
Pavlo Bazilinskyy 

Multi-core Insense 

University of St Andrews 

June 2013 



ABSTRACT 

This project set out to investigate the benefits of using private heaps for memory management 

and static thread placement for optimising performance and cache usage. For this study, 

Insense, which is a component-based programming language developed in the University of 

St Andrews that abstracts over complications of memory management, concurrency control 

and synchronisation, was used (Dearle et al. 2008). Two memory management schemes are 

under investigation: use of a single shared heap and use of multiple private heaps. Further, 

three thread placement schemes are designed and implemented: 1) even distribution among 

cores; 2) placing all components on a single core; 3) locating Insense components based on 

frequency of inter-component communication. 

Furthermore, several elements of this investigation are worth emphasizing. With regard to 

allocation and deallocation of memory taking place in component instances running on 

different cores, the efficiency of using a private heap for each component resulted in speedup 

by a factor of 16. Then, utilising private heaps reduces a number of L1 cache misses by 

~30%. Distributing components over cores according to communication pattern, for the most 

part performed similar to allowing the OS to perform thread placement dynamically according 

to load balance. In cases where no exchange of data between components takes place, static 

placement outperformed because there is no computation which may make load balancing 

dynamic placement of threads under control of the OS difficult. In this case, the static 

placement scheme was faster than dynamic balancing by a factor of 2.4.  



DECLARATION 

I declare that the material submitted for assessment is my own work except here credit is 

explicitly given to others by citation or acknowledgement. This work was performed during 

the current academic year except where otherwise stated. 

The main text of this project report is 19,991 words long, including project specification and 

plan.  

In submitting this project report to the University of St Andrews, I give permission for it to be 

made available for use in accordance with the regulations of the University Library. I also 

give permission for the title and abstract to be published and for copies of the report to be 

made and supplied at cost to any bona fide library or research worker, and to be made 

available on the World Wide Web. I retain the copyright in this work.  



ACKNOWLEDGEMENTS 

Words cannot describe my deep appreciation to my supervisor Jonathan Lewis, who was 

always there to listen to my ideas and who was patient enough to often describe the same 

concept to me for the 2nd, 3rd and sometimes even 4th time. He was always available whenever 

I needed him, and his positive attitude towards this project encouraged me to not give up, 

especially during the first half of my work, when I would very often have entered a vicious 

circle, in which I could not have achieved desired results for days or even weeks. 

I would also like to express my gratitude to Professor Alan Dearle, who is one of the creators 

of Insense language. Me, Jonathan, and him spent countless hours discussing theoretical 

aspects of the project, which gave me numerous sleepless nights. He had faith in me and it 

helped me go forward and motivated me greatly. Also, thank you enormously for showing me 

power of taking notes with my iPad. 

Special thanks, to my parents, my grandmother, and my whole family who if it were not for 

them, I would not be here submitting this project. Even though we have been separated by 

thousands of miles for now four years, I always had continuous support from their side, which 

proved to be more than enough to help me make it to the end, without regrets. 



CONTENTS

1 INTRODUCTION 1 .......................................................................................................

1.1 Dissertation structure 1 ............................................................................................

2 OBJECTIVES 2 ..............................................................................................................

3 CONTEXT SURVEY 3 ..................................................................................................

3.1 Multi-core Systems 3 ...............................................................................................

3.1.1 Memory Cache in Multi-core Systems 4 ........................................................

3.2 Overview of Insense Language 5 ............................................................................

3.2.1 Components and Channels in Insense 7 .........................................................

3.2.2 Data Types 10 .................................................................................................

3.3 Memory Management in C Language 11 ................................................................

3.4 Utilising Private Heaps for Memory Management 12 .............................................

3.5 Thread Affinity 14 ...................................................................................................

4 SOFTWARE ENGINEERING PROCESS 14 ................................................................

4.1 Project Plan 15 .........................................................................................................

5 REQUIREMENTS SPECIFICATION 16 ......................................................................

5.1 Functional Requirements 16 ....................................................................................

5.2 Non-functional Requirements 17 .............................................................................

6 ETHICS 17 .....................................................................................................................

7 DESIGN 17 .....................................................................................................................

7.1 Design of Multi-core Insense 18 .............................................................................

7.1.1 Components 18 ...............................................................................................

7.1.2 Channels 18 ....................................................................................................

7.1.3 Program Entry Point 19 ..................................................................................

7.1.4 Memory Management & Garbage Collection 20 ...........................................

7.2 Data Placement Schemes 21 ....................................................................................

7.2.1 Shared Heap 21 ..............................................................................................

7.2.2 Private Heaps 22 .............................................................................................

7.2.3 Data Placement and Potential Cache Misses 23 .............................................

7.3 Thread Placement Schemes 27 ................................................................................

7.3.1 Dynamic Placement 28 ...................................................................................

7.3.2 Static Placement 28 ........................................................................................

8 IMPLEMENTATION 32 ................................................................................................



8.1 Base Unix Implementation 33 .................................................................................

8.1.1 Components 34 ...............................................................................................

8.1.2 Arrays 37 ........................................................................................................

8.1.3 Channels 38 ....................................................................................................

8.1.4 Program Entry Point 43 ..................................................................................

8.1.5 Memory Management & Garbage Collection 44 ...........................................

8.1.6 Thread-safe List 46 .........................................................................................

8.1.7 Build System 47 .............................................................................................

8.2 Data Placement Schemes 49 ....................................................................................

8.2.1 Shared Heap 52 ..............................................................................................

8.2.2 Private Heaps 53 .............................................................................................

8.2.2.1 Creation of a New Private Heap 54 ...................................................

8.2.2.2 Allocation and Deallocation of Memory within the Private Heaps 55 

8.3 Thread Placement Schemes 59 ................................................................................

8.3.1 Dynamic Placement 59 ...................................................................................

8.3.2 Static Placement 60 ........................................................................................

8.3.2.1 Even Distribution of Threads Among Cores 62 .................................

8.3.2.2 Static Placement of Threads to a Single Core 63 ...............................

8.3.2.3 Static Placement of Threads Based on Communication 63 ...............

9 EXPERIMENTS 63 ........................................................................................................

9.1 Effects of Memory Management Schemes on Allocation and Deallocation of Memory

 64 ..................................................................................................................................

9.1.1 Design of Experiments 64 ..............................................................................

9.1.2 Program Used 65 ............................................................................................

9.1.3 Experimental Results 65 .................................................................................

9.1.4 Discussion of Results 66 ................................................................................

9.2 Effects of Memory Management Schemes on Cache Usage 68 ..............................

9.2.1 Design of Experiments 68 ..............................................................................

9.2.2 Program Used 69 ............................................................................................

9.2.3 Experimental Results 69 .................................................................................

9.2.4 Discussion of Results 70 ................................................................................

9.3 Effects of Thread Placement and Communication Between Components on 

Performance 71 ..............................................................................................................

