainian IT market is 5-6 years 

behind such developed countries as the USA and the UK. It is unlikely that business climate 

in Ukraine will be promising for SaaS vendors in the near future.
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The country suffers from a vast corruption rate. Practically all levels of its society depend of 

corruption and almost nothing can be achieved without paying to the black market. In 1990s 

corruption was the main cause why Ukraine did not succeed in being accepted in the 

European Union and even now, after more than 20 years of independence, the country is 

struggling from it. Companies that consider stepping into Ukrainian market should discuss all 

its weaknesses and threats with other enterprises from the developed world that have 

experience in working in Ukraine.

Opportunities:

The country has a big potential for software development companies. Its educational system is 

very similar to the one that the USSR had. Demands on students are very high and to 

successfully graduate young scholars need to work hard. However, educators give very little 

freedom and students have to follow very strict rules. As a result, undergraduate and graduate 

students often take first places in programming competitions, according to ICPC (2011), and 

they graduate as already matured engineers.

Ukraine is an importer of software. Working for the national market is not profitable for most 

companies, since level of piracy in the country is exceedingly high and project budgets are 

often small. A lot of development is outsourced. It creates a perfect productional base for 

Western engineering enterprises.

Threats:

The government of Ukraine does not provide approving conditions for national Information 

Technology industry development. If it continues to be a case, a career of and IT specialist 

will become unattractive for young people of Ukraine and the country will lose all of its IT 

industry, as well as investments from outside.

Ukrainian piracy market is estimated to be as high as 83 % of the whole market (WorldApp 

2010). If nothing will be done, Ukraine may be left without many important spheres of its 

market, which would collapse under pressure of fighting with piracy.
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2.5.2 Analysis of SaaS market in Finland

Strengths:

Finland has a unique position, in the far east of the European Union. According to Finfacts 

(2011), Google has recently chosen this country as a location for its datacenter, due to cold 

climate beneficial for cooling of hardware and low energy prices. Moreover, Finland is one of 

world leading countries in terms of networking and Internet access, which makes it a perfect 

candidate for usage of Software as a Service. It was reported by BBC News (2010) that since 

2009 this country has had broadband connection to Internet as one of fundamental rights of its 

citizens.

Finland is a country with a very developed and complex market. Turning to the work of 

Tiihonen (2003, 99), it cannot be said that Finland has no corruption at all, the country 

constantly occupies high rankings in world free-of-corruption lists. De Heide (2007) reports 

that in 1990s the Finnish government focussed its policy and instruments on improving R&D 

intensity, which resulted in the economic growth in the 1990s that outpaced most of its 

competitors. 

Weaknesses:

A low population of Finland means a relatively small market. However, a high level of 

computer awareness of Finnish population makes their market still quite attractive for SaaS 

vendors. Additionally, although its location might be considered as a benefit, it can also be 

called a weakness. Finland is located in a remote part of Northern Europe and reaching 

Helsinki can be time-consuming.

Opportunities:

SaaS market is a fast-growing and developing market in Finland and in Scandinavia in 

general. Both local companies like MHG Systems Oy and global ones like Salesforce.com are 

investing money and resources into Nordic markets.

Because of low density of population in Finland even some traditional sectors of business like 

mail delivery are seeking ways of using Internet to save costs and improve their efficiency: as 

indicated by Helsingin Sanomat (2012), Itella (Finnish Post Service company) is now 
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considering opening physical letters and delivering them via means of Internet to reduce 

prices and improve their services and reliability.

Threats:

Like in most other developed countries, Finland has been suffering from the bank crisis lately. 

As a result its economy slowed down and companies like Nokia are closing their offices and 

moving to other countries. However, the rate of economical growth is still positive and people 

are expecting further improvements.

2.5.3 Analysis of SaaS market in the UK

Strengths:

The United Kingdom has a largest population among the three countries that were chosen as 

study cases. Having a population of 62 million people means that there are a lot of clients 

waiting to be connected to the cloud. It is also the most industrially-developed country with a 

GDP of $2.253 trillion (data for 2011, based on International Monetary Fund (2011)). The UK 

has a leadership position in Cloud Computing adoption with even the government introducing 

systems that are on early stages of development.

Scaling is what makes cloud computing attractive in the UK. Insurance company Aviva, for 

example, moved all its enterprise content management and business intelligence tools to 

Microsoft's Sharepoint service. Also, logistics firm Pall-Ex grows fast and with reducing costs 

with every day thanks to moving their IT infrastructure to the UK hosting company 

Outsourcery. (Weber 2010)

The UK has a large software development base and many IT specialists from outside of the 

UK are attracted to high salaries in this country. It may be a good base for software 

development firms that seek expanding of their Research and Development departments.

Weaknesses:

The UK has been trying to be a relatively closed country. Even though it is a part of the 

European Union, it did not sign Schengen Agreement and it is the most isolated “old” member 

of the EU. This country is highly self-providing with low rates of import compared to its 
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neighbours. It may be a factor that slows down investments into a sector of SaaS from outside 

of Great Britain.

Opportunities:

The UK is one of world’s leaders in scientific research in Computer Science. New 

technologies are welcomed in that country and SaaS vendors have big opportunities in Great 

Britain. Overall, computing is received positively in the country and SaaS vendors may seek 

profits from opening their services to the UK market.

Following the research of Hingley (2011), the total spending on ITC in the UK in 2011 were 

about £200 billion, of which around 16% were spent on cloud computing. By 2016 the total 

market is estimated to grow to £219 billion, of which cloud computing will account for 20% 

(£43 billion). Consumers and small businesses will spend most on Cloud Services, as 

researchers predict.

Threats:

Similar to Finland, the UK has been suffering from the bank crisis. As a result its economy 

slowed down and enterprises are closing their offices. Nevertheless, the rate of economical 

growth is positive.

2.5.4 Results of the analysis

A situation with SaaS seems to be the most interesting in Ukraine where it is undergoing a 

start of development and it analytics cannot predict with absolute certainty what will happen 

in next five years. Ukrainian market is difficult to forecast and, unlike Finland and the UK, 

the country has a large problem with corruption. Because, of this unpredictability, companies 

that are interested in investing into cloud computing in developing countries should be on 

alert and have ready-made strategies for rapid advancement to the market in case of Ukraine.

In cases of Finland and the United Kingdom, situation is quite stable with cloud computing 

and it promises to be developing further with a constant positive pace. Opening enterprises 

that are specialised in providing SaaS for customers in these countries have little risks and 

promising opportunities.
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Surprisingly, it was difficult to find trustful information on the current states of SaaS markets 

in aforementioned countries. More extensive research needs to be conducted, providing how 

quickly cloud computing is advancing forward.

2.6 Infrastructure for SaaS

In the cloud computing users sign up for a service and in addition to the application itself, 

they hire the entire ICT infrastructure, which backs up the service. Only Internet connection 

and a piece of software, such as a modern browser, are required for efficient usage of the 

program. Furthermore, Software as a Service has specific requirements for the hardware that 

is used in its backbone and the hardware is essential for success of applications.

There are three piles that cloud computing stands on. SaaS needs to provide good means of 

communication with a service to its customers providing fine reliability: ability to send and 

receive data with sufficient data exchange ratios. Also, scalability is very important for 

servers that store data of the SaaS, storage used should be easily extendable. Additionally, 

without constant connection to the program that a user has signed up for, there is “no” service 

at all since he/she cannot use it under any other conditions other than exchanging information 

with infrastructure behind SaaS, fine level of connection is achieved by utilising 

dependability. If a user decides to switch to software in the cloud instead of using an 

application that is installed on the local machine, the SaaS must provide the same value for 

dependability as its desktop replacement.

2.6.1 Cluster computer storage

The last word in the science of choosing hardware for SaaS belongs to cluster computers. 

Using cluster computers can save money because ordering mainframe machines in bulk is 

much cheaper than buying traditional large servers. Furthermore, a group of workers required 

for maintenance of the farm of clusters usually consists of just a few persons. Clusters are also 

much more scalable, than large servers. Software hosting companies can now lower their 

costs of maintaining redundant services such as the upkeep of servers and software 

maintenance.
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As discovered by Armbrust et al. (2009), software engineers with innovative ideas for 

services that can be launched from Internet no longer need to invest large capitals into 

hardware resources needed for deployment and human resources requested for maintenance. 

SaaS architecture is offering attractive possibilities for start-up companies. Starting your 

organisation in the world of eBusiness used to be difficult and required complex planning and 

risk analysis. Development of a start-up project often requires investments in multiple spheres 

of IT besides Software Engineering such as ordering servers for storing data, paying staff that 

takes care of maintenance of hardware, creating custom interfaces for data communication 

etc. Today, however, such services as Amazon.com EC2 offer attractive packages for renting 

hardware for SaaS oriented software development. Amazon.com’s EC2 service is virtual and 

is built on top of the company’s Elastic Computer Cloud. Turning to Shore & Warden (2007), 

one can learn that it is currently the 42nd fastest computer on Earth, which is unprecedented 

having in mind a price for renting the machine. Anyone can rent this service that has more 

than 30000 processor units for about €1000 an hour (other super computers with similar 

performance would require paying millions for completion of the task in the same amount of 

time). According to Fox & Patterson (2012b) flexible plans offered by companies like 

Amazon.com offering renting hardware for SaaS allow startup companies to start their 

businesses with less risk and better chances to succeed. Just five years ago ability to rent 

hardware for a price of a little more than a euro for an hour was hard to imagine.

With cloud computing developers need not think about overprovisioning for services that are 

not successful, which are wasting resources, and underprovisioning (see Figure 9) for the ones 

that meet their optimistic prognoses, thus missing potential customers and revenue. 

Additionally, enterprises with massive mass-oriented tasks can get updated outcome as 

quickly as their programs can scale, since using, as an example, 100 servers for one hour 

requires not more costs than using one server for 100 hours. This stretchiness of resources is 

extraordinary in the history of IT. Bezemer & Zaidman (2010) back up this idea by indicating 

that easier application development and better utilisation of infrastructure hardware reduce 

costs of development and this makes SaaS applications largely attractive for customers in the 

small and medium enterprise (SME) segment of the market, as those companies often have 

limited financial resources and do not demand the computational power of dedicated servers.
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Figure 9. (a) Even if peak load can be correctly anticipated, without elasticity engineers waste 

resources (shaded area) during nonpeak times. (b) Underprovisioning case 1: potential 

revenue from users not served (shaded area) is sacrificed. (c) Underprovisioning case 2: 

certain users leave the site permanently after experiencing inaccessible service. (Armbrust et 

al. 2009)

Based on the research of Armbrust et al. (2009), the cloud computing’s ability to scale quickly 

is the key observation when a decision about moving to the cloud is made. With elasticity 

offered by cluster farm services such as the Amazon.com’ EC2 matching resources to 

workload in almost real time is now a reality. According to Rangan et al. (2008) utilisation of 

most datacenters is only 5 - 20 %, it is explained by the fact that workload during peak time 

might exceed average rate by factors of 2 to 10. Taking into account such elements of the 

system as seasonal bursts (e.g., e-commerce peaks during sales seasons and photo sharing 

sites peak after holidays) and unexpected demand bursts due to external events like news 

flashes in addition to simple diurnal patterns it can be said that benefits of elasticity can be 

even higher. With sufficient elasticity of clusters and dynamic allocation of resources 

utilisation can be raised to be close to 100 %. 

Analysing reasons behind moving to cloud computing is important to consider before 

spending large resource on the change. Let us show a simple equation for estimating cost 

efficiency of cloud computing compared to a fixed-capacity datacenter:
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EQUATION 1. Estimating cost efficiency of cloud computing compared to a fixed-capacity 

datacenter. (Rangan et al. 2008)

In the left side of the equation an estimate of cost efficiency for cloud computing is outlined, 

where the net revenue per user-hour (revenue realised per user-hour minus cost of paying

Cloud Computing per user-hour) is multiplied by a number of user-hours. In the right side an 

estimate for efficiency of a traditional fixed-capacity datacenter is given, where the same 

calculation is performed by factoring the average utilisation, including nonpeak workloads. 

The greater opportunity for profit is indicated by the side, which is greater in this equation. If 

Utlization was 1.0 the two sides of the equation would be equal. Authors of (Abramson et al. 

2002) argue that in real world this value is typically in a range [0.6 , 0.8], where the equation 

states that cloud computing is more profitable. The equation explains that the crucial element 

in successful operation of cloud computing-based services is the ability to control the cost per 

user hour of operating the service.

The aforementioned model is simplified. The pricing of cloud services may be out of control 

of the outsourcing company. If the company that provides SaaS services holds a strong 

position compared to its competitors, it may “overcharge” for its service. And in this case this 

equation is not necessarily true.

Furthermore, cloud computing and utilisation of clusters can eliminate penalties, which are 

possible in case of scaling down of the system. The scaling down can happen due to 

improving software efficiency or business slowdown. For example, with 3-year depreciation, 

a €2,100 server removed after a year of operation generates a “penalty” of €1,400. With cloud 

computing it is not an issue. (Armbrust et al. 2009)

2.6.2 Scaling storage for hosting large amounts of data

One of the most discussed areas in research in distributed and cloud computing is a problem 

of scaling storage for hosting large amount of data. Scientist have invented two ways of doing 

that: sharding and replication.
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According to Fox & Patterson (2012a) Hoff (2009), with sharding data is divided into small 

parts. One possible way of doing so can be seen from Figure 10 where data, which belongs to 

users of a certain application, is divided based on the first letter of surnames of users. Any 

application that utilises storage of this kind should be able to access data from any part of the 

system, for example, address of Mr. Wales should be as easily accessible as address of Mrs. 

Anderson. This sort of storage has a big factor of scalability. Additionally, high availability 

can be achieved: if one server goes down, other servers still work. Also based on Roy (2008), 

with no master database serialising “Write” queries one can write in parallel, which increases 

one’s write throughput, Hoff (2009) backs up this idea. The downside of this approach is big 

latencies of queries that work with populating databases with data.

Figure 10. Data distribution using sharding. (Fox & Patterson 2012a)

Unlike sharding, replicated storage have normalised data: when it is needed, data is fetched 

from different servers and put together (Roy 2008). With replication data is propagated to all 

copies of the storage. It makes fast operations with writing data possible, but scaling becomes 

difficult. Whenever data is written to the storage, values of data become temporarily 

inconsistent. An example of replicated storage can be seen on Figure 11 below, red arrows 

represent propagation of data.
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Figure 11. Data distribution using replication. (Fox & Patterson 2012a)

A well-known website Facebook.com has faced the issue with big latencies of queries in 

sharded databases. Their datacenters handle enormous amounts of data on 24/7 bases and 

whenever a user posts something on his or her “Wall” other users on the other side of the 

planet or even a large country would be able to see the post after a few seconds of delay, 

which is unacceptable in case of social networks. The company has decided to combine 

sharding with replication. Facebook decided to create one storage unit, which was responsible 

only for wall posts of users and removed issues connected with high latencies of “Write” 

operations with database.

The work of Roy (2008) assets that sharding solves problems with replication entirely. 

However & Roy (2008) does not support Fox & Patterson (2012b)'s argument that only 

sharding should be used and claims that in reality, most companies are using combinations of 

sharding and replication. Following material presented at Fox & Patterson (2012b) such 

combination allows achieving good scalability and fine performance with low latencies of 

writing data. Scalability of successful SaaS applications that work with large amounts of users 

and data is a very complicated field of research and it shall not be covered in details in the 

scope of this research, although understanding of the problem that developers need to face 

when they deploy their cloud computing projects to the cloud is essential for creation of 

multitenant SaaS programs.

2.6.3 Relational databases and cloud computing

According to research made by Fox & Patterson (2012b), models used in MVC usually store 

data in relational databases, which can be viewed using relational database management 
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systems (RDBMS) such as MySQL Workbench, which was utilised in the scope of this 

research. Applications and necessity of utilisation of this type of databases has been on 

agendas of almost all Computer Science related conferences lately. That is why mentioning a 

few words in the scope of this work can be considered beneficial for the topic.

Relational databases emerged in 1970s. The problem with relational databases is that they do 

not scale very well. Many solutions have been offered as possible substitutes to classical 

Relational databases, which are commonly called as “NoSQL”. They scale with a much better 

rate, which is crucial for development of multitenant SaaS applications.

Each model in the application that is created using MVC approach s associated with a Data 

Mapper that defines specific rules on how to work with a certain particular model. The 

negative side of using data mappers is that not all features that simplify complex relationships 

and queries of RDBMS can be used. Data mappers keep mapping independent of particular 

data storages and it provides better database system compatibility. Today multiple vendors 

and database systems are present on the market of DB management. Hence, having a 

sufficient layer of database compatibility is an important asset for any SaaS project. A popular 

example of extensive usage of data mappers is Google AppEngine.

The data mappers are used in the database, which was build to support a test case in this 

research. The alternative approach to data mappers is using Active Records, which might be 

beneficial in cases when requirement of writing complex data access queries is present. (Fox 

& Patterson 2012b)

2.7 Multitenancy

Turning to Goldszmidt & Poddar (2008), one can find that web-developed applications that 

follow a Software as a Service delivery model offer great business value for enterprises of any  

size. Programmers who develop new solutions following SaaS or transforming old projects 

into the cloud oriented computing face technical challenges. Among them is a multitenant 

approach to offering IT services. What is mutlitenancy and how is it different from the other 

ways of presenting SaaS applications in the cloud today?
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According to Engelsen (2011) there are at least three different ways of implementing 

program-user relationships:

1. Users log into a single instance of codebase/database.

2. Users log into individually developed pairs of codebase/database where all information is 

isolated and not accessible by other users.

3. Users log into a single instance of the program, but such methods as configuration files, 

SQL tables or connection strings are used to locally isolate data and sensitive information. 

So called “One-to-Many” approach.

Moreover, another issue is raised when development of applications that are offered as web-

based solutions is considered: customisation of the program and ability to serve clients 

individually, taking their individual needs into account. In the first approach, where all tenants 

of the service use a single codebase, it is difficult because of issues of separation of data and 

respecting ownership rights. In the second approach a problem of data individuality does not 

rise any more but development of codebase/database packages for each client can be cost and 

time inefficient.

The third approach, however, attracts attention of programmers when they deal with issues of 

allowing different tenants to use their applications. With this way of implementing codebase 

for web applications software developers have ability to satisfy multiple sets of requirements 

asked by different tenants with creation of one single codebase and a logically separated 

database. It is called the Multitenant (Multi-Tenant) Architecture. On the pages of Goldszmidt 

& Poddar (2008), one can read that in this architecture a single solution, running on a service 

provider’s premises, is capable of serving multiple tenants/organisations.

As Jansen et al. (2010) has indicated, a multitenant web application is a program which 

enables usage of the same instance of a system for different customer organisations or 

individuals, without necessarily sharing data or functionality with other clients of the 

program. These tenants have one or more users that use this application to reach tenant-

specific goals. 

At this point it is important to outline a difference between multitenant and multiuser 

applications. The work of Bezemer & Zaidman (2010) shows that multiuser programs assume 

users utilising one application that has configurable elements, on the other hand multitenant 
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solutions offer much more diverse options for customisation. Multitenant applications are 

essentially SaaS solutions, which reside in the Application level of a typical system set up 

using cloud computing. Multitenancy is an organisational approach for SaaS applications as 

outlined by Bezemer & Zaidman (2010).

Multitenant architecture (example of which can be found on Figure 12) has gone a long way 

since it was first introduced in 1960s when companies were renting space and processing 

power of mainframe computing to reduce expenses spent on calculations. In 1990s 

Application Service Providers (ASPs) were hosting instances of their applications as separate 

processes or as instances on physically separated machines. Nowadays, such applications as 

Gmail, Hotmail and Google Calendar are designed as functionally single instances that are 

capable of servicing often up to hundreds of millions of clients. We are living in the era of 

multitenant applications and people in today’s world are surrounded by them on various levels 

of their lives.

Figure 12. Multitenant architecture. (Keene et al. 2012)

A study by Weissman & Bobrowski (2009) shows that operating just one application that 

serves needs of multiple clients (in not rare cases millions of tenants of a certain company) 

provides great scale of economy for the provider. As with all Software as a Service solution, 

one set of hardware and a relatively small number of experienced workers can support the 

whole system, software developers need to create and maintain one codebase on a single 
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platform. The economics offered by multitenancy makes it possible for the application 

provider to offer the service at a lower cost to customers.