9.3.1 Design of Experiments 71 ..............................................................................



9.3.2 Programs Used 72 ..........................................................................................

9.3.3 Experimental Results 73 .................................................................................

9.3.4 Discussion of Results 77 ................................................................................

10 CONCLUSIONS AND FURTHER WORK 78 ............................................................

11 BIBLIOGRAPHY 80 ....................................................................................................

APPENDICES 

APPENDIX 1: List of Figures 84 ..................................................................................

APPENDIX 2: Gantt Chart for the Project 89 ...............................................................

APPENDIX 3: Instruction on Executing Insense Programs 90 ....................................

APPENDIX 4: Creation of a New Component 90 ........................................................

APPENDIX 5: Deallocation of Memory for Private Heaps 92 .....................................

APPENDIX 6: Test_alloc Program Used to Evaluate Effects of Using Multiple Heaps for 

(De-)allocation of Memory 93 .......................................................................................

APPENDIX 7: Test_cache Program Used to Evaluate Effects of Memory Management 

Schemes on Cache Usage 93 .........................................................................................

APPENDIX 8:  Programs Used to Evaluate Effects of Thread Placement and 

Communication Between Components on Performance 94 ..........................................

Appendix 8.1: “Sender - Receiver” Scheme 94 ......................................................

Appendix 8.2: “Client - Server” Scheme 95 ...........................................................

Appendix 8.3: “Dispatch - Worker” Scheme 97 ......................................................

Appendix 8.4: “No communication” Scheme 98 ....................................................

APPENDIX 9:  Real, User, and System Time of Running Experiments 99 .................

Appendix 9.1: Experiment with (De-)allocation of Memory, 1 Component 99 .....

Appendix 9.2: Experiment with (De-)allocation of Memory, 4 components 100 ...

Appendix 9.3: Results from “Sender - Receiver” example with 2 senders and 2 

receivers 100 ..................................................................................................................

Appendix 9.4: Results from “Client - Server” example 101 ...................................

Appendix 9.5: Results from “Dispatch - Worker” example 102 .............................

APPENDIX 10:  Ethics approval form 104 ...................................................................

APPENDIX 11:  Output of Cachegrind for the test_cache program. 109 .....................

Appendix 11.1: Shared Heap - Dynamic 109 ..........................................................

Appendix 11.2: Private Heaps - Dynamic 109 ........................................................

Appendix 11.3: Shared Heap - 1 core 109 ...............................................................

Appendix 11.4: Private Heaps - 1 core 110 .............................................................



Appendix 11.5: Shared Heap - Round-Robin 110 ...................................................

Appendix 11.6: Private Heaps - Round-Robin 110.................................................



!1
1 INTRODUCTION 

Insense is a component-based programming language developed in the University of St 

Andrews that abstracts over complications of memory management, concurrency control and 

synchronisation, and separates application software from the hardware and the operating 

system (OS). Insense applications are constructed as collections of software components that 

communicate with each other by using typed, directional, synchronous channels. A 

component may contain updatable locations that may only be accessed by code defined in the 

component. Each component is a unit of concurrent computation. The language is mainly 

used in wireless sensor networks (WSN). However, researchers behind Insense have been 

speculating about porting it to multi-core systems. (Dearle et al. 2008) 

Many multi-core operating systems provide mechanisms for load-balancing thread placement 

on cores. Dynamic memory is commonly allocated on a single large heap shared by all 

threads and processes running on the OS. However, such approaches may not always be the 

best ones for a given programming language on multi-core systems. 

This project focuses on investigating benefits of utilisation of private (small) heaps for 

memory management and static thread placement for optimising efficiency and performance 

of applications running on multi-core systems. The base implementation of the project 

involves porting the language to the Unix-based Scientific Linux operating system. Three 

main objectives were set for this project. 

1.1 Dissertation structure 

The remainder of this dissertation is structured as follows: Chapter 2 outlines objectives that 

were set for this project. Chapter 3 surveys the context applicable to this project and includes 

a brief overview of relevant multi-core systems and the Insense programming language. 

Chapters 4 and 5 give a brief description of software engineering principles applied in the 

project and list functional and non-functional requirements that were set. Chapters 6 deals 

with ethical concerns. Chapter 7 summarises design process that was undertaken in the project 

and lists design decisions that were taken. Then, Chapter 8 first describes how Insense was 

adjusted to run on Unix-based systems that operate with multiple cores, then it gives a 

description of the main work performed on implementing schemes for memory management 

 



!2
and thread placement described in Chapter 7. Chapter 9 introduces experiments that were 

performed to test implemented memory management and thread placement schemes and 

describes achieved results. Lastly, Chapter 10 sums up what was accomplished and lists 

suggestions for future work. 

2 OBJECTIVES 

The main objectives of this project are to investigate efficient memory management and 

thread placement schemes for Insense on multi-core systems. To this end, a new Insense 

implementation for multi-core, Unix systems will be designed, implemented, and tested. This 

is an arduous undertaking in its own right because it involves creating a new version of the 

Insense language runtime (written in C) and modifying the compiler as well (written in Java). 

Some time must also be spent to understand the language, current runtime, and the InceOS 

and Contiki OS for which there is limited documentation.  

Experimentation will then be used to establish which schemes are more efficient. Two 

memory management schemes are under investigation: use of a single shared heap and 

utilisation of multiple private heaps. When a single heap is used, it is anticipated that 

inefficiencies in cache and concurrent access to the shared heap from multiple threads may 

impact on performance. The research aims to investigate such effects and the effect of using 

multiple private heaps that are allocated to component instances or cores. 

Further, three thread placement schemes are under investigation. One is based on static 

placement, where Insense components are distributed evenly among cores. Then, the scheme 

where all components are placed on a single core. The third scheme involves placing Insense 

components on cores based on certain properties that they have (e.g. frequency of 

communicating with other components). Results retrieved from experimenting with these 

three schemes will be compared to default behaviour of Unix-based systems where load 

balancing is performed via live migration of threads to different cores. Differences in 

performance of these approaches will be investigated. 

Moreover, strong encapsulation of components in Insense applications may be advantageous 

for multi-core systems. The fact that Insense components are strongly encapsulated implies 



!3
that they cannot share memory references to the component state. Information  can only be 1

exchanged between components using channel abstraction. This feature of Insense can be 

tested by performing comparative analysis of solutions to a simple problem executed in 

Insense and a control language, for example, C, where direct access to shared memory from 

multiple threads can be exploited in the parallel algorithm. Retrieving this experimental data 

was set as the third, optional, goal of the project. 

3 CONTEXT SURVEY 

3.1 Multi-core Systems 

The first member of the x86 mircroprocessor family was created as early as in 1978 when the 

Altair 8086 processor was designed (Gove 2011). Since then the world has seen a number of 

improvements in performance of central processing units (CPUs). The most notable 

improvement has been gain in speed of processors have come from increasing the clock speed 

(frequency at which a processor is running). The 8086 processor was functioning at around 5 

MHz, today readings of clock speed can go as high as 5.5GHz (Halfacree 2012). 

Furthermore, improvements in performance of processors were achieved by exploiting 

instruction-level parallelism - simultaneously performing multiple operations in a computer 

program (Hennessy 2007). Processors that use instruction-level parallelism have the ability to 

issue numerous instructions concurrently. In their pipelines, instructions are pre-fetched, split 

into sub-components and executed out-of-order (Schauer 2008). The Pentium IV CPU 

released in 2000 was one of the last and the most powerful single-core processors (“Intel 

Introduces” 2000). The “Prescott” and “Cedar Mill” cores from Pentium IV family featured as 

as many as 31 stages in their pipelines, the longest in the history of mainstream computing 

(Schmid 2004). However, there are certain factors that limit efficiency of systems that rely on 

this approach. Achieving satisfying levels of instruction-level parallelism depends on 

efficiency of branch prediction performed by hardware or software. It is not trivial, which was 

proved as early as in 1991 (Wall 1991). Additionally, cache miss penalty to main memory 

which costs hundreds of CPU cycles and complexity of hardware that needs to be built often 

reduce benefits that can be achieved from implementing instruction-level parallelism (McKee 

2004). 

 Information is used in the context of “data” in this document, unless stated otherwise.1

 



!4

More recent advancements in development of hardware for performing computations have 

mostly been emphasising importance on increasing the number of cores that reside on the 

chip, rather than experimenting with changing the clock rate or improving methods behind 

instruction-level parallelism. As a result a new type of systems powered by a single processor 

that incorporates more that one central processing unit (or “cores”) was developed (Rouse 

2007). These cores are responsible for reading and executing instructions given to the CPU by 

programs. Adding additional cores onto the silicon base to improve performance increases the 

upper bound of amount of work that can be done by the processor by a factor of the total 

number of cores that the CPU obtains (Gove 2011). The motivation behind switching to 

multi-core systems resides in the fact that improving serial performance (performance of 

CPUs with one core) has become increasingly hard. 

3.1.1 Memory Cache in Multi-core Systems 

Multi-core systems also came with new memory cache approaches. As an example, IBM, 

does not use separate caches in its multicore server chips at all. On the other hand, Figure 3.1 

outlines a more typical cache hierarchy model, used in, for example, Intel’s Itanium and 

AMD’s Opteron chips for servers and workstations, where each CPU core has its own private 

Level 1 (L1) and Level 2 (L2) data and instruction caches. The Level 3 (L3) unified cache is 

normally shared between all cores. Also, all core's L1 and L2 caches reside on the same die as 

the core and cannot be accessed by other cores. The cores are each connected to the L3 cache 

via the shared data bus. Allowing any processor to access any processors' cache memory is 

problematic, since there are no direct physical connections between different caches. If one 

core requires access to data that resides in another core's cache, the only path through which it 

can be achieved is the system bus. Assigning separate cache to each core removes the extra 

work required to design chips so that multiple cores can work with a single, centralized cache. 

(Geer 2005) 



!5

Figure 3.1 Three components connected by two channels. 

As mentioned in Chapter 2 above, this project aims to investigate efficient memory 

management and thread placement schemes for Insense on multi-core systems. Insense is 

discussed in the following Section. 

3.2 Overview of Insense Language 

Insense is a high-level programming language developed at the University of St Andrews 

(Dearle et al. 2008). The initial goal behind creating the language was to decrease the 

complexity of developing Wireless Sensor Network (WSN) applications by abstracting over 

such concepts of programming as synchronisation, memory management and event-driven 

programming. The language was built to be run on two operating systems: Contiki (Lewis, 

Dearle 2011) and InceOS (Harvey et al. 2012). 

This language relies on the idea of having components as basic computational units - building 

blocks - of applications. They serve as units of concurrent computation (Sharma et al. 2009). 

In Insense, the complexity is supposed to be borne by the language implementation rather 

 



!6
than by the developer. Components may be composed in a fractal manor because components 

can create instances of other components (Dearle et al. 2008). 

Moreover, Insense components are strongly encapsulated: they are stateful and the only 

medium of inter-component communication is usage of channels. To avoid unintended 

sharing of variables, an Insense component cannot reference any external data objects or 

locations. All inter-component communication passes through channels. Further, channels are 

typed and directional. All elements of the language including components and other channels 

can be shared through channels. Communication through them is synchronous: operations 

involving sending data are blocked until the messages are received and receive calls are 

blocked when there is nothing to be received. Figure 3.2 below shows two components Sender 

and Receiver that are connected by two channels; the Sender component sends data, the 

Receiver component receives it. 

Figure 3.2 Topology with two components connected by a single channel.

More complex topologies can also be described by Insense components and channels. Figure 

3.3 below features five components interconnected by five channels. The components 

presented in the diagram can be divided into two categories: senders who send data on 

channels and receivers that receive data from channels. In this case datum is sent by Sender 1, 

by Sender 2 or by Sender 3 will be received by either Receiver 1 or Receiver 2, but not by 

both. If only one of the receivers is ready to receive, then the receiver that is ready will 

receive the datum, otherwise it could be either receiver which receives the datum. This latter 

case demonstrates that send and receive have an element of non-determinism.  



!7

Figure 3.3 Topology with five components connected by nine channels. 

Insense was designed for sensory systems that are often used by people that have no 

background in computer science. It was created to be an easy to use programming language 

with syntax that is not difficult to learn and use to most (even unskilled) programmers. 

Handling of memory management that is often problematic in languages like C is not required 

from developers that use Insense. 

3.2.1 Components and Channels in Insense 

All basic building blocks of Insense - components - are assigned with a type. The type of the 

component is described by its interface, which can contain any number of channels via which 

it may interact with other components. Figure 3.4 illustrates a “Hello World” example 

program written in Insense. It features one component that prints “Hello World” in its 

behaviour function. All Insense components are active and their activity defined by a 

syntactic construct identified by the keyword behaviour. The behaviour block may be likened 

to a single-threaded function which loops until explicitly stopped by using the stop keyword. 

 



!8
1. type IHello is interface () // Interface for Hello component
2. component Hello presents IHello { // Hello World component
3.     count = 1
4.     constructor() {    
5.     }
6.     behaviour {
7.         printString("\nHello World ")
8.         printInt(count)
9.         count := count + 1
10.     }
11. } 
12.
13. hello = new Hello() // Create and test component

Figure 3.4. “Hello World” program written with Insense language. (Lewis 2013) 

 
Insense components are instantiated by using constructors that are defined in a similar manner 

to Java, C++ or C#. An Insense component declaration must contain at least one constructor. 