Benefits of multitenancy include, but are not limited to, improved user satisfaction, quality 

and customer control. Dissimilar to singletenant applications, which are isolated solutions 

used outside the reach of the application provider, a multitenant application is one large 

instance that is hosted by the provider itself. This design lets the service provider collect 

analytical information from the collective user population and make persistent, progressive 

improvements to the service that benefit the entire user community in an instance. 

Furthermore, collaboration and integration can also be improved when multitenancy is used.

Unlike more traditional pieces of software, one of the most important aspects of development 

and maintenance of multitenant applications, namely web forms which can often be parts of 

bigger projects, is utilisation of an appropriate system for determining what sets of features 

and requirements must be shown for certain users and what must be turned off. It is crucial for 

providing security and giving tenants exactly what they are asking for. Turning to Bezemer & 

Zaidman (2010), one finds that in contrast to the multiuser applications, multitenancy requires 

customisation of a single instance of the application for meeting multi-faced requirements of 

tenants.

Moreover, potential issues can arise in multitenant applications, based on Goldszmidt & 

Poddar (2008):

1. Isolation: since tenant share the same instance of software and hardware, availability of 

one tenant can possibly be affected by actions of other users.

2. Security: if the shared program does not have adequate protection, users of one tenant 

might be capable of accessing data from the other tenant. However, turning to Weissman 

& Bobrowski (2009), one can find that thanks to all users running all applications in one 

virtual space, letting any user of any application assorted access to specific sets of data is 

easily reachable, if required.

3. Customisability: appropriate level of customisation of multitenant software is difficult to 

achieve, since all customers use the same instance of the solution. This is a topic of 

interest for many researchers.
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4. Application upgrades can cause problems for tenants: simultaneously upgrading 

shared software may not be desirable for all tenants.

5. Recovery: tenants use the same database, which makes it difficult to back up and restore 

data for each individual client.

Software developers must be aware of these problems of multitenancy and avoid them in their 

products.

2.7.1 Multitenancy at enterprise level

A great number of enterprises are looking into ways of transcribing their singletenant 

applications into multitenant ones. Yet, two obstacles of multitenant architecture are slowing 

this process down, namely:

• Enterprises differ in terms of initial budgets for reengineering their singletenant applications 

into multitenant programs (Tsai et al. 2007).

• Maintenance personnel is anxious that multitenancy may bring additional problems into 

maintenance based on the fact that these solutions are highly customisable and they require 

effective ways of customisation, in the process eliminating the advantage that multitenancy 

offers through the fact that updates are developed and applied only once. (Bezemer & 

Zaidman 2010)

Mutlitenancy is used in various projects. Especially big value for using this approach can be 

found in a field of development of enterprise resource planning (or ERP) systems which, 

according to Blokdijk (2008), are sets of services attempting unification of all data 

information and processes of a particular company into one cohesive system. Multitenant 

ERP systems that serve multiple clients need to be capable of providing well designed tools 

for customisation on all levels of the system. Most companies would prefer the ERP system to 

be as customised as possible and fit to their particular needs. 

Turning to pages of Leon (2008), one can find that initially ERP systems were targeted only at 

the manufacturing enterprises and included common for such businesses functions such as 

sales management, accounting, cost management, etc. However, in recent years ERP systems 

have been adapted by a great number of companies from other areas and field of business. 

Enterprise resource planning systems have reached a truly global level. It can be said that in 
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today’s world the enterprise resource planning system is a very important asset for practically 

any organisation.

2.8 Development of multitenant applications

Before development of any service it is important to assess all sides of upcoming 

development process. One of the major phases of development of software is determination of 

the service value. Developers should ask questions like “Why does the customer need this 

service?” and “Why should the customer give our company this project?” To answer these 

questions two factors need to be examined: Service Warranty and Service Utility, which in 

combination produce Service Value (see Figure 13). (Hatch 2008, 17 - 18)

Figure 13. Creating Service Value. (Hatch 2008) p.17

Service Utility defines the functionality side of the service from the user’s point of view (i.e. 

what the service does).

Service Warranty represents level of reassurance and guarantee for meeting discussed 

requirements for the project.

Together they represent the value of the service, which can be determined with help of 

Equation 2:

Service Warranty + Service Utility = Service Value

EQUATION 2. Service value. (Hatch 2008, 17)
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If after assessment of risks, which needs to be taken during the work on the project, results 

prove that development will be successful and profitable, the SaaS application can be 

developed and released. Let us take a look at the brief history of development of RIA (Rich 

Internet Applications) and aspects of working on projects of this type.

In the elder days Internet was a collection of websites that consisted of HTML pages, which 

sometimes had CSS styling put on top of them. Eventually, web developers faced a problem 

of the necessity of dynamic content for the web. At first, by such means of programming as 

PHP and Perl languages of programming, websites started to have pieces of code put inside of 

HTML tags that generated something unique for specific situations (Fox & Patterson 2012a). 

Later, scientists and engineers came up with a concept of using templates with snippets of 

code that were capable of generating unique output for individual clients. This was a time of 

first e-commerce and advanced Web 1.0 web-based projects. 

According to work done in Goldszmidt & Poddar (2008), there are multiple technical 

challenges connected to development of multitenant SaaS solutions:

1. Access control: a problem of separating tenants from each other. Application resources, 

such as virtual portals, database tables, workflows are to be shared by users of different 

tenants. The technical difficulty is in providing means of controlling areas of access for 

users of different tenants of the service. It faces isolation and security of multitenant 

software.

2. Customisability: customisation of different elements of multitenant solutions can be 

tedious because each time a user from a certain tenant logs into the application a 

configuration set for exactly that client, and not for any other, must be loaded and used.

3. Tenant provisioning: an issue of configuring the system to allow addition of new clients 

with as few manual steps as possible. 

4. Usage-based metering: monitoring usage of the service by tenant can be challenging. It is 

required, though, for an intelligent system of charging, where tenants pay money only for 

that time when they actually use the service.

Because of these challenges developers of multitenant applications need to pay special 

attention to selecting a multitenant server framework. In an article by Keene et al. (2012) one 
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can find main points that need to be considered before starting development of multitenant 

software, as seen by IBM:

1. An open, standards-based server framework needs to be chosen. Multiple Platform as a 

Service options use proprietary languages and hosting provider. This should be avoided 

and open, possibly Java-based framework, should be chosen instead.

2. Per tenant extensions need to be enabled within shared schema. Tenants sometimes 

require adding tenant-specific data extensions without affecting the overall state of the 

system. Customisation is needed.

3. Per tenant data backup and recovery is needed. Using SaaS means that customers need to 

entrust sensitive data to service providers. Ensuring per-tenant backup and recovery as a 

part of the multitenant server framework improves trustworthiness of the service. 

4. Integration of role-based user security with client-side user interface. A disconnect 

between client-side and server-side security frameworks is often a place where malicious 

code penetrates the system and deals damage. The server-side role based access control 

framework should provide a sufficient level of management of client access to UI widgets, 

services and data.

5. Integrated deployment to cloud hosting environments. The multitenant server framework 

should allow with ease connections to leading cloud providers such as Amazon EC2, 

which have their own APIs and requirements.

6. Transparent failure management. In case of failures of application or database servers 

transitions to backup servers should be seamless and painless to end-users.

One may argue that this list made by IBM is biased, since it promotes products developed by 

that company. However, the main principles exposed in it will hold true if used with other 

proprietary products from other companies, such as Microsoft .NET Framework 4. Keeping 

these six aspects of deploying multitenant applications in mind is important and can help with 

creation of a successful and promising SaaS application that uses multitenancy. Agile 

development can increase quality of software projects and help create multitenant SaaS 

solutions.
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2.9 Agile development of SaaS

There are two main approaches to development of software projects today: “agile” and 

“waterfall” development processes. With development that is conducted based on the 

waterfall approach a lot of planning is done in the initial stages of the project, which is 

typically divided into the following sections, see Figure 11:

1. Requirement analysis and specification.

2. Architectural design.

3. Implementation and integration.

4. Verification.

5. Operation and maintenance.

This model interlaces a lot with a similar approach that is used for development of hardware. 

Why? Because with the waterfall model catching malfunctioning and removing bad flaws of 

design can be done during all phases of development. Nevertheless, the final outcome cannot 

be tested until the very last stage of development. The key principal of this method is 

outlining the “big” design of the project upfront, before any actual development has started. 

Having malfunctioning in the final version of the hardware product can cause millions and it 

can put an end to the project, if competitor teams have succeeded in a similar design. That is 

why different teams of specialised professionals using extensive documentation as medium of 

cooperation often do these five stages. Another issue with using this technique for 

development of software and hardware is little interactions with a client who ordered creation 

of the program. If a customer is unsatisfied, the project often needs to be started over from the 

starting stage.

The waterfall model works really well for enterprises where specifications do not change fast, 

for example: Operating System for a drone sent to Mars or aircraft control. In development of 

most modern day software, however, a radically different approach is used because programs 

typically need to meet new requirements with dramatic speed. Creating SaaS products utilises 

iterative lifecycle heavily. Projects are developed in small iterations (see Figure 14) with 

earning money and releasing versions of the software while the project is advancing further.
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Figure 14. Waterfall and agile development lifecycles. (Shore & Warden 2007, 16)

Interestingly, agile software development started as a movement of programmers in 2001. A 

website called “Manifesto for Agile Software Development” was created where they outlined 

main principles of what in their opinion was a foundation for a better way of creating 

software. And, more than a decade later, the following principles are considered as core 

values in organising software development teams (Beck et al. 2001):

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

Values on the left in the list above (highlighted in italics) are core principles of agile software 

development, while statements on the right are valued as well, but with smaller respect. 

Software development that follows these four lines of manifesto created in 2001 is known to 

be the best technique available today for development of customer-oriented software and, 

namely, SaaS and it will be put into test in the scope of this research. (Shore & Warden 2007, 

9 - 11)

Agile software methodologies are a radical departure from the traditional, document-heavy 

waterfall activities that are still in extensive use today. These methodologies share a set of 

common techniques. They all try to find a useful compromise between informal development 

processes and formalised, traditional ones. (Larman 2003)
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3 CUSTOMISABLE USER INTERFACE

3.1 User interface in Software Engineering

Information Technology has gone a long way from command line-controlled computers to 

modern cross-platform and/or cross-browser applications with polished and user-friendly 

interfaces. Myers & Rosson (1992b) has drawn attention to the fact that for the last 40 years 

assembling applications from components has been a focus of extensive research and it led to 

improvements of knowledge in such areas of Computer Science as Software Engineering 

using component-based approach, middleware development and service composition. 

However, little amount of studying has been done to the layer of presentation, which includes 

user interface (UI) design and applications. User interface is the top-most level of application 

and it is the only layer visible to most end-users without knowledge in IT, hence, developers 

should be paying substantial attention to this field of human-machine interaction.

Figure 15. Workstation in 1960s. One of the first Graphical user interfaces (GUI). (Foremski 

2005)

User interface is a way humans interact with their devices and if usage of programs on a 

computer becomes a problem, usually the UI is to be blamed. User interfaces can be rightfully 
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called “a central ingredient of computer user satisfaction”. Research on the UI started in 1945 

when the batch interface was invented. The history of progression of UI can be broken into 

three parts: batch (1945-1968), command-line (1969-1983) and graphical (1984 till today). An 

example of an average computer from 1960s can be seen on Figure 15. All started, according 

to multiple sources, with the invention of the digital computer. The opening years on the latter 

two eras are the days when new interface technologies were invented and began to transform 

users' expectations about interfaces in a serious way, those technologies were interactive 

timesharing and the graphical user interface. (Raymond & Landley 2004)

User interface has gone a long way since 1950s and 1960s where a computer with a circular 

screen and a one-button mouse presented on the picture above was the top of the range. 

Today, UI, almost in its all entirety, used in a form of GUI. Nowadays, according to Bowman 

et al. (2004), research is conducted even on development of 3D user interfaces. However, one 

aspect of user interfaces has not changed in last 60 years and is unlikely to change in the 

future: UI plays a central role in usability of the system. And, taking care about it is an 

important task for all programmers, engineers, designers and anyone working with the UI.

One integral part of good usability (according to the dictionary: “The ease of use and 

learnability of a human-made object”) is a high degree of user-friendliness. With today’s level 

of technological advancements, users interact with a massive amount of variations of UI on 

daily basics. And, the less time it takes for a user to get accustomed with the interface of a 

certain application, the bigger chances are that the user in question will not choose a 

competitor’s solution.

Turning to Spolsky (2001, 7 - 8), one can find a good example about a diversity of the UI in 

modern world: a story about a power user, whose area of responsibility covers Microsoft 

Windows OS trying to fix a problem in a Mac OS - powered laptop. Because Mac OS is so 

different compared to Windows OS, he was faced with a serious of challenged that were 

required to be overcome to fix a small issue and a headache for the rest of the day. The moral 

of this story is that UI needs to be created in such a way that using it is entirely logical and 

effortless. Satisfied user is hard to achieve.

The following points have been reported by many sources as possible reasons for user 

frustrations with user interfaces:
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1. When a program does not work properly or exits with errors.

2. When a system does not do what the user wants it to do.

3. When a user’s requirements are not met.

4. When a system does not provide sufficient information to enable the user to know what to 

do.

5. When indistinct, annoying or condemning error messages appear.

6. When appearance of an interface is over-bright, glamorous or patronising.

7. When a system requires users to carry out too many steps to perform a task.

8. Troublesome interference.

Satisfaction of users can be met by creating easy to use software. However, as interfaces 

become easier to use, they become harder to create (Myers 1994). Following the work of 

Spolsky (2001), designing a good user interface is a challenging process. To succeed, a 

designer/developer needs to constantly evaluate his or her work. After designing the UI, one 

has to evaluate done job, make necessary adjustments, if any. This process needs to be 

repeated until requirements are met or the team ran out of time/money. While design is 

important, the most crucial aspect of creating a good user interface is in evaluation 

techniques. Evidently, a designer/developer should be able to use his or her own user 

interface. If that person cannot use it, how can anyone else?

Daniel et al. (2006) makes clear that one of possible ways of improving a level of quality of 

modern user interfaces is integrations of graphical UIs. Integrations of components of UI can 

be achieved by combining presentation front-ends. The idea behind it is achieving a 

composite application that utilises individual characteristics of components that are put into it. 

The need for such applications is manifest and it is already extensively used in modern 

software development, for example: real estate information overlay for Google Maps, 

personal web-based homepages, etc. Unlike data and application integration, UI integration 

composes programs by using their own user interfaces and the presentation layer of the 

composed application is composed on its own. This approach can be used in cases where data 

of application integration is not practical.

An interesting survey can be found that was done by Myers & Rosson (992a). It is an old 

research, but results of it are still valid today. Authors of this work tested 74 companies that 
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work in software development and representing a variety of countries and types of 

organisations. They asked them what is a percentage of UI devoted programming in the whole 

project. Average value was 47.6%, as can be seen from Figure 16. User interfaces are 

extensively more complicated today and thus the number can be expected to be slightly 

higher. However, even the original number reported by the authors indicates large importance 

of UI programming for a successful project.

Figure 16: The percentage of code devoted to the UI programming, based on 71 test cases. 

(Myers & Rosson 1992a)

Unfortunately, there is still a lot of research and using “trial and error” method to be done in 

the future in finding “The perfect UI”. Meanwhile, small advancements are being made in the 

field and knowing them is important for creating a successful cloud computing application.

3.2 Problem of customisable user interfaces in modern Computer Science

Software developers implementing multitenant web-based systems have all at some point 

wondered what the available Customisation Realisation Techniques (CRTs) are. This may lead 

to a research question: What are the possible ways of achieving a required level of 

customisation and configurability in multitenant web applications? The following sections 

discuss this issue from a multitenant application developer’s point of view.

Patent on “Customisable user interfaces” states that: “The goal of these customizing 

applications is to provide a more user-friendly interface to potential customers or clients in 

addition to attempting to provide a sense of personal service to individuals accessing a 
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company’s web site.” (Halabieh 2003). This patent has been filled in 2003. Since then, 

customisation of user interface has been a well-discussed by researchers topic and 

development of techniques for improving existing tools of customisation has been a point of 

attentions of thousands of companies around the world.

Referencing Myers (2003), customisation of user interface can be achieved by providing 

possibilities for users to change or extend applications using languages of programming, for 

example, AutoCAD provides Lisp for customisation, and many Microsoft programs use 

Microsoft’s on language Visual Basic. More effective mechanisms for users to customise 

existing applications and create new ones are required.

It is important to have in mind that the terms customisation and personalisation are often used 

distinctively and sometimes interchangeably. Occasionally, personalisation is used to describe 

presenting content to individual users based on knowledge of who they are. Another example 

might be presentation of a logged in user with information about that particular user of the 

application, making it easy for that person to access often-used information. In other cases 

personalisation refers to giving users ability to define what parts of the application they need 

to use. Customisation is mostly. Updated 12.12.2010. Referred as setting certain preferences 

of the program that affect how it behaves. For the purposes of this research these terms are 

considered interchangeable and a word “customisation” is used in all cases.

Any software engineer who has background in development of graphical applications would 

admit that a stage of working on the user interface component of the program is often the 

most time- and effort-consuming stage of the development. Reusing of components can be 

beneficial for the UI development. Many application frameworks, such as JavaServer Faces 

2.0, offer ready-made components like buttons, menus and bars (Daniel et al. 2006). Having 

this in mind, it is worth mentioning that development of custom customisable components 

that add a concept of reuse to the UI can save time for software engineers and enhance user 

experience.

As Miller (2003) perceptively states, unfortunately, often such aspects of software as scripting 

and customisation support get suspended in favour to more vital problems like feature set, 

performance, reliability, and usability. However, a problem of improving current methods of 

adding customisation to software is a critical for consideration topic. According to Spolsky 
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(2001), if a targeted group of consumers has different user communities (or the same user 

with different jobs), one may need different user interfaces, customisable user interfaces or 

both.

Customisation may mean compromise, since it is hard to predict what exactly tenants of a 

service require to be customisable. Let us turn to Salesforce.com once again. As indicated by 

the staff of the company at Salesforce.com (2012), “More power to customise” often is a top-

ranked wish of business application users. The challenge for Information Technology 

organisations is that such power usually comes with big expenses, including increased project 

costs and ongoing risks. Faced with customisations that are costly, resource intensive, and 

difficult to upgrade, IT organisations often must make painful compromises or persuade users 

to accept “plain vanilla” programs. However, making users go for compromises may mean 

decreased attractiveness of the application and better ways of customisation should be 

researched.

Furthermore, the most important topic of research in the field of the presentation layer of 

web-based application recently has been a problem of customisation of user interface in web 

applications, which is described in the next section.

3.3 Customisable user interfaces in web-based applications

“We’re at a tipping point, where mission-critical applications are moving into the cloud” says 

an analyst with Nomura Securities Rick Sherlund (Hardy 2012). And, since, as one might 

state that UI is the most important asset in a successful commercial piece of software, 

development of customisable UI in SaaS has become a point of interest of a great number of 

researchers around the globe.

In situations when desktop application do not provide APIs users that wish to customise their 

programs need to resort to automating the UI, often called screen scraping. Cross-application 

solutions that record macros allow users to record mouse movements and keystrokes. Once 

the action is required again, the macro action can be executed. The downside of this approach 

is inability of macro records to know a state of the application they are working with based on 

an application’s display. Solution like Triggers Potter (1993) and VisMap Zettlemoyer, St. 
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Amant (1999) deal with this problem by interpreting the display contents at a pixel level, but 

this technology is challenging and resource-consuming.

Interpretation of desktop application output is difficult. However, web application provide 

their output as easily-readable HTML code, making screen scrapping more accessible. Using 

automation is being practised in web development today. Nevertheless, it does not provide a 

full level of customisation required for most projects, which needs to be investigated.

Present-day web applications, unlike dedicated desktop solutions, do not employ a concept of 

haystack. Turning to Quan et al. (2003), one finds that with the haystack, continuations and 

other supporting abstractions could be used to help users store their commands in operation 

and continue in convenient time. This technology is difficult to imagine in terms of web-based 

applications, since storing such data of user operations on the server side is difficult to 

imagine and local storage compatibilities of web browsers are still not perfect and saved 

information can be vulnerable.

Web-based user interfaces or web user interfaces (WUI) are a subclass of GUIs which accept 

input of users and generate output in a form of either an updated version of the page where 

input was entered or a new web page. They are usually viewed with help of a web browsing 

program.

Often tenants of a certain company require web forms that have unique for their needs sets of 

functions. Customisation of the way the form looks like and feels to end-users is needed. 