These constructors permit component variables to be initialised. A keyword presents follows 

a definition of a component, it is followed by a number of interfaces that the component 

presents for interaction with other components. 

The Hello component in Figure 3.4 presents the IHello interface which in this simple 

example program does not contain any channels. It has a local variable called count. 

Declaration is done using the “=” symbol. Variables declared inside of components are local 

and they cannot be accessed from outside of their declaring component. The scope of 

variables declared inside of components is until the end of the scope of the component. The 

value of count is updated by using the “:=” assignment operator in the behaviour function. 

As mentioned before, Insense components are strongly encapsulated. Channels have a role of 

being the only medium for inter-component communication. 



!9

Figure 3.5 Connection topologies supported by channels in Insense. (Sharma et al. 2009) 

Figure 3.5 (a) represents a one-to-one connection between a sender component S1 and a 

receiver component R1. The semantics of sending and receiving data over a one-to-one 

connection are similar to sending data with use of a traditional pipe: all values sent by S1 are 

received by R1 in the order they were sent. (Sharma et al. 2009) 

The connection topology shown in Figure 3.5 (b) outlines a many-to-one connection pattern 

in which a number of output channels from one or numerous components may be connected 

to an input channel associated with another component. For this topology, R1 non-

deterministically receives values from either of sending components on a single incoming 

channel. The receiving component cannot determine the identity of the sending component or 

the output channel that was used to send the message. Also, the arrival order of messages is 

determined by scheduling algorithm in use. The pattern is useful as a multiplexer in which R1 

can multiplex data sent from S1 and S2 and could forward the data to a fourth component. The 

multiplexer pattern is utilised to allow multiple components to connect to a single shared 

output channel. 

The topology in Figure 3.5 (c) shows a one-to-many connection pattern between a sender 

component S1 and two receiver components R1 and R2. Each value sent by S1 is non-

deterministically received by either R1 or R2. Values are received only by one of the connected 

to the source of data components. Also, for the sender it is irrelevant which component 

receives sent data. An example scenario for the one-to-many connection pattern used in 

 



!10
Insense is that a sender wishes to request a service from an arbitrary component in a server 

farm. Each of the three basic patterns of connectivity depicted in Figure 3.5 (a) - (c) may be 

modified and extended to create further variations. Figure 3.5 (d) shows an example variation 

combining the patterns from Figure 3.5 (b) and Figure 3.5 (c). (Sharma et al. 2009) 

1. type ITempReader is interface ( out bool tRequestChan ; in integer 
tValueChan)

2. component TempReader presents ITempReader { // Temperature reader
3.     constructor() {    
4.     }
5.     behaviour {
6.         send true on tRequestChan
7.         receive temp from tValueChan
8.         printString("\nTemp = ")
9.         printInt(temp)
10.     }
11. } 
12.
13. tr = new TempReader()
14. connect tr.tRequestChan to sensors.tempRequest
15. connect tr.tValueChan to sensors.tempOut

Figure 3.6 Insense application with a temperature sensor and two channels. (Lewis 2013) 

The example illustrated in Figure 3.6 has two channels associated with the component. 

Interfaces that the component presents are listed on the type declaration stage: out bool 

tRequestChan ; in integer tValueChan. Interfaces describe how instances of components 

can interact with each other. In this example, the TempReader component has channels named 

tRequestChan and tValueChan. Keywords in and out specify direction of the channel: 

channels can be used for sending data (out) and receiving it (in). Also, a type of data that 

channel is meant to receive needs to be declared, in the example above the tRequestChan 

channel permits data of type Boolean to be sent and the tValueChan receives integers. 

3.2.2 Data Types 

Insense supports most data types that can be found in other programming languages, 

including: integer, real, Boolean, byte and enum. In addition, it supports structs, 

enumerations, and arrays similar to those found in many other programming languages such 

as Java or C++. (Dearle 2011) 

1. newArray = new integer[3][3][2] of 0  



!11
Figure 3.7 Declaration of a 3-dimensional array in Insense. 

In Insense, arrays must be given a predefined size and they have to be initialised on 

declaration. Figure 3.7 shows an example of array declaration: in this case a multidimensional 

array (array of arrays of arrays) of integers was created, all elements inside of it are initialised 

to 0. 

1. type Car is struct( string model; integer miles )
2. car1 = new Car( “mlsb”, 4000 )

 
Figure 3.8 Creation of a structure and an instance of it. 

Figure 3.8 shows that structures may be defined by using the keyword struct. In order to 

permit static worst-case size estimation of components and their data, Insense structs cannot 

contain references to other structs. Therefore, structs can be formed from all other data types, 

other than other structs. Structures are instantiated by using the keyword new. 

In Insense functions can be declared either as global (outside of components) or as component 

local declarations. 

1. proc multiply(integer i, j,) : integer {
2.     return i * j
3. }

Figure 3.9 Function declaration in Insense. 

Figure 3.9 presents an example of a global function that performs multiplication of two 

integers that is visible to all components in a compilation unit. On the other hand, locally 

defined functions can be accessed only by the component that contains the definition. 

3.3 Memory Management in C Language 

In C, there are two ways of allocating memory for variables: 

1. Static allocation is used when one declares static variables. One block of space is 

allocated for each static variable, its size cannot be changed and it cannot be freed 

manually. The allocated piece of memory is freed when the application that used it stops. 

2. Automatic allocation is called when developers create automatic variables (e.g. local 

variables or function arguments). Space for variables of this type is allocated when a 
 



!12
compound statement that contains the variable is entered; it is freed when the statement is 

exited. 

In C, variables are not dynamically allocated on the heap. However, blocks of memory can be 

dynamically allocated on a heap and their base addresses are then stored in variables of an 

appropriate pointer type. This process is known to require more computational time and 

programmers tend to use it when static and automatic allocation cannot be utilised. The most 

common method used for dynamic memory allocation is utilisation of a single shared (big) 

heap structure, where a program can ask for a block of memory to store an object, and request 

that block to be deallocated at any time during execution of the computer program. A heap is a 

pool of memory available for the allocation and deallocation of arbitrary-sized blocks of 

memory (Wilson et al. 1995). Most of the basic design used for implementing memory 

management with shared heaps was achieved in the 1960’s (Knuth 1997). 

Data is allocated into contiguous and nonoverlaping ranges of memory. Generally, only entire 

blocks are allocated or freed, and the allocator is unaware of the type of or values of data 

stored in a block, it only knows the size requested. 