According to research of Hadlock (2011) it is a common requirement in the world of Internet 

today. Popularity of personalised homepages and dashboards, such as MyAOL, MyYahoo! 

and iGoogle, has been rising and possibilities for changing user interface of web pages 

offered to customers has been in great demand.

People did not have an urgent need to use customisable interfaces in Internet-based 

applications straight away. Based on Fox & Patterson (2012b), there was a problem with 

classic websites that were done in the early days of Internet: HTTP protocol is stateless and 

adding such features as a shopping cart in a eBusiness website or a checkout page was not 

possible. In the mid 1990s the problem of adding such features rose and a new technology 

was introduced: cookies. One way of providing client-specific interfaces that can supply a 
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satisfactory level of personalisation is enabling cookies for the website. With this technology 

users can configure elements of a certain page, for example widgets in a personalised 

homepage like My Yahoo and BBC.co.uk (see Figure 17). 

Figure 17. Personalised using cookies homepage of BBC (http://bbc.co.uk).

It is important, however, to always check if a client is legit in SaaS. A client could be a 

“bot” (AI controlled program that pretends to be a human) or it can be a person with an 

outdated browser that does not support required features and have critical flaws. In 

development of SaaS a response received from the client must always be checked to avoid 

crucial mistakes. Using cookies for customisation of the website is a reasonable choice for a 

developer, while it removes workload from the servers by storing configuration information 
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locally. Nevertheless, there are better ways of implementing customisable UI in web 

applications.

Dynamic web pages can currently be achieved with both server-side and client-side languages 

of programming. It is worth mentioning such server-side technologies as ASP, ColdFusion, 

PHP, Perl and JSP. Also, such client-side scripting languages like JavaScript or ActionScript, 

Flash are often used to manipulate media elements of the presentation layer of the web page.

Based on the article by Selvitelle (2010), one great example of a modern-looking and properly 

working interfaces is Twitter (see Figure 18). The current version of it was done almost 

entirely using JavaScript open-source libraries (e.g. jQuery, LABjs). In this website users and 

even companies can adjust many settings of the visual appeal of the program to make 

personalised profiles that could be used for promoting and business. This website is an 

excellent example of a level of customisation that is achievable using primarily client-side 

technologies like JavaScript.

Figure 18. A new look of twitter.com, offering great tools for customisation.

Unlike client-side languages of programming, a much greater level of customisation can be 

accessed using server-side languages. This level of customisation is usually used in enterprise 
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programming and systems that are used commercially, e.g. ERP systems for bioenergy 

management (see Figure 19). In this kind of programs settings that define levels of 

customisation are often stored in a remote database, not locally. And they can be fetched from 

it using server-side scripting with Java or any other server-side language of programming.

Figure 19. MHG Public web interface for bioenergy ERP system. Customisation is provided 

by JSF 2.0 technology. Such elements of the design as a logo, icons, fonts, colours are 

customisable. Reordering of the elements of the page can also be implemented, if required by 

the tenant.
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Turning to the work of Miller et al. (1997), web application users, unlike customers of 

traditional desktop solutions, can be rather intolerant of unadaptable interface since they 

usually have alternatives in form of other websites offering same services. 

4 CUSTOMISABLE WEB FORMS IN MULTITENANT APPLICATIONS

Forms play a role of “bridges” between complex record of data and users, average humans. 

This role is a very important one, since most users still find computers intimidating, let alone 

databases. The easier the interactions between users and the application can be made, the 

more successful that application is likely to be. Forms “humanise” the persistence layer of the 

application.

Web forms are a type of forms. Web forms allow data that is entered by a user to be sent to a 

server that processes it. Similar, to forms used in traditional desktop solutions, web forms 

consist of such elements as radio buttons, checkboxes and text fields. For example, web forms 

could be used to gather survey data, enter credit card information, or register account on a 

website.

Turning to Whitehorn, Marklyn (2006, 14 - 15), forms are devices which allow one to look at 

and edit the data stored in the database. One can usually alter the table directly and perform 

both editing and viewing, but forms are preferable, since they tend to be more attractive and 

easier in use for users. Forms can be thought of as filters between the tables of data in, 

usually, relational database and the users of the database. Humans usually prefer to be able to 

see each record of the table of data individually and not as rows neighbouring other, often 

unnecessary for the specific user in the specific time, data.

Web fields are what web forms consist of. Fields are one of the elements of web forms. Input 

fields can contain such elements:

• Text — a simple text box that allows input of a single line of text.

• Checkbox — a check box.

• Radio — a radio button.

• File — a file select control for uploading a file.
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• Reset — a reset button that, when activated, tells the browser to restore the values to their 

initial values.

• Submit — a button that tells the browser to take action on the form.

With combinations of these elements web forms can allow input or almost all types of data 

that can be imagined relevant in web-based application solutions. In an ideal Software as a 

Service application all of these aforementioned elements of web forms should be fully 

customisable.

A problem with web fields in multitenant applications is a strong connection of them to 

specific fields in a database. A situation where a piece of information desired to be entered in 

a field by one tenant is different from a wish of other tenants concerning data entry in the 

same field in a web form can easily be imagined. In situations like that tools allowing 

overloading of web fields should make possible configuration of web forms by each tenant 

individually.

Today’s UI tools mostly help with the generation of the code of the interface, and presume 

that the fundamental user interface design is complete. Tools to help with the generation, 

specification, and analysis of the design of the interface are also needed. Creation of 

customisable web fields in web-based applications require much more advanced and, often 

coded from the scratch, tools.

Additionally, data entry should also be controlled in web form fields. Turning to Whitehorn & 

Marklyn (2006), one can find that it is important to specify what kind of information may be 

entered in each field of the form. Data control can also be implemented on the database level, 

which is more important, because multiple forms can rely on the same table in the database. 

Moreover, if the project is developed in a team, database is easier to manage and keep 

organised than multiple forms. Theoretically, data control can entirely be implemented on the 

form level, but it is a sign of bad design patterns. With JSF 2.0 framework data control 

handling can be managed easily.

Several technologies available today can be considered as suitable techniques for creating 

customisable web forms in multitenant applications. JavaServer Pages technology was chosen 

to produce a test application to support this research. This server-side language of 
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programming reuses CGI (Common Gateway Interface) concepts in their APIs but dispatch 

all web requests into a shared virtual machine.

Development of extensively-customisable web-based input fields may seem like an 

unimportant and too vague for consideration topic, but it is an important part of Internet of the 

future, fully customisable and offering exactly what a user requires to see.

Problems of multitenant architecture, customisable user interfaces and tenant-custom 

functionality in web applications are among the most discussed and research topics of 

Computer Science today. Thus study on a particular way of implementing multitenant forms 

inside of applications written using JSF 2.0 and MySQL technologies was chosen as a topic of 

this research to contribute to these topics and to the world of Information Technology and 

Computer Science in general.

5 TECHNOLOGIES USED FOR THE TEST CASE

From a developer’s point of view, choosing the suitable architecture and tools for developing 

a web application is a vital decision, which assumes thinking about the following dimensions 

of the expected program: 1) the size of the database, 2) having dynamic components, 3) 

existence of customisation in the website, 4) overall expectation from the design.

A problem of balancing between these four aspects of development of SaaS application is a 

difficult one. Achieving high levels of customisation and design can be considerably easily 

attained by hard-coding appropriate web pages, but developers using this technique must 

sacrifice scalability and responsiveness to updates. On the other hand, automatic HTML 

generators, which are capable of returning web pages based on data stored in a database, can 

ensure a good level of scalability and responsiveness to updates. Compensating between these 

two, it may seem like, opposite approaches is challenging. Detailed consideration of tools to 

be used needs to be performed before starting development.

The multitenant SaaS application with customisable web forms, which is developed as a 

practical prove of this study tries to be an example of a harmonically working application 

utilising main principles of cloud computing and Software Engineering in general. It uses 

technologies, which are shortly described in this section.
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5.1 JSF 2.0

According to Anderson (2006), with time when projects become more complicated, the code 

becomes the “tail that wagged the dog”. It steps out of the Web server and most tasks are 

handled by frameworks for web development of Web 2.0 websites, which are available in 

plenty. Providing the pages, filtering input provided in form fields, and delivering new pages 

as a result, must be implemented using some sort of server-side scripting technology as the 

back-end of the web page, or by a framework. These tools are normally rather different from 

the tools used to work with the client-side pages that the user sees.

The sample program developed as a part of this work uses Java language of programming. 

One of the most noticeable aspects of this language is its openness and the large amount of 

companies, tools, and technologies use the language. Additionally, a large variety of hardware 

depends on Java, starting from handheld devices like mobile phones and ending with large 

enterprise systems.

Special significance in Java development plays prior to development phase of selection of 

tools. There are thousands of tools, both commercial and open-source, available on the market 

today. The selection of the ‘best’ set of tools for a Java project can prove to be a hard task. 

Some tools can be changed later in favour to other technologies with acceptable cost (such as, 

for example, switching to another issue tracking system, as long as the old one provides some 

data export facility), but others cannot be changed without altering most of the done work.

In the scope of this research JavaServer Faces (JSF) 2.0 Java-based Web application 

framework is used. This framework is intended for simplification of web-based user interface 

development.

JSF is included in the Java EE platform, so engineers can create applications that use JSF 2.0 

technology without adding any extra libraries to their Java-based projects. JSF is capable of 

using such bean containers as Spring and it works with almost equal performance and output 

as a standalone web framework. Developers of various skill levels can build web applications 

with ease by utilising such aspects of the technology as assembly of reusable UI components 
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into web pages, connecting these components to an application data source, and wiring client-

generated events to server-side event handlers.

JSF is a request-driven MVC web framework. According to JavaServer Faces (2011), it has 

two main functions. The first one is generation of user interfaces, usually using HTML 

language. As mentioned before, this UI is represented on the page as a tree of components and 

elements in the UI. The actual interface is generated when the component tree is rendered. 

The separation between user interface and component tree allows JavaServer Faces to support 

such markup languages as XHTML.

The second main function of this framework is responding to user-generated events by calling 

server-side listeners. This process is usually followed by generation of another web page with 

another UI or an update to already showing UI. JSF can be called an event-driver framework.

For summarisation, a list of advantages of JSF 2.0 compared to other frameworks used in 

development of cloud computing can be outlined using the work of Khan (2010):

1. JSF provides a substantial API with associated tags for creating HTML forms with 

complex interfaces.

2. Large community of developers and number of external libraries.

3. Event handling.

4. Managed beans. Meaning that Java beans can be automatically populated based on request  

parameters. With JSF’s utilities parameter processing is significantly simplified compared 

to other MVC frameworks.

5. Form field conversion and validation.

6. Centralised file-based configuration. Rather than hard-coding information into Java 

programs, many JSF values are represented in XML or property files.

7. Consistent approach

8. Support for Ajax, jQuery, Dojo and other interface libraries.

Further, interpreted languages like PHP are in almost all cases slower than compiled 

languages like JSF. The downside of using JSF technology is that usually files crated by this 

technology get compiled and complex, so once the server is up an running and doesn't get 
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changed anymore, the performance will be better than a PHP script that gets interpreted every 

time a request comes in.

5.2 XHTML

Implementing user interfaces for Internet generally uses different tools than building GUIs for 

desktop usage. Additionally, the technology and tools are changing quite rapidly. Therefore, 

this is a brief overview of one of them - XHTML.

One reason for the wide spread acceptance of the World Wide Web was the concept of a 

universal client - the web browser, based on the use of a key content language, namely 

Hypertext Mark-up Language (HTML), based on W3C-XHTML (1997). Simple sites of Web 

1.0 era were collected from static text and images with embedded links, and these can be 

created by directly typing the underlying HTML code. As an alternative, the designer/

developer may also use more interactive tools, for example Microsoft FrontPage, which 

therefore works as an Interface Builder. Pages that are required to be dynamic can also be 

authored by using scripting language embedded in the html code, for example: Javascript or 

VBscript (Visual Basic Script). On the other hand, a specialised animation language can be 

used, such as Adobe Flash.

According to W3C-XHTML (2004), the first version of XHTML recommended by the W3C - 

XHTML 1.0 came in 3 various, namely strict, transitional, and frameset. The main purpose of 

XHTML 1.0 was redefining HTML as an XML program, and different variations of it 

provided a transaction stage for smooth transformations. The idea of separately defining 

content and presentation was not new. The main goal of XHTML 2.0 is to provide a cleaner 

and more structural mark-up for describing the content only of a hypertext page. Therefore, 

allowing proper marking up of content in a practical way, and a clear defined content, style 

and behaviour separation.

In the scope of this research XHTML is used, while it is a common technology used as a way 

of representing web pages generated by JSF 2.0 framework. Since, JavaServer Faces is an 

MVC - driven application framework, it can be said that XHTML is utilised to output views 

of an application.
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5.3 CSS

Cascading Style Sheets (CSS) is used as a tool for altering the way view pages generated with 

help of JSF framework are outputted. It was created in 1996, but it is still a de-facto standard 

for styling web pages. Using CSS brings another layer of separation into application 

framework. With this technology document content (generated with XHTML) can be 

separated from document presentation.

Based on Andrew (2007, 1 - 2), styles can also be defined using standard HTML code. 

However, using pure HTML code is insufficient when adding modern-looking elements to the 

style of the page. As an example, using <font>...</font> tag from HTML syntax describes 

font that is to be used for text between an opening and a closing tags. On average, hundreds of 

just this tag would be used to describe font of an average-looking and with average load on 

content page in a modern website. If changing colours, ways of outputting images, positions 

of elements on the page is required, a number of HTML tags used for describing style can 

easily reach thousands. It is extremely inefficient. Cascading Style Sheets makes designing 

pages and web forms easier and faster.

5.4 MySQL

MySQL is chosen as an RDBMS for a test case in this study. It is currently the world’s most 

used database management system. MySQL comes with MySQL Workbench which is a tool 

developed to be used specifically with MySQL, see Figure 20. This application significantly 

simplifies designing a scheme for a database and maintaining the database. This program 

provides data modelling, SQL development, and extensive administration tools for server 

management, user administration and other tasks.
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Figure 20. MySQL Workbench 5.2 running on Mac OS.

5.5 Netbeans IDE

The NetBeans IDE (Integrated Development Environment) was the first free and open source 

tool providing support for building J2EE web tier applications in the beginning of 2000s. 

With the 4.1 release, the NetBeans IDE (see Figure 21) was developed even further and it 

include full support for building complete J2EE 1.4 programs, as well as supporting the key 

capability of J2EE 1.4 web services. At the moment of doing this study Netbeans IDE was 

already in its 7th iteration. It is considered to be one of the best tools for Java development. 

(Keegan et al. 2006)

This IDE has full support for Java EE development and that is a main reason why it is chosen 

for this research. All key features of development SaaS with Java EE are fully integrated with 

this tool, which provides a complete environment for creating and debugging J2EE 

applications. It has integrated support for Glassfish 2.x application server that is used. With a 

single click the NetBeans IDE can start the application server, deploy the program, and run 

the application in a mode ready for real-time debugging.
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Figure 21. Netbeans IDE 6.9.1 running on Mac OS.

In the middle of development of the test case for this research support for Glassfish 2.x server 

in Netbeans 6.9.1 broke down. Netbeans 7.1.1 with Glassfish 3.x and ICEFaces 3.0 was used 

for further development. All programming code and a database design described below were 

developed having these technologies in use. Most of it should be backward compatible with 

Glassfish 2.x and ICEFaces 2.x running on top of JSF 2.0 framework.

Figure 22. Problem with an occupied port in Netbeans IDE.

On the other hand, Netbeans IDE as any software has its flaws. One issue that rises during 

development of JSF 2.0 applications for GlassFish server on Mac OS X is a problem with 
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occupied ports. More precisely, if an application is deployed with runtime errors, the second 

time that the application is deployed, GlassFish cannot start because a port (in case of Mac 

OS X port number 1527) is occupied. An error message that is returned by Netbeans IDE can 

be seen on Figure 22.

6 THE TEST CASE APPLICATION

“Every piece of knowledge must have a single, unambiguous, authoritative representation 

within a system.” (Hunt & Thomas 1999). It is one of the core principles in modern software 

architecture Don’t Repeat Yourself (DRY).

A current world of Information Technology has a gap in terms of applications that provide 

means of working with multitenant web forms using MySQL and JSF technologies. To 

support this study and answer to the research question “How to develop the most optimised 

and the most versatile multitenant web form using JSF and MySQL?” a test case application 

was developed. This application serves as a framework for management of web forms that 

can be used by multiple tenants. In this chapter a workflow of organisation and management 

of forms is described. Additionally, technical aspect of the program such as models, views and 

controllers are described. Listings of programming code and various pieces of the application 

are given in places where they can contribute to better understanding of logic of the 

application. Additionally, references to appendices are given. In the appendices a number of 

functions from the application and a MySQL scheme are described in greater details.

The central asset of the test case application is a web form. Web forms can be created, 

managed and viewed/filled in. Furthermore, web forms can be inherited from other forms and 

used by different tenants, which brings an aspect of multitenancy to the program. Users of 

tenants can be granted permissions for working with certain web forms. When a web form is 

created all users of the tenant are given rights to manage the form. A process of rendering web 

forms can be summarised in a flow chard outlined in Figure 23. Working with web forms is 

described in details in this chapter.

Moreover, a concept of “predefined web forms” is described in this study. Predefined fields 

can be created and maintained by users of the tenant. These objects can describe commonly 

used web fields, such as a list of countries, a group of radio buttons for choosing one’s gender, 
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etc. Later, these fields can be used when new web forms are created; it saves time and 

improves usability and performance.

Figure 23. Flow chart describing a process of rendering web forms.

All web forms are compiled from web fields. Web fields are fully-customisable and it allows 

tenants configure the test case program for their liking. When web fields are rendered a 

number of properties such as label text, type of the field, label colour, etc. are fetched from 

the database. Users of tenants can be granted rights for working with certain web fields. When 

a web form is created all users of the tenant are given permissions to work with fields of the 

form. A process of rendering a web field for a given form can be summarised in a flow char 

on Figure 24. Working with web fields is described in details in this chapter.
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Figure 24. Flow chart describing a process of rendering web fields.

An important asset in the test case application is a tenant. Multitenant applications cannot be 

imagined without tenants using them. Additionally, tenants can have users. Users are actual 

people that work for tenants and use the application. Different users can have different rights 

within the application.

The code in the test case of this research was done with an intention to implement 

“RESTful” (Representational State Transfer) programming, which was first described by Roy 

Thomas Fielding in his doctoral dissertation in Fielding (2000). Creators and supporters of 

REST defined its main goals to be: Scalability of component interactions, Generality of 
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interfaces, Independent deployment of components and Intermediary components reducing 

latency, enforcing security and encapsulating legacy systems. This technique has proven to be 

incredibly effective in cases of creation of SaaS. The main focus in this research is given to 

generalisation of interfaces and building of appropriate easily-extendable APIs.

A common technique of MVC applications - CRUD (Create, Read, Update, Delete) - is used 

in the thesis. Fox & Patterson (2012b) state that a matter of good practice of writing 

applications using MVC is avoiding adding any logical components into views: having all 

“real code” outside of boundaries of view components. Indeed, this principle helps with 

organisation of code inside of the application, and it is utilised heavily in the test case. One 

exception to this rule is usage of JavaScript for enhancements of the UI.

In section of this chapter below a close look into application code of the test case is taken. 

The project consists of Java classes, XHTML views, and CSS files that can be divided into a 

number of categories: models, views, logic, DAO etc. These categories are described in 

details in the sections below. Additionally, examples with comments and explanations are 

given to provide better understanding of processes that take place once the test case is 

deployed to the application server. All examples are given with English language set as a 

localisation preference in the program. Furthermore, one may find detailed listings of 

application code in appendix 1 and a description of the scheme in appendix 2.

The test case application may be found on GitHub.com website where it is stored as a public 

repository. A link to the project is https://github.com/Hollgam/multitenant_webforms.

6.1 Description of views and user actions

This section gives short descriptions of all web pages that are present in the test case. It may 

be used for reference and better understanding of workflow of managing and using 

multitenant web forms. The test case program’s section created for end users consists of a 

main part with content and a sidebar on the left (see Figure 26). In the sidebar a user’s avatar 

picture and links for a quick access to such sections as the front page (it can be accessed by 

clicking on the avatar picture) and management of individual web forms. Web forms that are 

listed there are marked with their names and IDs. Also, flags of available translations are 

shown in a horizontal menu in the upper right part of the page.
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All functions described in this sections can be accessed only if a user is logged in (except for 

registration).