3.4 Utilising Private Heaps for Memory Management 

To refine the effective memory hierarchy performance in multithreaded applications, a 

number of hardware solutions have been proposed. Methods such as tiling and thread 

scheduling used for cache locality are a few examples of known techniques (Park, Hong & 

Prasanna 2003, Philbin et al. 1996). This project focuses on moving away from the idea of 

using one large heap for memory management and going towards utilisation of private heaps 

instead. It is seen as a way to improve performance and efficiency of memory management in 

multithreaded applications. 

There is no functionality in the C standard library that permits programmers to make use of 

separate private heaps for individual threads or processes. However, this project seeks to 

design and implement a version of Insense that permits memory to be allocated on private 

heaps as opposed to the standard single shared heap offered by the standard library. The 

motivation for this work is that memory management can be more efficient when multiple 



!13
private heaps are used. There are a number of reasons why this is a case (“Managing 

memory”  2013): 2

1. Allocation into a single heap often creates memory blocks that reside in different pages of 

memory. As an example, let us consider allocation of memory for items of a linked list. If 

one allocates memory for other data between adding nodes of the list, the blocks linked 

with nodes of the list may end up on multiple different pages. It means that accessing data 

from the linked list would potentially involve swapping multiple pages, jumping from one 

page to another. Utilisation of multiple private heaps implies that one can specify which 

data is allocated in which heap. It allows reduction of overhead created by swapping 

between pages of memory since data that is often accessed at the same time (in case of the 

example before: data stored in the elements of the linked list) can be stored in fewer 

pages, and it remains close together. 

2. Applications dealing with multiple threads can benefit from using private heaps as well. 

The reasoning goes as follows. Using a single large shared heap as a memory resource, no 

more than one thread can allocate memory into a heap at the same time. The reason for 

this restriction is to ensure that memory is safely allocated and deallocated in the shared 

resource. As such, allocation and deallocation of memory in a single heap shared by 

multiple threads must be serialised via mutexes or semaphores. This slows down 

allocation and deallocation due to threads having to wait until they can access the shared 

resource. Performance could be improved if a separate private heap is created for each 

thread, reducing both the time that threads have to wait and the overhead needed for 

serializing access to the heap. 

3. Private heaps could also be created for specific data structures (we may take the example 

dealing with the linked list from point 1 of this list into account). If one has a linked list 

that has its elements allocated in various pages in memory, freeing the blocks must be 

done individually, which can take time. If a separate heap is created specifically for that 

list, deallocating the whole list could be done by a single call that destroys the entire data 

structure. In this case, freeing memory could be made more efficient and performance 

could be improved. This scenario is not investigated in this project. 

4. Another drawback of using a single shared heap for memory management becomes 

apparent when a large number of allocations and deallocations of data of the same large 

 Citations of references with no author are given by the first few words of the title and year.2

 



!14
size take place. With time, memory space may not be able to fit in any more large data due 

to adding smaller pieces of information into memory between allocation and deallocation 

of large data. For example, if one has a block of free memory of size 1MB, allocating 

even 1B into that region makes it impossible to allocate another 1MB into the same block. 

3.5 Thread Affinity 

Another aspect of multithreaded applications, placement of threads, may be shown to affect 

performance. Thread affinity allows to bind and un-bind threads to a physical CPU or to a 

range of CPU cores, rather than allowing threads to run on any core. In this way a thread will 

run only on a core or cores in question. 

Mechanisms that allow thread affinity scheduling prove to be of growing interest since in 

modern machines amount of time needed to access a memory location cached locally versus 

one held in main memory is usually significantly lower. (Salehi, Kurose & Towsley 1995, 

Devarakonda, Mukherjee 1992, Gupta, Tucker & Urushibara 1991). Achieving successful and 

efficient affinity of threads may take advantage of speedup that can be received through 

accessing locally cached memory. By using thread affinity and avoiding dynamic placement 

of them programmers wish to reach such situations where work can be transferred for 

execution onto separate processors, when feasible and profitable.  

Static affinity of threads can be beneficial for optimizing cache usage: a number of times the 

program must switch processors can be significantly reduced, which lowers a rate of flushing 

one cache and repopulating another. Additionally, thread affinity takes advantage of the fact 

that cache used by the thread may store data that was put there during one of the previous runs 

(Yang 2010). Research in the field of static thread affinity has been ongoing for more than 20 

years now (Vaswani, Zahorjan 1991). We intend to investigate to what extent performance of 

programs and utilisation of cache may be improved by statically setting the processor affinity 

of threads in Insense. 

4 SOFTWARE ENGINEERING PROCESS 

This Section touches issues connected with principles of software engineering that were 

employed throughout the work on the project. Multi-core Insense was developed by following 



!15
concepts of evolutionary (incremental) development. Figure 4.1 outlines main stages that 

projects which follow the model go through. Incremental software development is known to 

be better than a waterfall approach for most business, e-commerce, and personal systems 

(Sommerville 2011). The evolutionary development model was chosen due to its 

characteristics that seemed to be promising for a project of this type and scale. Firstly, this 

method is beneficial for a project that in its objective has creation of a part of a large system 

(“Understanding” 2006). Such risks as missing deadlines, creating unusable products of low 

quality can be addressed and managed by breaking the project into smaller, more manageable 

pieces (May, Zimmer 1996). 

Figure 4.1 The evolutionary development model. (Sommerville 2011) 

At first, a description of the project was outlined. Research goals, system’s objectives and 

constraints were established on this stage. The main goal was defined as successfully 

analising benefits of using schemes of memory management and thread placement discussed 

in the scope of this project. Outline requirements were specified for Multi-core Insense prior 

to starting the evolutionary development cycle. 

4.1 Project Plan 

After outlining description of the project, it entered the implementation phase where the more 

detailed design and implementation of the system took place. Work was conducted in cycles. 

As can be seen from the Figure 4.1 above, each cycle consists of three main concurrent 

activities: gathering specifications, conducting development, and validating results. Three 

main stages can be outlined: 1. Insense was ported to Unix. 2. A number of methods utilised 

for management of memory were first designed and then implemented. 3. Schemes of 
 



!16
placement of threads were designed and implemented. The initial, intermediate, and final 

versions were created. Multiple intermediate versions were achieved by following feedback 

received through validation of cycles of design/implementation. 

The time scale of the project was around five month. More than a half of this time was spent 

on understanding Insense and software systems behind it and working on the base 

implementation that allowed designing, implementing and eventually experimenting with 

memory management and thread placement. Appendix 2 contains a Gantt chart for the project 

that was used to orgranise work. 

5 REQUIREMENTS SPECIFICATION 

A number of outline requirements were established on the initial stage of the project. 