6.1.1 Registration, login and logout

To register one should follow a “Register” link in a login prompt shown on any other page 

providing that no user is logged in from a browser used, see Figure 25. Also, register.jsp can 

be accessed directly. To successfully register as a new user, one should fill information for all 

fields marked as required. Other fields may be filled as well, but it is optional (it can be 

changed later by editing account information of a new account).

Figure 25. Web page used for registration.

In this view entered value for email address is checked using regular expression ”.+@.+\\.[a-

z]+”, which is processed by EmailValidator.java validation bean (see a detailed listing in 

appendix 1.5). At the bottom of the page a button to the front page is shown for quick access 

along with a button for clearing entered data. Also, a button “Check Availability” can be used 

to check if a desired username is not occupied by other users. After successful registration a 

user is redirected to the front page with a message about successful registration shown. Users 

can log in after successful registration.

To login any page that exists in the program may be opened or login.jsf file may be accessed 

directly. “Remember me” option means that on a new session from the same browser no login 
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will be required for a current user. To logout a link “logout” in the upper right corner (next to 

translation flags) should be pressed.

6.1.2 Front page

A front page is essentially a window for managing web forms that are accessible to end users. 

When a user logs in he/she sees a list of web forms that can be viewed/edited. Additionally, a 

request for generating a new form as well as inheriting an existing one may be accessed from 

this page. This is a main page in the program, which serves as a dashboard with links to 

common tasks that users can do, while logged in to the system, see Figure 26.

Figure 26. Front page.

6.1.3 Creating new web forms

To create a new web form a link “New work form” may be clicked on the home page or 

newWebForm.jsf page may be accessed directly, see Figure 27. A person that is using the 

test-case program may add new web fields to a new web form. When new web fields are 

added to the form, such values of web fields are inputted and processed: label text, type, 

whether the field is required for filling in or not and a position in the form. Furthermore, an 
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existing label can be chosen instead of creating a new one. This action can be performed by 

user clicking on a green icon next to an input field for a label value. When that icon is pressed 

a JavaScript function is invoked. This function makes a list of all available labels appear 

below a location for inputting value for a new label. When an existing label is chosen, a 

“label_id” property of webfield entity in the database is updated with a value corresponding 

to the label that was chosen. Hence, when that label is changed, it is rendered differently in all 

web field that use it. And not only for the field that is was initially generated for.

Figure 27. Web page where creating new web forms is handled.

Secondly, new web fields can be added to the form. It can be done by clicking on an empty 

field below a list of existing web fields. Once a user clicks on the field, another line for 

adding next new field is rendered lower. It is done using jQuery library and a JavaScript 

function, a snippet of which can be viewed below. 

$(document).ready(function() {

    for (var i = 1, i < 40, i++) {
        var id = "editForm:editList:" + i + ":editPanel",
        $('[id="' + id + '"]').hide(),
    }

    var id = "editForm:editList:" + "0" + ":webFieldLabel",
    $('[id="' + id + '"]').click(function(){
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        var id = "editForm:editList:" + "1" + ":editPanel",
        $('[id="' + id + '"]').show(500),
    })

... ( code omitted) ...

}

A list of 40 web fields is generated in a backing bean, after that they are passed to the page 

and get hidden by a jQuery function. A number of members of an array of new web fields can 

be extended, if required. Later, all fields, except for a field with zeroth index are hidden 

before the rest of the view is rendered. The same approach is used in views that help tenants 

edit existing web forms.

A user has another option for creating new web forms. A new form can be generated based on 

another web form, the “mother” form. In this case a newly generated form becomes a “child” 

web form inheriting its mother’s properties. This process can be performed from a 

newChildWebForm.jsf page, or by clicking on the link “New CHILD web field” in the 

upper part of the home page. Once a logged in user is redirected to that page he or she needs 

to pick a web form that is to be used as a “mother”. It must be noted that only those web 

forms that have a positive value of “can_be_mother” property can be used to generate new 

web forms.

When a base web form is chosen a view is updated and a user sees a list of all web fields that 

the “mother” web form consists of, as can be seen on Figure 28. A user has a choice of having 

web fields in the new form inheriting properties of web fields in the “mother” form, it can be 

done by triggering “Child” checkbox next to web fields. If such action is performed, web 

fields become bound to their “mother” fields and all updates that are performed on mother 

fields get copied to the “child” web fields (described in details in section 6.1.5 Editing web 

forms).
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Figure 28. A new web form generated based on a “mother” form.

Such properties of web fields as “type” and “required/not required” cannot be changed in a 

process of creating a new web form based on a “mother” form. It is done in this way to 

achieve a level of security for an action of inheriting web form’s properties. However, these 

properties can be modified for “non child” web fields on later stages by going to 

editWebForm.jsf view. Once a “Submit” button is clicked a method public String 

newChildWebForm() is invoked. A listing of this method can be found in appendix 1.2.

6.1.4 Viewing and filling web forms

To view an existing web form a link to that form should be clicked. Before being rendered a 

web form is parsed in a backing bean class, one may find a method that is responsible for a 

process of parsing the form in appendix 1.3. All web forms can be viewed. Users may be 

given rights to fill web forms with relevant information. If a user was granted permissions to 

do so, a web form may be accessed through fillWebForm.jsf page or by clicking on the link, 

see Figures 29 - 31. After information has been put into the form, data leaves the system for 

routing to appropriate pieces of the database by external frameworks and modules. A web 

form may be filled in by a user once.

Once a user accesses a web page where a web form is shown an ID of the form is recorded in 

SessionBean.java and a list of web fields that are paired with the form is generated. Then, 
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web fields are outputted with <ui:repeat>...</ui:repeat> tags from JSF 2.0 framework. 

Depending on a type of the field an appropriate set of settings is fetched and used for 

rendering objects the web page. In the test case web fields can be of these types (listed in a 

form: value of type - description):

• 1 - input field. Rendered with h:inputText.

• 2 - email address input field. External validation is applied. Rendered with h:inputText 
and f:validator.

• 3 - text area. Rendered with h:inputTextarea.

• 4 - birth bate picker. External validation is applied. Rendered with ice:selectInputDate 

and f:validator.

• 5 - date picker. External validation is applied. Rendered with ice:selectInputDate and 
f:validator.

• 6 - drop-down menu. One value may be selected. Rendered with h:selectOneMenu.

• 7 - select one radio button group. Rendered with h:selectOneRadio.

• 8 - select one radio button group. Rendered with h:selectManyCheckbox.

• 9 - checkbox. Rendered with h:selectBooleanCheckbox.

• 10 - embedded map. Google Maps API is used.

Different settings for web fields are processed in runtime. Namely, web fields are marked as 

required or not required for filling in. This property of the field is fetched from a column 

“required” in the table webfield in the database. An example of this assignment can be seen 

from this piece of code: <h:outputLabel styleClass="required#{webField.required}" ... /

>. Fields are made compulsory by assigning class attribute to ”required1”, which is described 

in a CSS style sheet as follows (note: in case of the field set to be not compulsory for filling in 

the class is set to “required0” and processed differently by CSS rules):

.required1 {
    background:url(./css-images/required.gif),
    background-position: 0% 50%,
    background-repeat:no-repeat,
    margin-left:auto,
    margin-right:auto,
    padding-left:7px !important,
    padding-right:2px !important,
    padding-bottom:1px,
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}

Further, labels of fields can have such attributes as text colour, font size and family, etc. 

changed to meet needs of tenants. Such personalisation is achieved by utilising inline CSS 

styling as can be seen in this fragment of XHTML code: <h:outputLabel styleClass = 

"required#{webField.required}" style = "color: ##{webField.colour}, font-family: 
#{webField.labelFont}, font-size: #{webField.labelFontSize}px," for = 

"webfield#{webField.type}" value="#{webField.label.en}"/>. Values for CSS attributes are 

fetched from a webField object, as was described above. These settings are tenant-specific, 

they cannot be modified to meet wishes of specific users. However, such adjustment is 

possible with little modifications to program’s logic.

Moreover, a CAPTCHA image can be shown on the view. This image may be added to the 

form to achieve a layer of protection from hackers and bot programs. Rendering of it can be 

disabled for web forms, if required.

On Figures 29 and 30 one may see a web form ready to be filled in by users of a certain tenant  

(let us call it “tenant1” and its users “user1” and “user2”). In the sidebar on the left side of the 

version of the program viewable by these two users one may see “Tenant: MAMK” indicating 

that they are indeed assigned to the same tenant. Web fields in this form have its labels and 

other aspects configured to represent possibilities for configuration available in the test case 

application.

Views that are responsible for adjustments of properties of that web form are shown on 

Figures 32 - 34. By comparing these Figures one may get a better understanding of logic of 

working with web forms implemented in the test case for this study. In section 6.1.5 Editing 

web forms a process of configuring multitenant forms is described having a web from 

outlined on Figure 28 as an example.
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Figure 29. Registration web form ready to be filled in as seen by user1 from tenant1.

User2‘s version of the form viewable on Figure 29 is inherited from the instance of user1‘s 

form. One may notice that user2’s version has a field “Location” overwritten, where its type is 

different form user1‘s version. Additionally, field “More information” was added. Moreover, 

styling rules for labels and ordering of web field are different. Further, no CAPTCHA 

("Completely Automated Public Turing test to tell Computers and Humans Apart") image is 

required to be filled in by users.
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Figure 30. Registration web form ready to be filled in as seen by user2 from tenant1.

On Figure 30 one may see another iteration of the same web form. This time it is a form that 

is owned by another tenant (let us call it “tenant2”), it is not only viewed by users of tenant2. 

Any web for can be created based on an instance made by another tenant, providing that 

appropriate privileges are given to the tenant. In this web form new fields “Gender”, 

“Country” and “Address” have been appended. Further, fields “Administrator”, “Birthday” 

and “Email” (with edited style options) are inherited from the “Registration” form created by 

users in tenant1. One may notice a small red icon on Figure 30, which indicates a validation 

error raised by the fact that a required field “Birthday” had not been filled in before a 

“Submit” button was pressed.
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Figure 31. Registration web form ready to be filled in as seen by user3 from tenant2.

Once the web form is populated with data a user can submit it. Before information is 

processed and passed away from the web form module to other frameworks, data is validated. 

Validation is performed using Java-style validators. If errors are found an icon  is shown 

next to web fields, which generated errors. Additionally, if required for filling in fields have 

not been entered and a web form is submitted with them being empty, the same error icon is 

rendered, but with a different error message. If a web form that one tries to view or fill in does 

not exist, an error message is shown indicating that a logged in user have no permissions for 

working with the form of a given ID.

6.1.5 Editing web forms

To edit an existing web form a link to that web form should be clicked. Alternatively, if a user 

was granted permissions to do so, a web form may be accessed through editWebForm.jsf 

page. Editing web forms is similar to creating new ones. All fields may be changed. Lists of 

web forms that are visible to a particular user are present at the home page. On the front page 

one may see a list of web forms that can be viewed or edited. A sidebar on the left side of 

views also has a shorten list of the most recently created web forms that should be given 

higher priority for processing. By clicking on “Edit form” button in a list of web forms, a user 
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is sent to a page where management of the web forms is possible, see Figure 32. On this view 

a logged in person can change such aspects of the form:

• Web form’s name.

• User privileges for working with the form.

• Whether or not the form requires its users to fill in CAPTCHA image. Triggered by 

checking “Captcha required” checkFbox.

• Possibility of the form to provide inheritance for other web forms. Triggered by checking 

“Can be mother” checkbox.

• All web fields that are present in the form and their properties.

Figure 32. View for editing web forms.

If management of users that have rights for working with the form is required a list labeled 

with “User rights for the form” can be used. In this list one can see a list of all users of the 

tenant. By checking names of users privileges are granted, by unchecking them rights are 

revoked. One may find a method that generates this list in Appendix 1.4.
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A web form can also be requested to be deleted. When a user checks a checkbox next to 

“Delete Form” label a warning message appears. The message is generated using a JavaScript 

command attached to “onclick” property of HTML tag rendering a checkbox: 

onclick="return confirm('#{ui.doYouWantToDeleteForm}'),". This message is used to 

guarantee that no forms are deleted without intension by checking a “Delete Form” box.

The biggest part of the view responsible for editing web forms occupies a list of web fields 

that are assigned to the web form in question. These web fields are fully customisable with 

such elements ready to changed:

• Label’s text that is assigned to the field.

• Type of the field.

• Whether or not the field is required to be filled in by users.

• Position in the form.

Moreover, further changes to web fields can be made by following links that are attached to 

web fields in a list. Different approaches can be utilised to outline elements of web fields that 

can be edited. In the test case the most important aspects of web fields such as type, label 

value, etc. are represented in “Edit Web Form” view. Less important and less frequently 

changed values such as label font colour, user privileges for the field, etc. are rendered in 

separate popup windows. These windows are opened by clicking on links that call a 

JavaScript function described in a header of editWebForm.jsf:

function doPopup(source) {
    popup = window.open(source, "popup", "height=460,width=540)"),
    popup.focus(),
}

However, it is worth mentioning, that other ways are possible for achieving same results. With 

utilising such dynamic UI technologies as Ajax less cluttered and more usable web pages can 

be created. Nevertheless, with pure JSF 2.0 separating logically-connected elements in 

different views is a reasonable approach.

One of the popup windows that can be accesses for web fields is used for management of 

styling properties of web fields. This window can be accessed by following “Style” links on 
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the page responsible for editing web forms, see Figure 33. On that page rendered structure is 

also utilised, where appropriate properties of different types of web fields can be changed. An 

alternative approach is possible for achieving the same result: <c:if>...</c:if>. Using this 

tag gives similar output.

Figure 33. View for editing web field style. 

Such properties of appearance of web fields as label text, font size and family, font colour etc. 

are editable in the test case program. Integer input sliders and a colour picker utilise elements 

of PrimeFaces library. A list of fonts is hard-coded and it can be populated with additional 

fonts. Another option for achieving similar user experience is creating a separate view for 

managements of tenant-specific values for the list of fonts.

The second link for additional adjustments of web field’s properties is called “Rights”. When 

a user clicks on the link an XHTML passed to the browser program, which shows a list of 

users of the tenant that is operating the web field. If user’s rights for the web field in question 

are revoked, whenever a web form that contains that web field is rendered for the user, he/she 

does not see that field and no information is required to be filled in for the web field. The way 

users are granted rights for viewing web fields is similar to a list that manages rights of users 
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for web forms in editWebForm.jsf view. When a button “Submit” is pressed a method that 

edits user privileges is invoked. One may find a listing of this method in Appendix 1.7.

To edit values that are rendered in web fields that require multiple options, one may click a 

link “List”. This action opens a view where users can manage list options (see Figure 34). In 

this view a value that is given to the field by selecting an option in question and text to be 

rendered in the list that is assigned to the option can be adjusted. Additionally, a checkbox 

next to each new label is rendered: be setting it to TRUE, an option in the field is selected to 

be a default value when the field is outputted. It should be noted that if a user tries to manage 

list values for a field that does not require multiple options, nothing is shown on the view for 

management of list options.

Figure 34. View for changing list options for fields that require selecting values from multiple 

elements.

After list options are edited for the web field, they can be rendered got end users. If the web 

field is a list of options (type is equal to “6”), values for options are gathered from list_value 

table. Moreover, same rules are applied for web fields of types “select one radio group” (type 
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property is equal to “7”) and “select one checkbox group” (type property is equal to “8”). The 

following method is responsible for fetching options for the list and adding them to the field:

/**
* Get  values for a list (type = 6)
*
* @return the value of listOptions
*/
public List getListOptions() {
    if (listOptions == null) {
        listOptions = new ArrayList(),
        UITextHandler uiTextHandler = new UITextHandler(),

        ListValueLogic listValueLogic = new ListValueLogic(),
        ListValue listValue = new ListValue(),
        listValue.setWebfieldId(id),
        List<ListValue> list = listValueLogic.list(listValue, null),

        for (ListValue valueList : list) {
            listOptions.add(new SelectItem(valueList.value, 
uiTextHandler.getText(valueList.text))),
        }
    }
    return listOptions,
}

In this list a variable ListOptions of type List is returned. Members of this list are fetched 

using list method of ListValueLogic. This method can be extended further by dynamically 

locating values, which are common for a particular localisation used in the tenant’s instance 

of the program. In the aforementioned version of this method values are picked using 

UITextHandler uiTextHandler.

The last link that is assigned to web fields in a view where web forms are managed is called 

“Preset”. It is responsible for selecting a preset field. By following that link a user can select a 

previously created field, such as a list of countries or a radio button group for selecting 

gender. These fields are created by administrators in a separate application module.

Additionally, web fields that have a red letter “M” rendered next to them are “mother” fields. 

It indicates that changes made to those fields will also be applied to “child” web fields. 

Further, web fields that are inherited from other “mother” fields have such properties as 
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“type” and “required” locked. Mother-child relationships between web fields is described in 

greater details in 6.1.3 Creating new web forms.

New web fields can be added to the web form. The process of adding new web fields is also 

described in section 6.1.3 Creating new web forms. There is one difference to adding new 

web fields to a new web form, however. Instead of an array of 40 new web fields, an array of 

20 is generated to improve performance. This value can also be adjusted.

Once a “Submit” button is clicked a method editWebForm is invoked. A listing of this method 

can be found in Appendix 1.1.

6.1.6 Managing account information

To manage user’s account information a link “Account” in the front page can be clicked. Also, 

users can go directly to account.jsf page (see Figure 35). At that page all information 

previously entered may be edited and new pieces of information may be added. A model 

Account.java was designed in a way that allows further extension that allows appending new 

columns for adding more information. A test case program described in this study has a 

limited set of parameters ready to be filled in by users for their account settings.
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Figure 35. Account management page.

If a password needs to be changed a previous one must be entered and a new password must 

be inputted twice for success. Once a new set of account settings was recorded and inserted 

into the database, a user is redirected to a page that shows a message indicating successful 

changes to the program, see Figure 36.

6.1.7 Changing tenant-specific configuration

Configuration of a tenant can be changed following “Configuration” link at the top of the 

page or by directly accessing configuration.jsf page. Configuration serves a purpose of 

changing different aspects of the program to meet specific needs of tenants. For example, 

limitations on numbers of shown objects in lists can be altered in this section. A list of settings 

that can be configured in the test case application can be seen below:

• Number of web forms in sidebar - web forms that are shown to end users in the sidebar on 

the left.

• Number of web forms per page - amount of web forms shown per page.
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• Instance URL - an URL that users can access a tenant-specific version of the program. It can 

be used by external modules.

• API Key - a key that is used by the tenant to access modules of the test-case application.

These settings are individual for every tenant that uses the test case program. It must be noted 

that if changes to the tenant’s configurations of the test case application are made, users of the 

tenant must log out and log back in to see changes. Moreover, this are only an example of 

what settings can be attached to a multitenant application like the test-case program. 

Extensions to a list of configurable components of the program are possible.

Once a new set of configuration was recorded and inserted into the database, a user is 

redirected to a page that shows a message indicating successful changes to the application, see 

Figure 36.

Figure 36. A view with confirmation message.

6.2 Comments and Javadoc

For comments and descriptions of code in the test case application, Javadoc framework is 

used. Turning to Kramer (1999), one may find that "doc comments" format used by Javadoc 

is the de facto industry guideline for documenting classes and methods written with Java. An 

example of a function with a Javadoc description from the DAO object can be seen below:
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/**
* Get a list of accounts from database according to searchAccount.
* When user is not known.
*
* @param searchAccount
* @param tenant
* @param options
* @param listOptions
* @return
* @throws DataAccessException
*/
public List<Account> list(Account searchAccount, Tenant tenant, Map options, 
ListOptions listOptions) throws DataAccessException {
    //Getting list of users
    this.searchOptions = new ArrayList<SearchOption>(),
    if (searchAccount.getVerified() != -1)
            searchOptions.add(new SearchOption("verified", new 
Integer(searchAccount.getVerified()), SearchOption.EQUAL)),
    String sql = "SELECT * FROM account WHERE tenant_id=:tenant_id "
                + SQLFactory.generateSQL(searchOptions, true)
                + " ORDER BY user_id ASC",
    MapSqlParameterSource parameters = new MapSqlParameterSource(),
    parameters.addValue("tenant_id", tenant.getId()),
    return jdbcTemplate.query(sql, parameters, new AccountRowMapper()),
}

All methods and all classes in the test case have respective Javadoc entries, which were 

entered manually and maintained by Netbeans IDE. Pre-defined tags are used for describing 

programming logic, specifically:

1. @author [author name] - identifies author(s) of a class or interface.

2. @version [version] - version info of a class or interface.

3. @param [argument name] [argument description] - describes an argument of method or 

constructor.

4. @return [description of return] - describes data returned by method (unnecessary for 

constructors and void methods).

5. @ throws [exception thrown] [exception description] - describes exception thrown by 

method.
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Moreover, Java-style inline comments are put into code, where it helps keep track of logic in 

the program. As an addition, remarks on further improvements of the test-case project are 

placed into comments in code with a keyword TODO from Netbeans IDE.

6.3 Description of application code from the test case

As stated earlier, the test case application is developed using Netbeans Integrated 

Development Environment. In this program JSF projects have well-established groups of 

files. XHTML views of the program are stored in Web Pages folder, all Java code along with 

resource files are located in Source Packages, test packages are stored in Test Packages, 

libraries in Libraries folder, test libraries in Test Libraries folder and project configuration 

files in Configuration Files location (refer to Figure 37 with the test case program exposed as 

a project in Netbeans IDE). This section is organised in a manner that corresponds to the way 

files are organised in the Netbeans project.

Figure 37. Project organisation in Netbeans IDE.

Netbeans IDE Java EE projects store settings in XML file format. Files with settings are 

stored in a folder WEB-INF. The one may find the main portion of project-specific 

preferences in faces-config.xml file. This XML document is crucial for proper functionality 

of JSF 2.0-powered applications. The file consists of XML tags, which describe such 

properties of a Java EE application as managed beans, resource bundles, localisation files, etc. 

83



As an example, one may see below a description of a managed bean responsible for a 

registration page taken from the faces-config.xml file:

<managed-bean>
    <managed-bean-name>register</managed-bean-name>
    <managed-bean-class>com.mhgsystems.ui.Register</managed-bean-class>
    <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

In this piece of code a name of the managed bean, a class responsible for it and a scope of the 

bean are given. Similar to a listing described above other elements of Java EE programs are 

given attributes, which are processed on the stage of compiling. For more details, one may 

look at the listing of faces-config.xml used in the test case project in Appendix 3.

Classes in the test case are designed having further extension in mind. Namely, some of 

methods that are described in classes have been defined but not implemented. Instead, they 

raise an exception, as can be seen from the example below:

/**
* Activation of tenants. May be used later
*
* @param object
* @param user
* @return
* @throws DataAccessException
*/
public int activate(Tenant object, User user) throws DataAccessException {
    throw new UnsupportedOperationException("Not supported yet."),
}

Once, a compiler gets to a line that raises the exception, a program execution continues 

(providing no critical errors are returned). And, the exception may be seen in log files and 

appropriate changes to the code may be made.

6.3.1 Model classes

A model is an essential part of any MVC application. Model serves a role of a “foundation” 

that describes “stones” that the solution consists of. Practically any action described in the 

Logic layer in a SaaS application deals with a model/models. In JSF 2.0 framework 
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persistences are used. By adding such tags as @Table and @Column programmers can put 

bookmarks for an application server to link variables that are fetched from the database to 

specific types of data.  A simple implementation of a model that corresponds to a webform 

entity in the database is described next:

@Table(name = "webform")
public class WebForm implements Serializable {
    protected UITextHandler uiTextHandler,
    public WebForm() {
        this.uiTextHandler = new UITextHandler(),
    }

    @Id
    @Column(name = "webform_id")
    private int id,
    public int getId() {
        return id,
    }
    public void setId(int id) {
        this.id = id,
    }
        
    @Column(name = "name")
    private String name,
    public String getName() {
        return name,
    }
    public void setName(String name) {
        this.name = name,
    }
}

In the example above each column in a webform entity (described in section 6.6 The database 

scheme used) is linked to a Java variable. By using @Table(name = "webform") one indicates 

what table (or entity) in the database the model needs to be connected to. @Id corresponds to a 

primary key that is used in the database. Then, @Column(name = "webform_id") shows 

columns in the table that need to be processed.

It is a really simple model that is easy to comprehend and understand. In production-ready 

applications, however, a single model can often occupy thousands of lines of code and 

maintenance of them can be a time-consuming process. It is important to keep values given to 
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the tags described higher up to date because IDEs currently have no means of checking them 

and once the database is altered all values must be corrected by hard-coding.

In Appendix 1.6 one may find examples of fetching objects of models for rendering. Two 

methods in the Appendix together are good examples of one of the most important paradigms 

in Object-Oriented Programming (OOP) - abstraction. Additionally, it outlines inheritance and 

usage of interfaces in Java.

Additionally, all models that are present in the test case have corresponding DAO classes. 

Furthermore, all other CRUD functions are described in Logic classes.

6.3.2 Logic classes

Classes from this group contribute to the Controller layer of the application. Classes that are 

stored in the Logic category serve as “bridges” between View Java classes and DAO objects. 

Often a method from a Logic file that is called from the View class invokes a method in a 

DAO class that has an identical name and a list of parameters. Usage of Logic layer is 

important in cloud-based solutions because it creates an extra layer of security between users 

and sensitive information accessed by Data Access Objects. For example, here is a listing of a 

list method in AccountLogic.java:

public List<Account> list(Account object, Tenant tenant) {
    try {

        return accountDao.list(object, tenant,null,null),

    } catch (DataAccessException daex){
        return null,
    } catch (Exception ex) {
        Logger.getInstance().log(ex),
        return null,
    }
}

Where accountDao is described as a variable of the same class: private AccountDao 

accountDao = new AccountDao().
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This method calls public List<Account> list(Account searchAccount, User user, Map 

options, ListOptions listOptions), which is described in section 6.3.3 Database Access 

Object (DAO) classes. It passes an object of type Account and tenant of type Tenant and 

returns a list of accounts associated with tenant. Additionally, all other CRUD functions are 

described in Logic classes.

6.3.3 Database Access Object (DAO) classes

All Database Access Object (DAO) classes inherit an interface GenericDao<T>, where T is a 

model that is connected to a database entity that the DAO class works with. In this interface a 

number of methods are described that must be overridden once inheritance is established, 

namely:

• public T get(int id, User user) throws DataAccessException
• public List<T> list(T object, User user, Map options, ListOptions listOptions) 
throws DataAccessException

• public int insert(T object, User user) throws DataAccessException
• public int update(T object, User user) throws DataAccessException
• public int activate(T object, User user) throws DataAccessException
• public int deactivate(T object, User user) throws DataAccessException
• public List findByNamedQuery(Object object, int namedQuery) throws 
DataAccessException

• public int delete(T object, User user) throws DataAccessException

These methods are self-explanatory based on their names and return value types. Here 

DataAccessException is an exception that is raised when errors with working with the 

database rise. For example, when wrong settings are set in the DataSourceLocator.java 

class. Naturally, other methods can be described and existing ones may be overloaded in 

classes that inherit GenericDao<T> interface. Also, in DAO object in the test case, sensitive 

information such as user passwords is converted into MD5 hashes before it is sent to the 

database.

As an example, let us consider an implementation of public T get(int id, User user) 

throws DataAccessException method in WebFieldDao.java class that deals with 

WebField.java model described in section 6.3.1 Model classes. From this example one may 

see that a signature of a method corresponds to a method that is described in the interface. In 
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Java in order for a class to successfully inherit an interface all methods must be overridden 

and fully implemented:

public WebField get(int id, int tenantId, User user) throws DataAccessException {
        String sql = "SELECT * FROM webfield WHERE webfield_id=:webfield_id AND 
tenant_id=:tenant_id",
        MapSqlParameterSource parameters = new MapSqlParameterSource(),
        parameters.addValue("webfield_id", id),
        parameters.addValue("tenant_id", tenantId),

        return jdbcTemplate.queryForObject(sql, parameters, new 
WebFieldRowMapper()),
}

As another example of implementation of DAO classes in the test case, one may consider two 

implementations of a method public list in AccountDao.java model described in Appendix 

1.6. 

6.3.4 Database rowmapper classes

Database RowMapper classes inherit from RowMapper.java that is a part of Spring library 

that is used in the project. This interface has only one method that needs to be overloaded: 

public T mapRow(ResultSet rs, int i) throws SQLException. This method helps to translate 

a table in the database and turn it into values that can be linked to a model. A challenge with 

writing classes of type RowMapper is linking SQL types such as INT(10) and 

VARCHAR(100) into standard Java types of data.

An example may be considered. Let us take an implementation of public Tenant 

mapRow(ResultSet rs, int i) throws SQLException in TenantRowMapper class into 

consideration. It deals with Tenant.java model described in section 6.3.1 Model classes:

public Tenant mapRow(ResultSet rs, int i) throws SQLException {
    Tenant tenant = new Tenant(),

    //Main parameters
    tenant.setId(rs.getInt("tenant_id")),
    tenant.setName(rs.getString("name")),

    //Settings
    tenant.setNumberWebFormsPerPage(rs.getInt("number_webforms_per_page")),
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    tenant.setNumberUsersPerPage(rs.getInt("number_users_per_page")),
    tenant.setNumberWebFormsVerified(rs.getInt("number_webforms_verified")),
    tenant.setNumberWebFormsUnverified(rs.getInt("number_webforms_unverified")),
    tenant.setInstanceUrl(rs.getString("instance_url")),
    tenant.setApiKey(rs.getString("api_key")),
    tenant.setSecurityKey(rs.getString("security_key")),

    return tenant,
}

This method demonstrates how columns in a MySQL table are linked with variables of a Java 

class. ResultSet rs parameter is an object returned by a call to a method in jdbcTemplate in 

a DAO class. mapRow receives an object of type NamedParameterJdbcTemplate and returns 

an object of a model that it is linked to.

6.3.5 Views, CSS styling and UI classes

Program logic that is described in this section can be used for references for better 

understanding of processes that are described in 6.1 Description of views and user actions. 

This group of files is, perhaps, the most distributed and essential part of the program that is 

outlined on the pages of this study. In order for views to work and look how 

intended, .XHTML view file, .Java class and a .CSS style sheet must cooperate and use the 

same namespace and rules. Each XHTL view must have a Java class linked to it, CSS styling 

is not compulsory. Moreover, CSS rules might be described inside of XHTML files, with no 

creation of separate CSS style sheets.

First, a view is described using XHTML language of markup. On this stage User Interface 

designers can be separated from logic programmers since no application logic is stored on 

View level. View pages are described using standard HTML/XHTML tags. An example of a 

Login view described using XHTML can be seen in Appendix 1.8.

Properties are used in backing bean classes for views. Property is a variable that has a getter 

and a setter methods (in the case of a class described in Appendix 1.8: public String 

getPassword() and public void setPassword(String password)). Getters and setters allow 

greater level of control over operations performed on the variable. Once a user clicks on 

submit button a value put into h:inputSecret is sent to the Login.java class and a variable 

gets String password initialised.
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Additionally, styling rules are applied to the view. In the mentioned example styles are linked 

to elements of XHTML code by describing objects by their tags. For instance, a submit button 

is described using the following CSS rule that is bid to all elements that have id = 

“buttonSubmit”:

.buttonSubmit
{

display:inline-block,
-webkit-box-shadow:0 0 0 1px rgba(0,0,0,.6),
-webkit-border-radius:3px,
-moz-box-shadow:0 0 0 1px rgba(0,0,0,.6),
-moz-border-radius:3px,
box-shadow:0 0 0 1px rgba(0,0,0,.6),
border-radius:3px,
background-image:url('img/buttonEdit.png'),
background-repeat:no-repeat,
background-position:center right,
padding-left:10px,
padding-right:30px,
margin-right:3px,

       margin-left:10px,
text-align:center,
line-height:10px,
position:relative,
min-width:100px,
cursor:pointer,

}

It results in the submit button looking differently compared to a corresponding element in all 

web browsers (see Figure 26). It should be noted that, unfortunately, CSS rules are translated 

in separate ways by web browsers. Receiving the same output from the same CSS file applied 

to the same file is a matter of complex styling rules, utilisation of frameworks and style-reset 

files, this study does not focus on this problem. In this thesis styling of web pages is done to 

be compatible with Google Chrome (version 18.0) browser running on Operating System Mac 

OS X Lion.

“Remember me” option is present in the view to enable saving of session parameters such as a 

username and a password. Then, when a submit button is clicked by a user, loginAction() 

method is invoked, which can be seen in action="#{login.loginAction}" action description 

in login.xhtml. The method is outlined in Appendix 1.9.
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Further, in such views as fillWebForm.xhtml and register.xhtml validation beans are used. 

In Java such classes extend a class Validator.java. In these files a value is received as input 

and a decision is made if it passes tests for validation. Each validation bean must implement a 

method called validate. This method can be implemented with logical checks (as can be seen 

in a code listing below) or with validation using regular expressions. As an example, a 

validate methods that validates an inputted data against checks that determine if the date can 

be accepted as a birth date:

public void validate(FacesContext context, UIComponent toValidate, Object value) 
throws ValidatorException {
        Date myDate = (Date)value,
        Date today = new Date(),
        if (myDate.after(today)) {
            ((UIInput) toValidate).setValid(false),
            FacesMessage message = new FacesMessage(ERROR_MESSAGE.replaceAll("\\{0\
\}", this.uiTextHandler.getText("dateIsFuture"))),
            context.addMessage(toValidate.getClientId(context), message),
        } else {
            ((UIInput) toValidate).setValid(true),
        }
    }

This validation bean is used when web fields that are used for inputting birth dates are added 

to web forms. Further, in Appendix 1.5 one may find a listing of a validation bean that 

validates inputted email addresses.

6.3.6 Techniques for localisation and session control utilised

All session-specific variables are stored in a Java class SessionBean.java. An object of this 

class is created each time a user opens the test case application. A default constructor gets 

called for each user, which makes creation of user- and session-specific variables possible. A 

listing of the constructor is presented below:

public SessionBean() {
    this.messageHandler = new MessageHandler(),

    locales = new HashMap<String, Locale>(2),
    locales.put("english", new Locale("en", "UK")),
    locales.put("finnish", new Locale("fi", "FI")),
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    locales.put("russian", new Locale("ru", "RU")),
    locales.put("ukrainian", new Locale("uk", "UA")),
    setLanguage("en"),

    setSearchWebForm(new WebForm()),
    setSearchAccount(new Account()),
    getSearchAccount().setVerified(0),
}

In this listing of code one can see an initialisation of localities used in the projects. Such 

languages as English, Finnish, Russian and Ukrainian are put into a pool of localisation 

options. Localisation is presented as a group of flag icons in the upper part of each view (see 

Figure 26). Localisation files are made using Java resource files. There are multiple possible 

techniques that can be used to achieve storing values for localisation strings, e.g. JSON files. 

However, Java resource files have an advantage of having high support from Netbeans IDE. 

In files of Java resource type values are separated by “=” and a list of values has the following 

look:

main=main
contact=contact
login=login
logout=Logout
register=Register
fillFieldsBelow=Please fill fields below. Fields labeled with a '*' are compulsory.
username=Username
checkAvailability=Check Availability

Additionally, after localisation has been loaded and configured, objects used as a default web 

form and a default account that a logged in user later gets assigned to are created in the 

constructor: setSearchAccount(new Account()) and setSearchAccount(new Account()).

Further, an important part of any Software as a Service solution is error message handling. A 

technique used in the test case not only works with logical errors that might rise during 

program execution, but also it is capable of handling messages that serve as notifications to 

end-users of the program. A separate file called message.xhtml serves as a web page that can 

be included into any view in the application. The file utilises a Java EE tag ui:composition 

and the main part of it is represented in this way:
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<ui:composition>
        <ice:panelGroup id="alertPanelGroup" 
visible="#{sessionBean.messageHandler.visible}" 
styleClass="#{sessionBean.messageHandler.message.messageType}">
            <h:outputText id="messageInfo" 
value="#{sessionBean.messageHandler.message.messageText}"/>
        </ice:panelGroup>
</ui:composition>

A message is passed to the file handling error messages and notifications. A variable 

sessionBean.messageHandler.message.messageText is fetched from SessionBean.java bean. 

Later, it is passed to the language handler, where an appropriate value in a language that is 

used as a localisation preference is used. Additionally, styling rules are applied from style.css 

CSS file.

6.4 Debugging in SaaS

“Program testing can be used to show the presence of bugs, but never show their absense!” 

Edsgar W. Dijkstra

As stated by Fox & Patterson (2012a), debugging of Software as a Service applications can be 

difficult. Such methods of showing malfunctioning in programs as outputting error messages 

into the Terminal console are difficult to implement in cloud-based solutions. Because actions 

in a SaaS application usually path a long list of steps before output is rendered (example from 

Ruby on Rails framework: URI - route - controller - model - view - render) a specific piece of 

logic that generates the error is problematic to determine. For example, a wrongly rendered 

view might be caused by a line of code that is stored in a controller class.

When a project is in the development stage, any action (namely, printing error messages to the 

terminal, logging using external libraries, interactive debugging etc.) can be used. However, 

once a project is transferred into production, only logging should be utilised.

6.5 The database and the application server

The database used in the test case application is using replication, which is briefly described 

in Chapter 2. Usage of sharding is an option as well, but the test case described in this 
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research is a relatively small application highlighting benefits of using multitenant 

architecture along with customisable web forms. Hence, replication can be utilised with better 

results. Additionally, Tocker (2009) found that turning to sharding is not profitable in small 

cases and if performance could be enhanced by optimisation of the codebase.

Furthermore, ensuring secure tenant access to shared data is important in projects dealing with 

cloud computing. A robust SaaS application requires secure data access to ensure each user 

sees only data that belongs to their tenant.

GlassFish Server 3.1 application server from Oracle is utilised for the test case described in 

this thesis. For connecting it to the database a JDBC Connection Pool and a JDBC Resource 

are set up. The JDBC resource is connected to the pool of type javax.sql.DataSource and a 

classname set to com.mysql.jdbc.jdbc2.optional.MysqlDataSource (which is a class used 

for connecting to MySQL database that is used for storing data). Otherwise, all settings that 

are used in the project are default values given by Oracle Corporation.

When the application is deployed to the server, a class DataSourceLocator.java from a 

package com.mhgsystems.db (which is a part of MHG Systems framework) locates an object  

of type DataSource that is required for establishing connection to the database. A function that 

performs this search is listed in Appendix 1.10. After an object of type DataSource is found, 

GlassFish server can locate the database that is stored in MySQL database server. 

6.6 The database scheme used

MySQL Workbench object notation and Crow’s Foot (IE) relationship notation are used to 

describe Entity Relationship Diagrams. Providing M:N (Many-to-Many) relationships is 

achieved by decomposing them into two 1:M relationships.

As a base for designing a scheme for the database a model developed by Veli-Matti Plosila for 

MHG Systems is used (see Figure 38). In this relatively simple model web forms can be 

overwritten for populating them with work order-related data such as deadlines, latitude and 

longitude of working sites, etc.
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Figure 38. EER diagram of the database utilised in MHG Systems.

After research on possible implementation of a scheme for the test case a more complex 

model was designed. The model described on Figure 39 is used in the test case application. As 

can be seen from the Figure web forms are represented as a separated entity, unlike in the 

previous scheme described. Web forms consist of objects of type webfield. Additionally, 

support for several not-trivial featured is outlined:

1. Mother-child relationship for fields where users have ability to use a field that has already 

been used in other web forms. It copies data over and in case of changing of mother field 

child web fields also receive changes. This functionality is described with 

mother_child_webfield table.

2. Users can be granted or not granted privileges of viewing/filling web forms. More 

precisely, users within one company may have different lists of accessible web forms. 

This functionality is described with user_webform.
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3. Users can be granted or not granted privileges of seeing particular fields in a form. As an 

example, a certain user1 sees and is required to fill three fields in a certain form and user2 

sees five fields. This functionality is described with user_webfield.

4. A separate table label is present to add reuse of labels and support for localisation.

5. By separating properties connected with information stored in list-boxes, a table 

list_value is created that adds an ability to have list-boxes with unlimited numbers of 

values to pick from (e.g. more than 200 countries in predefined list).

Figure 39. EER diagram of the database for the test case.

For synchronising and storing backups of the database MySQL Workbench MWB models are 

used. These files allow forward and backward engineering of databases. As can be seen from 
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Figure 40 during synchronisation process both updates of the database and of models are 

possible.

Figure 40. Synchronisation of the database with a MySQL Workbench MWB model.

One may find a detailed list of entities in Appendix 4. The aforementioned design of the 

database for a project concentrating on multitenant web forms is not the only variation of the 

scheme. One may wish to extend the design. For example, separate entities for each type of 

the web field (radio button, checkbox, list etc.) may be described and connected to the main 

entity webfield. This approach will reduce dimensions of webfield table and it may improve 

performance. However, the design described in this study is not a production-ready model, it 

is a research case.