5.1 Functional Requirements 

Functional requirements describe how the system should and should not behave, what kind of 

services it should provide and what type of output it should produce when it is given certain 

kinds of input (Sommerville 2011). The following list of initial (outline) requirements was 

established for the project: 

Components: 

1. The system must be able to create, assign to POSIX threads, and stop components. 

2. When on multiple cores, components must be able to run in parallel. 

3. Components must be able to communicate with other components through channels. 

Channels: 

4. The system must be able to create, destroy, bind together and unbind channels. 

5. Channels must be able to serve as a medium for transferring data of such types as integers, 

strings, arrays etc. 

6. Channels must support 1:1 and N:M connection types (described in Section 7.3). 

Memory management: 

7. Support for allocation and deallocation of memory into a single shared heap and into 

multiple private heaps must be given. 

Thread placement: 



!17
8. Support for the following schemes of thread placement: 1) dynamic placement, where OS 

takes care of setting affinity; 2) static placement, Insense components are distributed 

evenly among cores; 3) all components are placed on a single core; 4) locating Insense 

components based on frequency of communicating with other components 

Insense Compiler and Runtime: 

9. Insense programs must be able to run on a 64-bit architecture. 

10. Users must be able to choose among supported data placement scheme. 

11. Users must be able to choose among supported thread placement scheme. 

5.2 Non-functional Requirements 

Non-functional constraints are normally put on the services or functions offered by the 

system. To name a few, this type of requirements includes constraints on the development 

process, timing constraints, and constraints imposed by standards. (Sommerville 2011) 

 
The following non-functional requirements were outlined for this project: 

1. Keep changes to the Insense compiler to a minimum so as to maximise compatibility with 

existing versions. 

2. The project must be finished and results delivered by June 26th 2013. 

3. Updates on achieved progress must be given to a supervisor on weekly basics. 

6 ETHICS 

This project did not involve conducting experiments that require participation of humans. As 

such, there were no ethical concerns associated with this project. Appendix 10 contains a 

scanned copy of the ethics approval form. 

7 DESIGN 

This Section summaries design process that was undertaken in the project and discusses taken 

design decisions. 

 



!18
7.1 Design of Multi-core Insense 

In order to successfully use Insense on a multi-core Unix-based system a number of essential 

elements of the language had to be redesigned. 

7.1.1 Components 

A component is active and the unit of concurrency in Insense. For the Contiki-based 

implementation, component behaviour was represented using proto-threads, a light-weight 

form of thread provided by the Contiki OS. Under InceOS, behaviour of components was 

embodied by utilising an active and pre-emptable component abstraction provided by InceOS. 

For the Unix implementation, component behaviour could either be represented using Unix 

Processes or POSIX threads (p-threads).  

A decision was taken to use POSIX threads because threads are commonly considered to be 

more light-weight than processes in consuming less resources in the OS (Stallings 2009). 

Further, component communication over channels is likely to be easier to design and 

implement when components are represented as threads as these may communicate via a 

shared virtual memory space without the need for additional Inter-Process Communication 

(IPC) mechanisms when communicating between different processes. 

The following operations on components must be supported by the multi-core Insense 

runtime: 

1. Creation of components: a POSIX-type thread is created and the component behaviour 

will be implemented by the new thread. If private heaps are utilised for memory 

management, as discussed in Section 7.2.2 below, a new heap assigned to the component 

is created at this stage. Also, if required, thread affinity can be set, as discussed in Section 

7.3. 

2. Stopping components: the thread implementing the component's behaviour is stopped. It is 

achieved by changing value of a Boolean flag that indicates whether component is running 

or not to FALSE, as discussed in more details in Section 8.1.1. 

7.1.2 Channels 

A decision was taken to use the algorithms proposed in (Sharma et al. 2009) for this project. 

The reason behind using these algorithms is that they have been verified by the scientific 



!19
community and successful experimental results were achieved, as described in the 

aforementioned paper. 

!  

Figure 7.1 Send and Receive algorithm proposed by (Sharma et al. 2009). 

Figure 7.1 above outlines algorithms for send and receive operations. The design of these 

functions is almost symmetric, as can be seen in the algorithms. Both operations check 

whether any components are waiting in the list of connections with the sender looking for a 

waiting receiver and vice-versa. If no such match is found the sender or receiver blocks on the 

blocked semaphore until it is re-awakened by at least one component moving to the state that 

allows sending/accepting data. 

In addition to the send and receive operations in Figure 7.1 above, a number of other 

operations are required to support channel communication in Insense. These include creation 

of a new channel with given payload type and direction and connection and disconnection of 

component channels. The channel operations are described in more detail in (Sharma et al. 

2009). 

7.1.3 Program Entry Point 

Under Unix, it was necessary to design and implement a system-level entry point to the entire 

Insense program. This entry point may be likened to the main function in a C program or the 

 



!20
main method in Java. It was decided that such a main function should be defined once in the 

Insense Runtime library and should be designed to instantiate any necessary data structures 

and then hand over control to a programmer-defined entry point in the Insense program.  

Insense programs commonly contain declarations of any global procedures (for use by all 

components) followed by component declarations and finally a sequence of code that serves 

as the user-level entry point to the program, i.e. where user-level program execution begins. 

In InceOS, this entry point was represented as a schedulable InceOS component and in 

Contiki, it was represented as a Contiki process. Under Unix, a decision was taken to 

represent the programmer-defined entry point as a function that is called by the system-level 

entry point as explained above.  

Any dynamically allocated memory required by the main thread is handled by using the 

malloc function. Hence, even when the “private heaps” scheme is in use, memory required by 

the main component will be allocated dynamically, into the shared heap. The main thread 

requests allocation of memory for a little amount of data: one descriptive string per 

component and for what is passed as members of the argv array of program arguments. This 

design decision was made since it may be argued that the amount of dynamically allocated 

data required by the main thread is minimal and location of it does not affect experiments 

involving private heaps that are outlined further in this document. 

7.1.4 Memory Management & Garbage Collection 

Insense uses a special reference-counting garbage collection scheme for dynamically 

allocated memory. With this method, each allocated block of memory is prepended with a 

piece of memory that stores information about the allocated memory range. 



!21

!  

Figure 7.2 Header prepended to allocated memory (in the shared heap). 

The number of references to every object dynamically allocated in Insense is accounted for 

and stored in the memory header. Whenever Insense variables are assigned to dynamically 

allocated data (such as an array, channel, component, struct, any) the reference count in the 

memory header is adjusted to reflect the assignment. Whenever a reference count reaches 

zero, when it is no longer referenced by any variable, the object is considered as ready to be 

“garbage collected”/destroyed. Moreover, the process of garbage collecting recurses down 

and it deallocates memory assigned for all objects that depend of the object that needs to be 

garbage collected (e.g. elements of an array). Figure 7.2 shows a schematic diagram that 

outlines how a header is attached to a dynamically allocated region of memory.  

7.2 Data Placement Schemes 

Two data placement schemes were designed. The final design of the system permits memory 

for dynamically allocated objects to be allocated in one shared large heap and in multiple 

small private heaps.  