Is is assumed that properties added and updated of type TIMESTAMP may be used on later 

stages of advancement in the project for statistical purposes.

One may find a listing of SQL commands that are required for reproducing the database that 

is utilised for the test case application in Appendix 2.
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7 CONCLUSION

Scalable multitenancy is an important asset for development of cloud-based Software as a 

Service solutions. Nevertheless, building multitenant solutions requires facing a few technical 

challenges. Achieving a comprehensible level of multitenantness in pieces of software applies 

complicated demands that are, sometimes, hard to meet by software engineers and difficult to 

develop into finished products. Furthermore, if the system is well-balanced and stable 

achieved results are likely to exceed all expectations. Additionally, a larger amount of 

financial saves can be achieved.

Software as a Service proved to be the best platform for development of multitenant web form 

enabled applications currently available on the market. SaaS is capable of providing relatively  

inexpensive computing solutions and acceptable flexibility on software use, which is 

important for modern businesses and enterprises. Software as a Service is practically in all 

phases of lives of people nowadays. Even for writing of this work multiple SaaS solutions 

were used: cloud reference management system, cloud writing and citation tools, cloud code 

compilers etc. Our world is becoming more and more dependant on cloud-based software 

solutions with every day, yet little research has been done on various aspects of cloud 

computing. This is the main reason why such study is an important asset to the world of 

science.

Results and findings from this research attempt to claim that creation of multitenant web 

forms by using MySQL and JSF 2.0 is, indeed, possible. Moreover, the simple test case 

application that is described on pages of this research can be used as a base for development 

of a commercial application. The test case application tries to benefit to the research question 

about development of optimised and versatile multitenant web forms using JSF and MySQL.

The main focus of the test case application is creation of a module that can be attached to 

ERP systems. Such resource management systems as MHG Bioenergy are very important for 

a successful company. In his work Blokdijk (2008) claims that without a well-designed and 

programmed ERP system, a company would “suffocate” with a number of software 

applications that do not synchronise with each other. Such process may lead to a failure in 
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effective interface. This research makes an attempt to contribute into the world of SaaS and its 

“Multitenant ERP systems” branch especially.

On pages of this study an idea that creation of multitenant web forms is an achievable task 

can be found. Moreover, an author of this research thinks that such element can be an 

important asset to most modern cloud-based software solutions. Meeting requirements of all 

clients of a company can require a great deal of endurance and tight deadlines from 

company’s employees but it is hard to imagine that in a hundred years from now people will 

need to compensate on their needs while filling out web-based forms.
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APPENDICES

1: SELECTED LISTINGS OF APPLICATION CODE

The test case program has about 19200 lines of code. Because of a relatively large size of the 

project only selected pieces of code are given in this Appendix as examples. Next to 

descriptions of listings of code names of classes where they are stored are given in brackets.

1.1. Method for editing web forms (WebFormView.java)

/**
* Function called when web form needs to be edited.
*
* @return String
* @throws DataAccessException
*/
public String editWebForm() throws DataAccessException {
WebFormLogic webFormLogic = (WebFormLogic) 
LogicFactory.getNewGenericLogic(WebForm.class),
LabelLogic labelLogic = (LabelLogic) LogicFactory.getNewGenericLogic(Label.class),
WebFieldLogic webFieldLogic = (WebFieldLogic) 
LogicFactory.getNewGenericLogic(WebField.class),
UserWebFieldLogic userWebFieldLogic = (UserWebFieldLogic) 
LogicFactory.getNewGenericLogic(UserWebField.class),
UserWebFormLogic userWebFormLogic = (UserWebFormLogic) 
LogicFactory.getNewGenericLogic(UserWebForm.class),
MotherChildWebFieldLogic motherChildWebFieldLogic = new MotherChildWebFieldLogic(),
LogicResponse logicResponse = null,
boolean success = true,

if (getSessionBean().isDeleteForm()) {
// Delete web fields of the form that is to be deleted.
WebField webField = new WebField(),
webField.setWebformId(getSessionBean().getWebForm().getId()),
List<WebField> fieldsDelete = webFieldLogic.list(webField, getUser()),
for (WebField field : fieldsDelete) {
    // Delete user rights for web field.
    UserWebField userWebField = new UserWebField(),
    userWebField.setWebFieldId(field.getId()),
    logicResponse = userWebFieldLogic.deleteAllUsersForForm(userWebField, null),
    if (!logicResponse.isSucceeded()) {
        success = false,
        break,
    }
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    // Delete mother child assignments for web field.
    MotherChildWebField motherChild = new MotherChildWebField(),
    motherChild.setChildId(field.getId()),
    logicResponse = motherChildWebFieldLogic.deleteAllForChild(motherChild, null),
    if (!logicResponse.isSucceeded()) {
        success = false,
        break,
    }
    motherChild.setMotherId(field.getId()),
    logicResponse = motherChildWebFieldLogic.deleteAllForMother(motherChild, null),
    if (!logicResponse.isSucceeded()) {
        success = false,
        break,
    }
    // Delete web field
    logicResponse = webFieldLogic.delete(field, null),
    if (!logicResponse.isSucceeded()) {
        success = false,
        break,
    }
}
// Delete user rights for web form.
UserWebForm userWebForm = new UserWebForm(),
userWebForm.setWebFormId(getSessionBean().getWebForm().getId()),
logicResponse = userWebFormLogic.deleteAllUsersForForm(userWebForm, null),
if (!logicResponse.isSucceeded()) {
    success = false,
}
// Delete form if delete was checked.
logicResponse = webFormLogic.delete(getSessionBean().getWebForm(), null),
if (!logicResponse.isSucceeded()) {
    success = false,
}
// If no errors return to the view. Otherwise, show error message.
if (success) {
    getSessionBean().setConfirmation("formDeleted"),
    return "confirmation",
} else {
    getSessionBean().getMessageHandler().createMessage("errorEditWebForm"),
    return null,
}
} else {
// Update form.
// Toggle captcha
if (getSessionBean().getWebForm().isCaptchaRequired()) {
    getSessionBean().getWebForm().setCaptcha(1),
} else {
    getSessionBean().getWebForm().setCaptcha(0),
}
// Toggle can be mother
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if (getSessionBean().getWebForm().isCanBeMotherBool()) {
    getSessionBean().getWebForm().setCanBeMother(1),
} else {
    getSessionBean().getWebForm().setCanBeMother(0),
}
logicResponse = webFormLogic.update(getSessionBean().getWebForm(), null),
if (!logicResponse.isSucceeded()) {
    success = false,
}
// Add new web fields.
for (WebField newField : getSessionBean().newWebFieldsInForm) {
    if (!newField.getLabel().getEn().isEmpty()) {
        logicResponse = labelLogic.insert(newField.getLabel(), null),
        if (!logicResponse.isSucceeded()) {
            success = false,
            break,
        }
        int newLabelId = labelLogic.getMaxLabelId(),
        newField.setLabelId(newLabelId),
        newField.setWebformId(getSessionBean().getWebForm().getId()),
        newField.setTenantId(getSessionBean().getUser().getTenantId()),
        logicResponse = webFieldLogic.insert(newField, null),
        if (!logicResponse.isSucceeded()) {
            success = false,
            break,
        }
        int newWebFieldId = webFieldLogic.getMaxWebFieldId(),
        newField.setId(newWebFieldId),
        // Allow users of the tenant use the web field.
        logicResponse = userWebFieldLogic.insertForAllTenantUsers(newField, 
getSessionBean().getTenant()),
        if (!logicResponse.isSucceeded()) {
            success = false,
        }
    }
}
// Update old fields.
for (WebField field : getSessionBean().webFieldsInFormForUser) {
    if (field.isToBeDeleted()) {
        // Delete field if required.
        // Delete user rights for web field.
        UserWebField userWebField = new UserWebField(),
        userWebField.setWebFieldId(field.getId()),
        logicResponse = userWebFieldLogic.deleteAllUsersForForm(userWebField, 
null),
        if (!logicResponse.isSucceeded()) {
            success = false,
            break,
        }
        // Delete mother child assignments for web field.
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        MotherChildWebField motherChild = new MotherChildWebField(),
        motherChild.setChildId(field.getId()),
        logicResponse = motherChildWebFieldLogic.deleteAllForChild(motherChild, 
null),
        if (!logicResponse.isSucceeded()) {
            success = false,
            break,
        }
        motherChild.setMotherId(field.getId()),
        logicResponse = motherChildWebFieldLogic.deleteAllForMother(motherChild, 
null),
        if (!logicResponse.isSucceeded()) {
            success = false,
            break,
        }
        // Delete web field
        logicResponse = webFieldLogic.delete(field, null),
        if (!logicResponse.isSucceeded()) {
            success = false,
            break,
        }
    } else {
        // Update field.
        logicResponse = webFieldLogic.update(field, null),
        if (!logicResponse.isSucceeded()) {
            success = false,
            break,
        }
        logicResponse = labelLogic.update(field.getLabel(), null),
        if (!logicResponse.isSucceeded()) {
            success = false,
            break,
        }
        // Update child field. Possibly recursion can be used here.
        // Check if field is a mother from another field.
        MotherChildWebField tempMotherChildWebField = new MotherChildWebField(),
        MotherChildWebField motherChildWebField = new MotherChildWebField(),
        motherChildWebField.setMotherId(field.getId()),
        tempMotherChildWebField = null, // Set to null after check fo child above.
        tempMotherChildWebField = 
motherChildWebFieldLogic.checkIfFieldIsMother(motherChildWebField, getUser()),
        if (tempMotherChildWebField != null) { // Web field is a mother
            // Get list of all fields that are children to the field.
            List<MotherChildWebField> listChildren =
                    
motherChildWebFieldLogic.listChildredToMother(motherChildWebField, 
getSessionBean().getUser()),
            // Loop through list of fields and update values.
            for (MotherChildWebField child : listChildren) {
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                WebField childField = webFieldLogic.get(child.getChildId(), 
getSessionBean().getUser()),
                // Set new values
                childField.setInputWidth(field.getInputWidth()),
                childField.setInputHeight(field.getInputHeight()),
                childField.setInputSize(field.getInputSize()),
                childField.setTextareaCol(field.getTextareaCol()),
                childField.setTextareaRow(field.getTextareaRow()),
                childField.setType(field.getType()),
                // Update child field
                logicResponse = webFieldLogic.update(childField, null),
                if (!logicResponse.isSucceeded()) {
                    success = false,
                    break,
                }
            }
        }
    }
}
// Update user rights for the form
UserWebForm userWebForm = new UserWebForm(),
userWebForm.setWebFormId(getSessionBean().getWebForm().getId()),
// Delete all user rights for the form.
logicResponse = userWebFormLogic.deleteAllUsersForForm(userWebForm, 
getSessionBean().getUser()),
if (!logicResponse.isSucceeded()) {
    success = false,
}
// Add updated rights.
userWebForm.setWebFormId(getSessionBean().getWebForm().getId()),
for (String userRight : userRightsSelected) {
    userWebForm.setUserId(Integer.parseInt(userRight)),
    logicResponse = userWebFormLogic.insert(userWebForm, 
getSessionBean().getAccount()),
    if (!logicResponse.isSucceeded()) {
        success = false,
        break,
    }
}
// If no errors return to the view. Otherwise, show error message.
if (success) {
    getSessionBean().setConfirmation("formEdited"),
    return "confirmation",
} else {
    getSessionBean().getMessageHandler().createMessage("errorEditWebForm"),
    return null,
}
}
}
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1.2. Method for creating new “child” web forms (WebFormView.java)

/**
* Create new Web Form based on another web form.
*
* @return String
* @throws DataAccessException
*/
public String newChildWebForm() throws DataAccessException {
    // Logic class declarations.
    WebFormLogic webFormLogic = (WebFormLogic) 
LogicFactory.getNewGenericLogic(WebForm.class),
    LabelLogic labelLogic = (LabelLogic) 
LogicFactory.getNewGenericLogic(Label.class),
    WebFieldLogic webFieldLogic = (WebFieldLogic) 
LogicFactory.getNewGenericLogic(WebField.class),
    UserWebFormLogic userWebFormLogic = (UserWebFormLogic) 
LogicFactory.getNewGenericLogic(UserWebForm.class),
    UserWebFieldLogic userWebFieldLogic = (UserWebFieldLogic) 
LogicFactory.getNewGenericLogic(UserWebField.class),
    MotherChildWebFieldLogic motherChildWebFieldLogic = (MotherChildWebFieldLogic) 
LogicFactory.getNewGenericLogic(MotherChildWebField.class),
    boolean success = true, // Trigger of errors.
    // Insert new web form.
    LogicResponse logicResponse = 
webFormLogic.insert(getSessionBean().getWebForm(), null),
    if (!logicResponse.isSucceeded()) {
        success = false,
    }
    int newWebFormId = webFormLogic.getMaxWebFormId(),
    getSessionBean().getWebForm().setId(newWebFormId),

    // Allow users of the tenant use the web form.
    logicResponse = 
userWebFormLogic.insertForAllTenantUsers(getSessionBean().getWebForm(), 
getSessionBean().getTenant()),
    if (!logicResponse.isSucceeded()) {
        success = false,
    }
    // Add web fields from the mother web form.
    for (WebField newField : getSessionBean().webFieldsInFormMotherForm) {
        if (!newField.getLabel().getEn().isEmpty()) {
            logicResponse = labelLogic.insert(newField.getLabel(), null),
            if (!logicResponse.isSucceeded()) {
                success = false,
                break,
            }
            int newLabelId = labelLogic.getMaxLabelId(),
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            newField.setLabelId(newLabelId),
            newField.setWebformId(newWebFormId),
            newField.setTenantId(getSessionBean().getUser().getTenantId()),
            logicResponse = webFieldLogic.insert(newField, null),
            if (!logicResponse.isSucceeded()) {
                success = false,
                break,
            }
            int newWebFieldId = webFieldLogic.getMaxWebFieldId(),
            newField.setIdInMotherForm(newField.getId()),
            newField.setId(newWebFieldId),
            // Allow users of the tenant use the web field.
            logicResponse = userWebFieldLogic.insertForAllTenantUsers(newField, 
getSessionBean().getTenant()),
            if (!logicResponse.isSucceeded()) {
                success = false,
            }
            // Determine if a web filed is generated based on another field (child 
set to TRUE).
            if (newField.isChild()) {
                MotherChildWebField motherChildWebField = new 
MotherChildWebField(),
                motherChildWebField.setMotherId(newField.getIdInMotherForm()),
                motherChildWebField.setChildId(newField.getId()),

                // Insert mother-child pair. No logic response is retrieved because 
breaks in logic it generates at this place. TODO fix it.
                motherChildWebFieldLogic.insert(motherChildWebField, 
getSessionBean().getUser()),
            }
        }
    }
    // Add new web fields.
    for (WebField newField : getSessionBean().newWebFieldsInForm) {
        if (!newField.getLabel().getEn().isEmpty()) {
            logicResponse = labelLogic.insert(newField.getLabel(), null),
            if (!logicResponse.isSucceeded()) {
                success = false,
                break,
            }
            int newLabelId = labelLogic.getMaxLabelId(),
            newField.setLabelId(newLabelId),
            newField.setWebformId(newWebFormId),
            newField.setTenantId(getSessionBean().getUser().getTenantId()),
            logicResponse = webFieldLogic.insert(newField, null),
            if (!logicResponse.isSucceeded()) {
                success = false,
                break,
            }
            int newWebFieldId = webFieldLogic.getMaxWebFieldId(),
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            newField.setId(newWebFieldId),
            // Allow users of the tenant use the web field.
            logicResponse = userWebFieldLogic.insertForAllTenantUsers(newField, 
getSessionBean().getTenant()),
            if (!logicResponse.isSucceeded()) {
                success = false,
            }
        }
    }
    // If there were no errors, go back to edit web form view.
    if (success) {
        
getSessionBean().getMessageHandler().createMessage("editWebFormSuccessful"),
        return "editWebForm",
    } else {
        getSessionBean().getMessageHandler().createMessage("errorEditWebForm"),
        return null,
    }
}

1.3. Method for parsing a web form (WebFormView.java)

/**
* Parse web form via f:param. e.g. <f:param name="idWork"...
*
* @return String
*/
public String parseFillWebForm() {
    FacesContext context = FacesContext.getCurrentInstance(),
    Map requestMap = context.getExternalContext().getRequestParameterMap(),
    String idWork = (String) requestMap.get("idWork"),
    int id = Integer.parseInt(idWork),
    WebFormLogic WebFormLogic = (WebFormLogic) 
LogicFactory.getNewGenericLogic(WebForm.class),
    getSessionBean().setWebForm(WebFormLogic.get(id, getUser())),
    if (getSessionBean().getWebForm().getNumberWebfields() < 1) {
        getSessionBean().getMessageHandler().createMessage("noWebFields"),
        return "fillWebForm",
    } else {
        return "fillWebForm",
    }
}
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1.4. Method for generating a list of user rights for a form (WebFormView.java)

/**
* Get the value of userRightsOptions
*
* @return the value of userRightsOptions
*/
public List getUserRightsOptions() {
if (userRightsOptions == null) {
    userRightsOptions = new ArrayList(),
    AccountLogic accountLogic = (AccountLogic) 
LogicFactory.getNewGenericLogic(Account.class),
    Account tempUser = new Account(),
    tempUser.setTenantId(getSessionBean().getTenant().getId()),
    tempUser.setVerified(-1),
    // Get list of all users for a given form.
    List<Account> listUsers = accountLogic.list(tempUser, 
getSessionBean().getTenant()),
    Logger.getInstance().log("tenant " + tempUser.getTenantId()),
    Logger.getInstance().log("size " + listUsers.size()),
    for (Account user : listUsers) {
        // Filter users from other tenants.
        if (user.getTenantId() != getSessionBean().getTenant().getId()) {
            continue,
        }
        // Build name of the user: ID-FIRST-SECOND.
        String nameUser = Integer.toString(user.getId()) + ": "
        + user.getFirstname() + " " + user.getSurname(), // Add id first second.
        userRightsOptions.add(new SelectItem(user.getId(), nameUser)), // TODO: add 
support for localisation.
    }
}
return userRightsOptions,
}

1.5. Method for validating email address (EmailValidator.java)

public void validate(FacesContext context,
        UIComponent toValidate,
        Object value) {
    try {
        String enteredEmail = (String) value,
        //Set the email pattern string
        Pattern p = Pattern.compile(".+@.+\\.[a-z]+"),
        //Match the given string with the pattern
        Matcher m = p.matcher(enteredEmail),
        //Check whether match is not found
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        ValidationBean validationBean = new ValidationBean(),
        if (!m.matches()) {
            throw new Exception("regex"),
        } else if (!validationBean.checkFreeEmail(enteredEmail)) {
            //Check if email is availiable
            throw new Exception("taken"),
        }
        ((UIInput) toValidate).setValid(true),
    } catch (Exception ex) {
        if (ex.getMessage().equals("taken")) {
            //Email is taken
            ((UIInput) toValidate).setValid(false),
            FacesMessage message = new FacesMessage(ERROR_MESSAGE.replaceAll("\\{0\
\}", this.uiTextHandler.getText("emailIsTaken"))),
            context.addMessage(toValidate.getClientId(context), message),
        } else if (ex.getMessage().equals("regex")) {
            //Regex validation failed
            ((UIInput) toValidate).setValid(false),
            FacesMessage message = new FacesMessage(ERROR_MESSAGE.replaceAll("\\{0\
\}", this.uiTextHandler.getText("notValidEmail"))),
            context.addMessage(toValidate.getClientId(context), message),
        }
    }
}

1.6. Methods for fetching lists of users (AccountDao.java)

/**
* Get a list of accounts from database according to searchAccount.
* When user is not known.
*
* @param searchAccount
* @param tenant
* @param options
* @param listOptions
* @throws DataAccessException
*/
public List<Account> list(Account searchAccount, Tenant tenant, Map options, 
ListOptions listOptions) throws DataAccessException {
    //Getting list of users
    this.searchOptions = new ArrayList<SearchOption>(),
    if (searchAccount.getVerified() != -1)
        searchOptions.add(new SearchOption("verified", new 
Integer(searchAccount.getVerified()), SearchOption.EQUAL)),
    String sql = "SELECT * FROM account WHERE tenant_id=:tenant_id "
            + SQLFactory.generateSQL(searchOptions, true)
            + " ORDER BY user_id ASC",
    MapSqlParameterSource parameters = new MapSqlParameterSource(),
    parameters.addValue("tenant_id", tenant.getId()),
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    return jdbcTemplate.query(sql, parameters, new AccountRowMapper()),
}

/**
* Get list of accounts from database according to searchAccount with limitations on 
* the size of returned list.
*
* @param limitStart
* @param limitLength
* @param searchAccount
* @param tenant
* @param options
* @param listOptions
* @throws DataAccessException
*/
public List<Account> list(int limitStart, int limitLength, Account searchAccount, 
Tenant tenant, Map options, ListOptions listOptions) throws DataAccessException {
    //Getting list of users
    this.searchOptions = new ArrayList<SearchOption>(),
    if (searchAccount.getVerified() != -1)
        searchOptions.add(new SearchOption("verified", new 
Integer(searchAccount.getVerified()), SearchOption.EQUAL)),
    String sql = "SELECT * FROM account WHERE tenant_id=:tenant_id "
            + SQLFactory.generateSQL(searchOptions, true)
            + " ORDER BY user_id ASC LIMIT "
            + limitStart
            + ", "
            + limitLength,
    MapSqlParameterSource parameters = new MapSqlParameterSource(),
    parameters.addValue("tenant_id", tenant.getId()),
    return jdbcTemplate.query(sql, parameters, new AccountRowMapper()),
}

Where, String sql is an SQL statements that is executed using jdbcTemplate.query(sql, 

parameters, new AccountRowMapper()) method, which returns a list of objects of type 

Account that is afterwards returned from the list method.

1.7. Method for editing web field privileges (WebFormView.java)

/**
* Edit user privileges for getSessionBean().getWebField().
* 
* @return
*/
public String editWebFieldRights() {
UserWebFieldLogic userWebFieldLogic = new UserWebFieldLogic(),
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// Update user rights for the form
UserWebField userWebField = new UserWebField(),
userWebField.setWebFieldId(getSessionBean().getWebField().getId()),
// Delete all user rights for the form.
boolean success = true,
LogicResponse logicResponse = userWebFieldLogic.deleteAllUsersForForm(userWebField, 
getSessionBean().getUser()),
if (!logicResponse.isSucceeded()) {
    success = false,
}
// Add updated rights.
userWebField.setWebFieldId(getSessionBean().getWebField().getId()),
for (String userRight : userRightsWebFieldSelected) {
    userWebField.setUserId(Integer.parseInt(userRight)),
    logicResponse = userWebFieldLogic.insert(userWebField, 
getSessionBean().getAccount()),
    if (!logicResponse.isSucceeded()) {
        success = false,
        break,
    }
}
if (success) {
    return "closePopup",
} else {
    getSessionBean().getMessageHandler().createMessage("errorEditWebField"),
    return null,
}
}

1.8. Login view and its backing bean (login.xhtml, Login.java)

<h:body>
<div id="content">
<ui:include src="include/hmenu.xhtml"/>
<span id="contentMain"  class="adminContentMain">
    <h:form onkeypress="if (event.keyCode == 13) this.submit(),">
        <div id="box" class="loginBox">
            <div id="boxHeader"><h:outputText value="#{ui.loginToTheSystem}"/></
div>
            <div id="loginBoxContent">
                <h:panelGrid columns="2" styleClass="loginTable" 
columnClasses="loginCol1,loginCol2">
                    <f:facet name="header">
                        <ui:include src="include/message.xhtml"/>
                    </f:facet>
                    <h:outputLabel id="passwordLbl" value="#{ui.password}"/>
                    <h:inputSecret id="password" value="#{login.password}"/>
                    <h:outputLabel id="rememberMe" value="#{ui.rememberMe}"/>
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                    <h:selectBooleanCheckbox title="Remember Me" 
value="#{login.rememberMe}" />
                    <h:outputLabel value=" "/>
                    <h:commandButton styleClass="buttonSubmit" 
value="#{ui.loginBUTTON}" action="#{login.loginAction}" id="buttonSubmit" />
                </h:panelGrid>
                <div class="alignedCenter">
                    <br />
                    <br />
                    <h:commandLink value="#{ui.register}" 
action="#{login.registerAction}"/>
                </div>
            </div>
        </div>
    </h:form>
</span>
</div>
</h:body>

Here f:facet is a tag used by JSF framework, this framework uses f: and ui: to describe its 

custom elements and h: for describing common HTML tags. Further, PrimeFaces framework 

is utilised to render custom complex elements of GUI, such as sliders and colour pickers. In 

this example lines outline web field that receive values from a user and then pass them to a 

corresponding Java class in UI package. For example, <h:inputSecret id="password" 

value="#{login.password}"/> describes an input field used for inputting sensitive 

information such as user passwords (it hides entered symbols by showing asterisks ‘*’ 

instead). #{login.password} part of the line indicates that a value is passed to a variable 

password. This variable is described as a property in Login.java:

private String password,

/**
    * Get the value of password
    *
    * @return the value of password
    */
public String getPassword() {
    return password,
}

/**
    * Set the value of password
    *
    * @param password new value of password
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    */
public void setPassword(String password) {
    this.password = password,
}

1.9. Method that manages users logging in (Login.java)

/**
* Call AccountLogic to login to the system
*
* @return String view to navigate
*/
public String loginAction() {

    AccountLogic accountLogic = 
(AccountLogic)LogicFactory.getNewGenericLogic(Account.class),
    Account account = accountLogic.get(username, password),

    if (account != null) {
        //Account found
        getSessionBean().setAccount(account),
        getSessionBean().setUser(accountLogic.createUser(account)),
        TenantLogic tenantLogic = 
(TenantLogic)LogicFactory.getNewGenericLogic(Tenant.class),
        Tenant tenant = tenantLogic.get(account.getTenantId()),
        Logger.getInstance().log("tenant name: " + tenant.getId()),
        getSessionBean().setTenant(tenant),            
        getSessionBean().setLoggedIn(true),
        // Save the userid and password in a cookie
        FacesContext facesContext = FacesContext.getCurrentInstance(),
        Cookie btuser = new Cookie("btuser", username),
        Cookie btpasswd = new Cookie("btpasswd", password),
        if (rememberMe == false) {
            rememberMe1 = "false",
        } else {
            rememberMe1 = "true",
        }
        Cookie btremember = new Cookie("btremember", rememberMe1),
        btuser.setMaxAge(3600),
        btpasswd.setMaxAge(3600),
        ((HttpServletResponse) 
facesContext.getExternalContext().getResponse()).addCookie(btuser),
        ((HttpServletResponse) 
facesContext.getExternalContext().getResponse()).addCookie(btpasswd),
        ((HttpServletResponse) 
facesContext.getExternalContext().getResponse()).addCookie(btremember),
        return "home",
    } else {
        getSessionBean().getMessageHandler().createMessage("wrongUsername"),
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        return null,
    }
}

In this piece of code two possibilities are possible: either a user provided correct credentials 

(username, password) or they were wrong. If the first option holds true, than the username 

and the password are remembered as browser cookies (providing the user clicked on 

“Remember me” option), as described by lines Cookie btuser = new Cookie("btuser", 

username) and Cookie btpasswd = new Cookie("btpasswd", password). If either the 

username or the password (or both) are incorrect, the user is redirected back to the login 

prompt, where an error message is shown. Also, an instance of Account.java class is used in 

the described example. The line Account account = accountLogic.get(username, password) 

invokes a get method in the logic class that in its turn calls a get method in the DAO class, 

which passes back either an object of type Account or raises an exception.

1.10. Method for locating DataSource object (DataSourceLocator.java)

/**
* Get DataSource object with given name
* @param name of the data source
* @return DataSource object
*/
public DataSource getDataSource(String name) {
    DataSource dataSource = null,
    try {
        //Try to find DataSource from cache
        dataSource = cache.get(name),

        //DataSource not found from cache. Let's try to add it to the cache
        if (dataSource == null) {
            InitialContext initialContext = new InitialContext(),
            dataSource = (DataSource) initialContext.lookup(JNDI_PREFIX + name),
            if (dataSource == null) {
                throw new Exception("DataSource not found with name " + name),
            }

            if (!cache.containsKey(name)) {
                Logger.getInstance().log("DataSource " + name + " added to the 
cache"),
                cache.put(name, dataSource),
            }
        }
        return dataSource,
    } catch (Exception ex) {
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        Logger.getInstance().log(ex),
        return null,
    }
}
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2: SQL STATEMENTS FOR CREATION OF THE DATABASE

SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0;
SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0;
SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='TRADITIONAL';
CREATE SCHEMA IF NOT EXISTS `multitenant_webforms` DEFAULT CHARACTER SET latin1 ;
USE `multitenant_webforms` ;

-- -----------------------------------------------------
-- Table `multitenant_webforms`.`tenant`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `multitenant_webforms`.`tenant` ;

CREATE  TABLE IF NOT EXISTS `multitenant_webforms`.`tenant` (
  `tenant_id` INT(10) NOT NULL AUTO_INCREMENT ,
  `name` VARCHAR(100) NOT NULL ,
  `added` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ,
  `updated` TIMESTAMP NULL DEFAULT NULL ,
  `number_webforms_per_page` INT(10) NOT NULL DEFAULT '10' ,
  `number_webforms_sidebar` INT(10) NOT NULL DEFAULT '5' ,
  `number_webforms_verified` INT(10) NOT NULL DEFAULT '20' ,
  `number_webforms_unverified` VARCHAR(45) NOT NULL DEFAULT '3' ,
  `instance_url` CHAR(200) NULL DEFAULT NULL ,
  `api_key` CHAR(36) NULL DEFAULT NULL ,
  `security_key` CHAR(36) NULL DEFAULT NULL ,
  PRIMARY KEY (`tenant_id`) )
ENGINE = InnoDB
AUTO_INCREMENT = 3
DEFAULT CHARACTER SET = utf8;

-- -----------------------------------------------------
-- Table `multitenant_webforms`.`account`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `multitenant_webforms`.`account` ;

CREATE  TABLE IF NOT EXISTS `multitenant_webforms`.`account` (
  `user_id` INT(10) NOT NULL AUTO_INCREMENT ,
  `username` VARCHAR(65) NOT NULL ,
  `password` CHAR(32) NOT NULL ,
  `firstname` VARCHAR(40) NOT NULL ,
  `surname` VARCHAR(40) NOT NULL ,
  `email` VARCHAR(200) NOT NULL ,
  `avatar` VARCHAR(100) NULL DEFAULT NULL ,
  `admin` TINYINT(1) NOT NULL DEFAULT '0' ,
  `added` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE 
CURRENT_TIMESTAMP ,
  `updated` TIMESTAMP NULL DEFAULT NULL ,

APPENDIX 2(1)



  `tenant_id` INT(10) NULL DEFAULT NULL ,
  `verified` TINYINT(1) NULL DEFAULT NULL ,
  PRIMARY KEY (`user_id`) ,
  UNIQUE INDEX `username_UNIQUE` (`username` ASC) ,
  INDEX `user_tenant` (`tenant_id` ASC) ,
  CONSTRAINT `user_tenant`
    FOREIGN KEY (`tenant_id` )
    REFERENCES `multitenant_webforms`.`tenant` (`tenant_id` )
    ON DELETE NO ACTION
    ON UPDATE NO ACTION)
ENGINE = InnoDB
AUTO_INCREMENT = 8
DEFAULT CHARACTER SET = latin1;

-- -----------------------------------------------------
-- Table `multitenant_webforms`.`label`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `multitenant_webforms`.`label` ;

CREATE  TABLE IF NOT EXISTS `multitenant_webforms`.`label` (
  `label_id` INT(10) NOT NULL AUTO_INCREMENT ,
  `en` VARCHAR(200) NULL DEFAULT NULL ,
  `ru` VARCHAR(200) NULL DEFAULT NULL ,
  `fi` VARCHAR(200) NULL DEFAULT NULL ,
  `uk` VARCHAR(200) NULL DEFAULT NULL ,
  PRIMARY KEY (`label_id`) ,
  INDEX `webfield_table11` (`ru` ASC) )
ENGINE = InnoDB
AUTO_INCREMENT = 162
DEFAULT CHARACTER SET = latin1;

-- -----------------------------------------------------
-- Table `multitenant_webforms`.`preset_field`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `multitenant_webforms`.`preset_field` ;

CREATE  TABLE IF NOT EXISTS `multitenant_webforms`.`preset_field` (
  `preset_field_id` INT(10) NOT NULL AUTO_INCREMENT ,
  `name` VARCHAR(200) NOT NULL ,
  `type` VARCHAR(45) NOT NULL DEFAULT 'text_field' ,
  `popup_message` VARCHAR(200) NULL DEFAULT NULL ,
  `default_value` VARCHAR(200) NULL DEFAULT NULL ,
  `colour` VARCHAR(45) NULL DEFAULT NULL ,
  `label_font` VARCHAR(45) NULL DEFAULT NULL ,
  `label_font_size` INT(10) NULL DEFAULT NULL ,
  `input_width` INT(10) NULL DEFAULT NULL ,
  `input_height` INT(10) NULL DEFAULT NULL ,
  `input_size` INT(10) NULL DEFAULT NULL ,
  `label_id` INT(10) NOT NULL ,
  `textarea_col` INT(10) NULL DEFAULT NULL ,
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  `textarea_row` INT(10) NULL DEFAULT NULL ,
  PRIMARY KEY (`preset_field_id`) ,
  INDEX `preset_field_label` (`label_id` ASC) ,
  CONSTRAINT `preset_field_label`
    FOREIGN KEY (`label_id` )
    REFERENCES `multitenant_webforms`.`label` (`label_id` )
    ON DELETE NO ACTION
    ON UPDATE NO ACTION)
ENGINE = InnoDB
AUTO_INCREMENT = 3
DEFAULT CHARACTER SET = latin1;

-- -----------------------------------------------------
-- Table `multitenant_webforms`.`webfield`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `multitenant_webforms`.`webfield` ;

CREATE  TABLE IF NOT EXISTS `multitenant_webforms`.`webfield` (
  `webfield_id` INT(10) NOT NULL AUTO_INCREMENT ,
  `type` INT(10) NOT NULL DEFAULT '1' ,
  `popup_message` VARCHAR(200) NULL DEFAULT NULL ,
  `default_value` VARCHAR(200) NULL DEFAULT NULL ,
  `colour` VARCHAR(45) NULL DEFAULT NULL ,
  `label_id` INT(10) NULL DEFAULT NULL ,
  `label_font` VARCHAR(150) NULL DEFAULT 'Cambria,''Times New Roman'',''Nimbus 
Roman No9 L'',''Freeserif'',Times,serif' ,
  `label_font_size` INT(10) NULL DEFAULT '12' ,
  `input_width` INT(10) NULL DEFAULT '20' ,
  `input_height` INT(10) NULL DEFAULT NULL ,
  `input_size` INT(10) NULL DEFAULT '50' ,
  `required` TINYINT(1) NOT NULL ,
  `added` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE 
CURRENT_TIMESTAMP ,
  `updated` TIMESTAMP NULL DEFAULT NULL ,
  `position_in_webform` INT(10) NOT NULL ,
  `preset_field_id` INT(10) NULL DEFAULT NULL ,
  `webform_id` INT(10) NOT NULL ,
  `tenant_id` INT(10) NOT NULL ,
  `textarea_col` INT(10) NULL DEFAULT '40' ,
  `textarea_row` VARCHAR(45) NULL DEFAULT '5' ,
  `default_value1` VARCHAR(200) NULL DEFAULT NULL ,
  `default_value2` VARCHAR(200) NULL DEFAULT NULL ,
  `default_value3` VARCHAR(200) NULL DEFAULT NULL ,
  `default_value4` VARCHAR(200) NULL DEFAULT NULL ,
  `default_value5` VARCHAR(200) NULL DEFAULT NULL ,
  PRIMARY KEY (`webfield_id`) ,
  INDEX `webfield_preset_field` (`preset_field_id` ASC) ,
  INDEX `webfield_webform` (`webform_id` ASC) ,
  INDEX `webfield_tenant` (`tenant_id` ASC) ,
  INDEX `webfield_label` (`label_id` ASC) ,
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  INDEX `webfidl_label` (`label_id` ASC) ,
  CONSTRAINT `webfield_label`
    FOREIGN KEY (`label_id` )
    REFERENCES `multitenant_webforms`.`label` (`label_id` )
    ON DELETE NO ACTION
    ON UPDATE NO ACTION,
  CONSTRAINT `webfield_preset_field`
    FOREIGN KEY (`preset_field_id` )
    REFERENCES `multitenant_webforms`.`preset_field` (`preset_field_id` )
    ON DELETE NO ACTION
    ON UPDATE NO ACTION,
  CONSTRAINT `webfield_tenant`
    FOREIGN KEY (`tenant_id` )
    REFERENCES `multitenant_webforms`.`tenant` (`tenant_id` )
    ON DELETE NO ACTION
    ON UPDATE NO ACTION)
ENGINE = InnoDB
AUTO_INCREMENT = 164
DEFAULT CHARACTER SET = latin1;

-- -----------------------------------------------------
-- Table `multitenant_webforms`.`list_value`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `multitenant_webforms`.`list_value` ;

CREATE  TABLE IF NOT EXISTS `multitenant_webforms`.`list_value` (
  `list_value_id` INT(10) NOT NULL AUTO_INCREMENT ,
  `value` VARCHAR(200) NOT NULL ,
  `text` VARCHAR(200) NOT NULL ,
  `position_in_list` INT(10) NOT NULL ,
  `default_value` TINYINT(1) NOT NULL DEFAULT '0' ,
  `added` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE 
CURRENT_TIMESTAMP ,
  `updated` TIMESTAMP NULL DEFAULT NULL ,
  `en` VARCHAR(200) NULL DEFAULT NULL ,
  `fi` VARCHAR(200) NULL DEFAULT NULL ,
  `ru` VARCHAR(200) NULL DEFAULT NULL ,
  `uk` VARCHAR(200) NULL DEFAULT NULL ,
  `webfield_id` INT(10) NULL DEFAULT NULL ,
  `preset_field_id` INT(10) NULL DEFAULT NULL ,
  PRIMARY KEY (`list_value_id`) ,
  INDEX `list_value_webfield` (`webfield_id` ASC) ,
  INDEX `list_value_preset_field` (`preset_field_id` ASC) ,
  CONSTRAINT `list_value_preset_field`
    FOREIGN KEY (`preset_field_id` )
    REFERENCES `multitenant_webforms`.`preset_field` (`preset_field_id` )
    ON DELETE NO ACTION
    ON UPDATE NO ACTION,
  CONSTRAINT `list_value_webfield`
    FOREIGN KEY (`webfield_id` )
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    REFERENCES `multitenant_webforms`.`webfield` (`webfield_id` )
    ON DELETE NO ACTION
    ON UPDATE NO ACTION)
ENGINE = InnoDB
AUTO_INCREMENT = 52
DEFAULT CHARACTER SET = latin1;

-- -----------------------------------------------------
-- Table `multitenant_webforms`.`mother_child_webfield`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `multitenant_webforms`.`mother_child_webfield` ;

CREATE  TABLE IF NOT EXISTS `multitenant_webforms`.`mother_child_webfield` (
  `mother_id` INT(10) NOT NULL ,
  `child_id` INT(10) NOT NULL ,
  PRIMARY KEY (`mother_id`, `child_id`) ,
  INDEX `mother` (`mother_id` ASC) ,
  INDEX `child` (`child_id` ASC) ,
  CONSTRAINT `child`
    FOREIGN KEY (`child_id` )
    REFERENCES `multitenant_webforms`.`webfield` (`webfield_id` )
    ON DELETE NO ACTION
    ON UPDATE NO ACTION,
  CONSTRAINT `mother`
    FOREIGN KEY (`mother_id` )
    REFERENCES `multitenant_webforms`.`webfield` (`webfield_id` )
    ON DELETE NO ACTION
    ON UPDATE NO ACTION)
ENGINE = InnoDB
DEFAULT CHARACTER SET = latin1;

-- -----------------------------------------------------
-- Table `multitenant_webforms`.`received_value`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `multitenant_webforms`.`received_value` ;