7.2.1 Shared Heap 

In this scheme, memory is allocated dynamically for Insense components, structures, arrays or 

channels at runtime in a single shared heap. 

 



!22

!  

Figure 7.3 Dynamically allocated memory for three components inside of the shared heap. 

  

Data allocated by different threads inside of one Insense program is not separated. Figure 7.3 

demonstrates a possible scenario where three Insense components make use of a shared heap, 

colours represent memory allocated by different components. Allocated memory is numbered, 

based on order of allocations taking place in each thread. Areas of grey colour between 

allocated memory indicate free fragments of the allocation space. The design of the "shared 

heap" allocation mechanism merely requires adoption of the standard library mechanisms 

available in C, as these allocate on a single shared heap. 

As indicated in Figure 7.3 above, memory allocated by particular threads may become 

fragmented and dispersed over the shared heap depending on the interleaving of allocations 

and deallocations by different threads. Also, as already mentioned in Section 3.4 above, 

allocation into the shared heap by multiple threads will be serialised. The issues surrounding 

fragmentation and concurrent access to a single shared heap from multiple threads are 

discussed in more detail in Section 3.4 above. 

7.2.2 Private Heaps 

For Insense on multi-core Unix, it was decided to investigate a different memory management 

mechanism to that discussed in Section 7.2.1 above, where each component is given a small 

private heap in which dynamic allocation of memory can take place. Figure 7.4 shows a 

diagram with three components that allocate memory into private heaps that were assigned to 

them (represented by different colours). The allocation space now comprises three heaps. This 

illustration contrasts with a Figure 7.3 in the previous section where allocation is performed 

into a single shared heap. Similar to the previous figure, numbers indicate ordering of 

allocation within each thread. Although the exact sequence of the various components' 

allocations may take place in any order in time, allocated memory is inputted into one private 

heap and it is contiguous in space. 



!23

!  

Figure 7.4 Dynamically allocated memory for three components inside of private heaps. 

The most significant advantage of this scheme is that multiple threads can allocate in their 

private heaps concurrently, whereas threads that allocate into one large heap have serialised 

access (with mutex locks). Another advantage of this scheme is that when memory required 

by one thread is allocated contiguously into the same heap, the likelihood of allocated data 

residing in one page of allocation space is higher, compared to the “shared heap” scheme. 

Hence, performance of the program may be improved by reducing overhead created by 

swapping multiple pages. 

7.2.3 Data Placement and Potential Cache Misses 

Another problem that systems which work with dynamic allocation of memory face is cache 

misses. When a program accesses a data item for the first time, the data item will be hauled 

into a fast cache close to the processor (prior to access) from the next-level cache or main 

memory, which costs time. Cache misses occur whenever a program tries to access an 

uncached data item (Gove 2011, Hennessy 2007). A data item may be uncached because it has 

a) never been accessed before (compulsory miss) or b) it has been accessed before, but had to 

be evicted from the cache when another data item was accessed by the program (conflict 

miss). Cache misses impact on performance because they may result in the processor having 

to wait (stall) while the data item is cached. Much research has been done in the area of 

reduction of the number of cache misses that occur during execution of a program, there is a 

number of parameters that can be tweaked for receiving gains in performance: size of cache, 

associativity, block size etc. (Wulf, McKee 1995, Ghosh, Martonosi & Malik 1997, Lam, 

Rothberg & Wolf 1991) 

  

The level 1 caches used in most computers today are either directly mapped caches or set 

associative caches (Handy, 1998). In case of a directly-mapped cache, each location in main 

 



!24
memory can only be put into one cache line in the cache. When the cache is set associative, 

instead of mapping every address to a particular cache line, every address maps to a particular 

set of a certain number of cache lines (e.g. 8), but can be placed in any of the cache lines 

within that set.  

Figure 7.5 shows how the Offset and Index portions of the memory address specify where the 

datum may be placed and retrieved in a directly mapped cache. The Index portion of the 

address specifies the cache line and the Offset where the datum is within that cache line. A 

Tag that represents a significant part of the memory address is also stored with each cache line 

and is used to record the remaining higher parts of the memory address of a datum that is held 

in the cache. When a system attempts to access a data item from memory, the Tag stored in 

the cache line is compared to the Tag portion of the address that is being accessed in order to 

determine if the requested data item is cached or not. In case of a set-associative caches, the 

Index indicates which set of cache lines can be utilised to cache a datum with a given memory 

address. Within that set, any unused cache line among the cache lines in the set can be used, 

or one must be evicted prior to caching the new datum if they were previously all in use. As 

before, the Tag is used to store the higher-order bits of the memory address to indicate which 

address is actually cached in the cache and the Offset locates a datum within a specific cache 

line. 



!25

Figure 7.5 Retrieving data from directly mapped cache. 

When a core has access to more data allocated in the main memory than can fit inside of the 

L1 cache, which is often a case, certain blocks of memory are linked to the same location 

inside of the cache. The main idea of set-associative caches is to reduce the chances of 

conflict misses because for any memory address there is a number of possible cache lines to 

use rather than a single line in the direct-mapped cache. However, both the directly mapped 

and the set associative caches suffer from high rates of cache misses (Hill 1988). 

 



!26

Figure 7.6 Cache misses with the “shared heap” scheme. 

The “shared heap” scheme utilised for memory management in multi-core Insense is expected 

to be affected by conflict misses due to memory fragmentation to a greater extent than the 

"private heaps" scheme where fragmentation is anticipated to be less common. An example of 

the issue of cache misses can be understood when Figure 7.6 is taken in account. This 

diagram illustrates occurrence of cache misses in a system that uses a single shared heap for 

memory and has a directly-mapped cache in its processor. Multiple components are executed 

on different cores. Level 1 caches of three cores are represented on the illustration. The size of 

each cache line is a number of words, the exact number of words can be left undefined for this 

discussion. Data allocated by three component instances is fetched from main memory and 

placed into cache. Here we assume that a difference between memory addresses of blocks 1 

and 6 of instance 1 (red) equals to the size of the L1 cache. These blocks are represented with 

different shades of red in the diagram. Based on the description of the mechanisms behind the 

directly mapped cache, one notices that block 1 and block 6 both map to the same cache line. 

As a result, when a system wishes to retrieve data stored in the red block 1, a cache miss will 

occur if block 6 was accessed previously. Similar logic can be applied to other blocks of 

memory where cache misses will eventually occur. Additionally, Red blocks 3 and 7, 4 and 8; 

Blue blocks 1, 3 and 9, 2 and 4 will create similar cache misses. They are also marked with 



!27
different shades of their representing colour in the figure. A similar situation occurs when a 

set-associative cache is used. Only a number of cache misses is lower due to the fact that 

allocated memory maps to a particular set of cache lines. Hence, chances of a particular cache 

line being overwritten by data from main memory are reduced by a factor of the size of the 

set. 