CREATE  TABLE IF NOT EXISTS `multitenant_webforms`.`received_value` (
  `received_value_id` INT(10) NOT NULL AUTO_INCREMENT ,
  `value` VARCHAR(1000) NOT NULL ,
  `model` VARCHAR(100) NULL DEFAULT NULL COMMENT 'Model that this data is assigned 
to.' ,
  `added` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE 
CURRENT_TIMESTAMP ,
  `webfield_id` INT(10) NOT NULL ,
  `user_id` INT(10) NOT NULL ,
  PRIMARY KEY (`received_value_id`) ,
  INDEX `received_value_webfield_tenant` (`webfield_id` ASC) ,
  INDEX `received_value_user` (`user_id` ASC) ,
  CONSTRAINT `received_value_user`
    FOREIGN KEY (`user_id` )
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    REFERENCES `multitenant_webforms`.`account` (`user_id` )
    ON DELETE NO ACTION
    ON UPDATE NO ACTION,
  CONSTRAINT `received_value_webfield`
    FOREIGN KEY (`webfield_id` )
    REFERENCES `multitenant_webforms`.`webfield` (`webfield_id` )
    ON DELETE NO ACTION
    ON UPDATE NO ACTION)
ENGINE = InnoDB
DEFAULT CHARACTER SET = latin1;

-- -----------------------------------------------------
-- Table `multitenant_webforms`.`user_webfield`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `multitenant_webforms`.`user_webfield` ;

CREATE  TABLE IF NOT EXISTS `multitenant_webforms`.`user_webfield` (
  `user_id` INT(10) NOT NULL ,
  `webfield_id` INT(10) NOT NULL ,
  PRIMARY KEY (`user_id`, `webfield_id`) ,
  INDEX `user_webfield_user` (`user_id` ASC) ,
  INDEX `user_webfield_webfield` (`webfield_id` ASC) ,
  CONSTRAINT `user_webfield_user`
    FOREIGN KEY (`user_id` )
    REFERENCES `multitenant_webforms`.`account` (`user_id` )
    ON DELETE NO ACTION
    ON UPDATE NO ACTION,
  CONSTRAINT `user_webfield_webfield`
    FOREIGN KEY (`webfield_id` )
    REFERENCES `multitenant_webforms`.`webfield` (`webfield_id` )
    ON DELETE NO ACTION
    ON UPDATE NO ACTION)
ENGINE = InnoDB
DEFAULT CHARACTER SET = latin1;

-- -----------------------------------------------------
-- Table `multitenant_webforms`.`webform`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `multitenant_webforms`.`webform` ;

CREATE  TABLE IF NOT EXISTS `multitenant_webforms`.`webform` (
  `webform_id` INT(10) NOT NULL AUTO_INCREMENT ,
  `name` VARCHAR(100) NULL DEFAULT NULL ,
  `added` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ,
  `updated` TIMESTAMP NULL DEFAULT NULL ,
  `captcha` TINYINT(1) NULL DEFAULT '0' ,
  `can_be_mother` TINYINT(1) NULL DEFAULT '1' ,
  PRIMARY KEY (`webform_id`) )
ENGINE = InnoDB
AUTO_INCREMENT = 57
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DEFAULT CHARACTER SET = utf8;

-- -----------------------------------------------------
-- Table `multitenant_webforms`.`user_webform`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `multitenant_webforms`.`user_webform` ;

CREATE  TABLE IF NOT EXISTS `multitenant_webforms`.`user_webform` (
  `user_id` INT(10) NOT NULL ,
  `webform_id` INT(10) NOT NULL ,
  PRIMARY KEY (`user_id`, `webform_id`) ,
  INDEX `webform_tenant_webform` (`webform_id` ASC) ,
  INDEX `webform_tenant_user` (`user_id` ASC) ,
  CONSTRAINT `webform_tenant_user`
    FOREIGN KEY (`user_id` )
    REFERENCES `multitenant_webforms`.`account` (`user_id` )
    ON DELETE NO ACTION
    ON UPDATE NO ACTION,
  CONSTRAINT `webform_tenant_webform`
    FOREIGN KEY (`webform_id` )
    REFERENCES `multitenant_webforms`.`webform` (`webform_id` )
    ON DELETE NO ACTION
    ON UPDATE NO ACTION)
ENGINE = InnoDB
DEFAULT CHARACTER SET = latin1;

SET SQL_MODE=@OLD_SQL_MODE;
SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS;
SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;
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3: FACES-CONIG.XML PROJECT CONFIGURATION FILE

<?xml version='1.0' encoding='UTF-8'?>
<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
              xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
              xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://
java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd" version="2.0">
    <application>
        <locale-config>
            <default-locale>en</default-locale>
            <supported-locale>en</supported-locale>
            <supported-locale>fi</supported-locale>
            <supported-locale>ru</supported-locale>
            <supported-locale>uk</supported-locale>
            <supported-locale>zh</supported-locale>
        </locale-config>
        <resource-bundle>
            <base-name>com.mhgsystems.ui.resources.UIResources</base-name>
            <var>ui</var>
        </resource-bundle>
        <message-bundle>com.mhgsystems.ui.resources.JSFResources</message-bundle>
        <render-kit>
            <renderer>
                <component-family>javax.faces.Message</component-family>
                <renderer-type>javax.faces.Message</renderer-type>
                <renderer-class>com.mhgsystems.commons.jsf.MessageRendererImpl</
renderer-class>
            </renderer>
        </render-kit>
    </application>
    <!--Managed beans-->
    <managed-bean>
        <managed-bean-name>login</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.Login</managed-bean-class>
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <managed-bean>
        <managed-bean-name>register</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.Register</managed-bean-class>
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <managed-bean>
        <managed-bean-name>home</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.Home</managed-bean-class>
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <managed-bean>
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        <managed-bean-name>webFormView</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.WebFormView</managed-bean-class>
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <managed-bean>
        <managed-bean-name>editWebForm</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.EditWebForm</managed-bean-class>
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <managed-bean>
        <managed-bean-name>newWebForm</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.NewWebForm</managed-bean-class>
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <managed-bean>
        <managed-bean-name>viewWebForm</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.ViewWebForm</managed-bean-class>
    
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <managed-bean>
        <managed-bean-name>account</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.AccountView</managed-bean-class>
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <managed-bean>
        <managed-bean-name>vmenu</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.VerticalMenu</managed-bean-class>
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <managed-bean>
        <managed-bean-name>editWebFieldStyle</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.EditWebFieldStyle</managed-bean-
class>
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <managed-bean>
        <managed-bean-name>editWebFieldRights</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.EditWebFieldRights</managed-bean-
class>
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <managed-bean>
        <managed-bean-name>listOptions</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.ListOptions</managed-bean-class>
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <managed-bean>
        <managed-bean-name>presetFieldView</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.PresetFieldView</managed-bean-class>
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        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <managed-bean>
        <managed-bean-name>chooseLabel</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.ChooseLabel</managed-bean-class>
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <managed-bean>
        <managed-bean-name>hmenu</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.HorizontalMenu</managed-bean-class>
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <managed-bean>
        <managed-bean-name>confirmation</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.Confirmation</managed-bean-class>
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <!--Validation managed beans-->
    <managed-bean>
        <managed-bean-name>validationBean</managed-bean-name>
        <managed-bean-class>com.mhgsystems.commons.jsf.ValidationBean</managed-
bean-class>
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <!--Validation-->
    <validator>
        <validator-id>birthdayValidator</validator-id>
        <validator-class>com.mhgsystems.commons.jsf.BirthdayValidator</validator-
class>
    </validator>
    <validator>
        <validator-id>deadlineValidator</validator-id>
        <validator-class>com.mhgsystems.commons.jsf.DeadlineValidator</validator-
class>
    </validator>
    <validator>
        <validator-id>emailValidator</validator-id>
        <validator-class>com.mhgsystems.commons.jsf.EmailValidator</validator-
class>
    </validator>
    <!--Administration-->
    <managed-bean>
        <managed-bean-name>configuration</managed-bean-name>
        <managed-bean-class>com.mhgsystems.ui.Configuration</managed-bean-class>
        <managed-bean-scope>request</managed-bean-scope>
    </managed-bean>
    <!-- Sessions -->
    <managed-bean>
        <managed-bean-name>sessionBean</managed-bean-name>
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        <managed-bean-class>com.mhgsystems.ui.SessionBean</managed-bean-class>
        <managed-bean-scope>session</managed-bean-scope>
    </managed-bean>
    <!--Navigation-->
    <navigation-rule>
        <from-view-id>/*</from-view-id>
        <navigation-case>
            <from-outcome>register</from-outcome>
            <to-view-id>/register.xhtml</to-view-id>
            <redirect/>
        </navigation-case>
        <navigation-case>
            <from-outcome>login</from-outcome>
            <to-view-id>/login.xhtml</to-view-id>
            <redirect/>
        </navigation-case>
        <navigation-case>
            <from-outcome>home</from-outcome>
            <to-view-id>/home.xhtml</to-view-id>
            <redirect/>
        </navigation-case>
        <navigation-case>
            <from-outcome>newWebForm</from-outcome>
            <to-view-id>/newWebForm.xhtml</to-view-id>
            <redirect/>
        </navigation-case>
        <navigation-case>
            <from-outcome>newChildWebForm</from-outcome>
            <to-view-id>/newChildWebForm.xhtml</to-view-id>
            <redirect/>
        </navigation-case>
        <navigation-case>
            <from-outcome>editWebFieldStyle</from-outcome>
            <to-view-id>/editWebFieldStyle.xhtml</to-view-id>
            <redirect/>
        </navigation-case>
        <navigation-case>
            <from-outcome>editWebFieldRights</from-outcome>
            <to-view-id>/editWebFieldRights.xhtml</to-view-id>
            <redirect/>
        </navigation-case>
        <navigation-case>
            <from-outcome>listOptions</from-outcome>
            <to-view-id>/listOptions.xhtml</to-view-id>
            <redirect/>
        </navigation-case>
        <navigation-case>
            <from-outcome>presetField</from-outcome>
            <to-view-id>/presetField.xhtml</to-view-id>
            <redirect/>
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        </navigation-case>
        <navigation-case>
            <from-outcome>chooseLabel</from-outcome>
            <to-view-id>/chooseLabel.xhtml</to-view-id>
            <redirect/>
        </navigation-case>
        <navigation-case>
            <from-outcome>closePopup</from-outcome>
            <to-view-id>/closePopup</to-view-id>
            <redirect/>
        </navigation-case>
        <navigation-case>
            <from-outcome>editWebForm</from-outcome>
            <to-view-id>/editWebForm.xhtml</to-view-id>
            <redirect/>
        </navigation-case>
        <navigation-case>
            <from-outcome>viewWebForm</from-outcome>
            <to-view-id>/viewWebForm.xhtml</to-view-id>
            <redirect/>
        </navigation-case>
        <navigation-case>
            <from-outcome>fillWebForm</from-outcome>
            <to-view-id>/fillWebForm.xhtml</to-view-id>
            <redirect/>
        </navigation-case>
        <navigation-case>
            <from-outcome>account</from-outcome>
            <to-view-id>/account.xhtml</to-view-id>
            <redirect/>
        </navigation-case>
        <navigation-case>
            <from-outcome>confirmation</from-outcome>
            <to-view-id>/confirmation.xhtml</to-view-id>
            <redirect/>
        </navigation-case>
        <!--Administration-->
        <navigation-case>
            <from-outcome>admin</from-outcome>
            <to-view-id>/admin/home.xhtml</to-view-id>
            <redirect/>
        </navigation-case>
        <navigation-case>
            <from-outcome>configuration</from-outcome>
            <to-view-id>/configuration.xhtml</to-view-id>
            <redirect/>
        </navigation-case>
    </navigation-rule>
</faces-config>
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4: DESCRIPTION OF ENTITIES OF THE DATABASE

Let us discuss briefly each entity in the database. All entities (or tables) are listed with their 

attributes described in details. Each attribute is indicated by its name and its type. Attributes 

that are underlined serve as primary keys.

• webform: this entity represents a web form that can be created by users and later be used by  

different tenants of the program.

Attributes:

- webform_id INT(10) - Primary key, automatically incremented, not NULL.

- name VARCHAR(100) - Name of the form.

- added TIMESTAMP - Timestamp indicating time of creation.

- updated TIMESTAMP - Timestamp indicating time of last update (if any).

- captcha TINYINT(1) - Boolean variable indicating if the form requires CAPTCHA image.

- can_be_mother TINYINT(1) - Boolean variable indicating if other web forms can inherit 

from the form in question.

• webfield: this entity represents a web field that is a part of a web form. One web field may 

be used by different users. It is the biggest and possibly the most important table in the 

database. It describes web fields that are paired with a tenant that uses it, web form that the 

field is a part of and a label that is rendered next to the field. It holds information about 

customisation that is applied to the field, such as colour of the label, width of text inputs, 

label font, etc. It is designed in a way that makes further improvements and extension 

possible. If one wanted to add new ways of customising web forms and web fields in them, 

adding a new column to this table should be enough.

Attributes:

- webfield_id INT(10) - Primary key, automatically incremented, not NULL.

- type INT(10) - Defines type of the web field. The same web field returning one defined 

piece of data may be presented in different ways. For example, location can be received by 

inputting text into an input field, picking point on embed map or by manually inputting 

APPENDIX 4(1)



latitude and longitude in two input fields, which can be presented by one object of type 

webfield. Type is represented by a code of type Integer.

- popup_message VARCHAR(200) - Optional popup message that appears when users hover on 

the web field.

- default_value VARCHAR(200) - Value that is given by default. Not compulsory.

- colour VARCHAR(45) - It allows setting colour of the label, if applicable.

- label_id INT(10) - ID of the label that is used with the field.

- label_font VARCHAR(150) - Font of the label assigned to the field.

- label_font_size INT(10) - Size of text, if text can be entered into the web field.

- input_width INT(10) - Width of the element. If applicable.

- input_height INT(10) - Height of the element. If applicable.

- input_size INT(10) - Amount of characters that users may input.

- required TINYINT(10) - Shows if the field is required for filling in by users.

- added TIMESTAMP - Timestamp indicating time of creation.

- updated TIMESTAMP - Timestamp indicating time of last update (if any).

- position_in_webform INT(10) - Position relative to other elements of the web form.

- preset_field_id INT(10) - Foreign key to preset_field’s preset_field_id INT(10).

- webform_id INT(10) - Foreign key to webform’s webform_id INT(10).

- tenant_id INT(10) - Foreign key to tenant’s tenant_id INT(10).

- textarea_col INT(10) - Number of columns in text areas. If applicable.

- textarea_row INT(10) - Number of rows in text areas. If applicable.

- default_value1 VARCHAR(200) - Value that is given by default to the second element in the 

field. Not compulsory.

- default_value2 VARCHAR(200) - Value that is given by default to the third element in the 

field. Not compulsory.

- default_value3 VARCHAR(200) - Value that is given by default to the forth element in the 

field. Not compulsory.

- default_value4 VARCHAR(200) - Value that is given by default to the fifth element in the 

field. Not compulsory.

- default_value5 VARCHAR(200) - Value that is given by default to the sixth element in the 

field. Not compulsory.

• tenant: this entity describes companies that use the application as its tenants. Each tenant 

has users (represented by an entity account) that use web forms. Tenants, in this case, may 

APPENDIX 4(2)



be viewed as groups of users. Tenants may exist without any users, although no users may 

work without a hosting tenant. A more simplified case may be considered, where tenants act  

as users. Although adding this extra layer of control of those who use the application gives 

bigger flexibility and a more extended set of features.

Attributes:

- tenant_id INT(10) - Primary key, automatically incremented, not NULL.

- name VARCHAR(100) - Name of the tenant (company).

- added TIMESTAMP - Timestamp indicating time of creation.

- updated TIMESTAMP - Timestamp indicating time of last update (if any).

- number_webforms_per_page INT(10) - A number of web forms shown per page for users of 

the tenant.

- number_webforms_sidebar INT(10) - A number of web forms shown in a sidebar for users 

of the tenant.

- number_webforms_verified INT(10) - A number of verified web forms shown per page for 

users of the tenant. May be used in further enhancements of the test case program.

- number_webforms_unverified INT(10) - A number of unverified web forms shown per 

page for users of the tenant. May be used in further enhancements of the test case program.

- instance_url CHAR(200) - An URL address by which users of the tenant can access the test  

case program.

- api_key CHAR(36) - API key given to the tenant.

- security_key CHAR(200) - Security key given for enhanced security.

• account: this entity describes users that use the application as members of enterprises 

represented by an entity tenant. Many users can be members of one company. Separating 

users in this way allows giving privileges and usage of different web forms within one 

company, not just on a firm level.

Attributes:

- user_id INT(10) - Primary key, automatically incremented, not NULL.

- username VARCHAR(65) - Username used for authenticating.

- password CHAR(32) - Password encrypted using MD5 checksum. Used for authenticating.

- firstname VARCHAR(40) - User’s first name.

- surname VARCHAR(40) - User’s surname.
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- email VARCHAR(200) - User’s email address.

- avatar VARCHAR(100) - Address by which a user’s avatar image can be retrieved.

- admin TINYINT(1) - Boolean variable that indicates that the user has administrative 

privileges. May be used in further enhancements of the test case program.

- added TIMESTAMP - Timestamp indicating time of creation.

- updated TIMESTAMP - Timestamp indicating time of last update (if any).

- tenant_id INT(10) - Foreign key to tenant’s tenant_id INT(10).

- verified TINYINT(1) - Boolean variable that indicates that the user has been verified by 

administrators. May be used in further enhancements of the test case program.

• user_webfield: it serves as a link for M:N relationship that users and web fields share. It 

has a combined primary key. By using this table privileges are granted to users concerning 

access control to web fields that are members of web forms. Additionally, it serves as a 

layer of security separating data from other users and tenants.

Attributes:

- user_id INT(10) - Foreign key to account’s user_id INT(10).

- webfield_id INT(10) - Foreign key to webfield’s webfield_id INT(10).

• user_webform: it serves as a link for M:N relationship that users and web forms share. It 

has a combined primary key. By using this table privileges are granted to users concerning 

access control to web forms. Additionally, it serves as a layer of security separating data 

from other users and tenants.

Attributes:

- user_id INT(10) - Foreign key to account’s user_id INT(10).

- webform_id INT(10) - Foreign key to webform’s webform_id INT(10).

• mother_child_webfield: it served as a table that list all web fields that are inherited from 

“mother” fields.

Attributes:

- mother_id INT(10) - Foreign key to webfield’s webfield_id INT(10).

- child_id INT(10) - Foreign key to webfield’s webfield_id INT(10).
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• preset_field: it holds data about preset web fields that users may choose instead of creating 

custom ones. When used a value of preset_field_id foreign key in webfield is set to an ID 

of the field.

Attributes:

- preset_field_id INT(10) - Primary key, automatically incremented, not NULL.

- name VARCHAR(200) - Name of the field that appears in a list that users see.

- type VARCHAR(45) - Type of the list. May be a set of radio buttons, a list of values, etc. 

Note: a custom domain may be used, though it would limit further extension and 

customisation of preset web fields.

• label: it holds labels that are used for web fields. Current implementation of the entity 

supports four localisation. This table may be extended to provide support for a bigger 

number of languages.

Attributes:

- label_id INT(10) - Primary key, automatically incremented, not NULL.

- en VARCHAR(200) - Text of the label in English.

- ru VARCHAR(200) - Text of the label in Russian.

- fi VARCHAR(200) - Text of the label in Finnish.

- uk VARCHAR(200) - Text of the label in Ukrainian.

• list_value: it holds values for elements of lists that are used for web fields. They may or 

may not be used. One element of the list may be used for different fields. Additionally, 

preset fields may utilise this entity.

Attributes:

- list_value_id INT(10) - Primary key, automatically incremented, not NULL.

- value VARCHAR(200) - Value that is assigned to the element.

- text VARCHAR(200) - Text in default language of a label assigned to the list option.

- position_in_list INT(10) - Position in the list.

- default_value TINYINT(1) - Boolean variable. It set to “1” if the list option is a default 

one in the list.
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- added TIMESTAMP - Timestamp indicating time of creation.

- updated TIMESTAMP - Timestamp indicating time of last update (if any).

- webfield_id INT(10) - Foreign key to webfield’s webfield_id INT(10).

- preset_field_id INT(10) - Foreign key to preset_field’s preset_field_id INT(10).

• received_value: this is a table that is used as a bridge between a customisable web field and 

a piece of database that is meant to be used for storing received from the field data.

Attributes:

- received_value_id INT(10) - Primary key, automatically incremented, not NULL.

- value VARCHAR(200) - Value that is assigned to the element.

- model VARCHAR(100) - name of a model that represents received data. Not compulsory in 

this test case.

- added TIMESTAMP- Timestamp indicating time of creation.

- webfield_id INT(10) - Foreign key to webfield’s webfield_id INT(10).

- user_id INT(10) - Foreign key to account’s user_id INT(10).
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