 Figure 7.7 Cache access with the “private heaps” scheme. 

Figure 7.7 attempts to show that a number of cache misses can be reduced if private heaps are 

utilised for memory management. Similar to the example involving Figure 7.6 described 

above, cache misses are possible when private heaps are used. However, because memory 

allocated inside of private heaps is contiguous, a number of cache misses is significantly 

lower, compared to the “shared heap” scheme. As a result, we would expect to see a 

performance increase and reduced number of cache misses for the "private heap" scheme 

compared to the "shared heap" scheme. 

7.3 Thread Placement Schemes 

Another aspect that may affect performance of applications written in Insense and running on 

multi-core systems is placement of threads that are responsible for behaviour of Insense 

components. 

 



!28

7.3.1 Dynamic Placement 

The first scheme of choosing affinity that was considered in the scope of this project is 

dynamic placement of threads implementing Insense component behaviour. With this method, 

affinity of threads is handled by the operating system. 

Figure 7.8 40 threads linked to Insense components dynamically placed on 4 cores. 

Figure 7.8 illustrates how thread placement is handled on Unix-based machines. In this 

example the OS decided to place a single compute-intensive component instance C2 on Core 1 

in order to balance the execution load of the cores. Thread affinity is handled by live 

migration of threads to different cores. Unix-based systems use the hybrid (push/pull) 

migration algorithm for multiple-processor scheduling: push - the systems have a special task 

that checks the load on each processor every 200 ms; pull - a free processor takes a task from 

another processor that has higher load (Garg 2009). As a result, a computer program has no 

knowledge of which threads are placed on which cores. We intend to investigate the impact 

on performance, since efficiency of cache utilisation may suffer. 

7.3.2 Static Placement 

The alternative approach to dynamic placement of threads is setting affinity statically. The 

program or the programmer or, possibly, the compiler decides a core that a particular thread is 

pinned to. Threads can be associated with a particular core during the whole duration of the 

program’s execution. Statically setting the affinity of threads can be beneficial for optimizing 

cache usage: a number of times the program must switch processors can be significantly 



!29
reduced. It lowers a rate of flushing one cache and repopulating another. Deciding on the core 

that is used for setting affinity to a thread is not straightforward and it may be done by 

involving various approached and algorithms. In the scope of this project three methods of 

setting static affinity to threads are investigated: 

1. Even distribution among cores: an algorithm similar to round-robin scheduling algorithm 

(Silberschatz 2009) is experimented with. A pool of cores available for setting affinity of 

threads is traversed circularly. Figure 7.9 demonstrates an example. In this diagram 40 Insense 

component instances are distributed between 4 processors. If one assumed that amount of 

computation performed by all components is uniform, it would be possible to say that all 

cores in the CPU perform approximately the same amount of work. 

 

!  
Figure 7.9 40 threads linked to Insense components statically placed with the “Round-Robin” 

algorithm. 

2. Assignment of threads to a single core: threads are linked with a particular core. Figure 

7.10 outlines a system where all Insense components are assigned to one core (in this case 

Core 1). Investigation of utilisation of this scheme is a part of this project since in some 

circumstances it may be beneficial to performance of the program.  

Figure 7.10 40 threads linked to Insense components statically placed on a single core. 

 



!30

This scheme is not expected to be particularly efficient other than for programs with inter-

component dependencies that restrict active computation to a single component instance at 

any particular point in time.  

3. Assignment of threads to cores based on the nature of communication with other threads: 

threads implementing component behaviour are linked to cores based on the nature of 

communication with other Insense components that they undergo. To explain this placement 

scheme, an outline of three different patterns of component operation and communication 

between components is given next. Figure 7.11 below demonstrates five patterns: 

(a) Sender - Receiver (1:1) : in this pattern one or multiple sender component(s) send data 

(e.g. an integer) and receiver component(s) receive data. No calculations take place on either 

side. This scheme outlines a case where a built system relies heavily on communication 

between components. 

(b) Dispatch - Worker (1:N) : Consider a Dispatch component which always sends a number 

and Worker component which receives that number and then performs amount of work 

controlled by the number. The Dispatch will not be able to send another number until any 

connected Worker component instances have done their work and execute their receive 

statement again (because the channels are synchronous). 

(c) Client - Server (N:1) : In this scenario, one or multiple Client instances send requests to a 

single Server which receives the request and performs computation of some kind. There is no 

need to reply to the Client. 

(d) Many to Many (N:M): this is a more complicated case which can be seen as a combination 

of patterns (b) and (c) above. Component instances on both sides of the diagram (components 

1 - 3 and 4 - 6) can perform computation. 

(e) No communication: in this simple case no communication between components takes 

place. 



!31

Figure 7.11 Component connectivity patterns. 

Figure 7.12 reveals an example with four different groups  of components: “a” (marked with 3

blue borders), “b” (red borders), “c” (green borders), and “d” (yellow borders). 

 The word “group” in this Section refers to Insense components in Figure 7.11 that are marked with the 3

same ending letter and the same border colour. E.g. for the component “S1a”, a letter “a” denotes the group 
of the component, which in this case is “a”.
 



!32
Figure 7.12 11 threads linked to Insense components statically placed on cores based on the 

nature of communication with other threads. 

To continue with the example, let us assume that the following statements hold true: 

• The group “a” of components may be described by the Sender - Receiver example. R1a must 

wait to receive a value before it can do anything else and S1a must send a value before being 

able to do anything else. In this case executing both components on the same core may be 

beneficial: as neither can make progress while the other component is doing something 

other than sending or receiving.  

• The group “b” of components may be described by the Dispatch - Worker example. 

Component instance D1b is a Dispatch component and two instances - W1b and W2b - are 

instances of a Worker component. In this case executing D1b, W1b, and W2b on different cores 

may be beneficial in terms of maximising concurrency at the expense of more inter-core 

component communication. 

• The group “c” of components may be described by the Client - Server example. C1c, C2c, 

and C3c are multiple Client instances and S1c is a single Server which receives requests sent 

by clients and performs computation. We argue that with this scenario it may be beneficial 

to execute the clients (C1c, C2c, C3c) on one core and the server S1c on a different core. 

• The group “d” consists of two components - C1d and C2d - that have no communication with 

any other components. This is an example of the “No communication” pattern. 

This work aims to investigate the efficiency of dynamic component placement compared to 

static placement according to interaction pattern. Naturally, using only amount of 

communication with other threads as the only way parameter for deciding which cores a 

particular thread should be pinned to may not be efficient enough. One may think of multiple 

other characteristics: type of computations performed in the component, estimated execution 

time etc. 

8 IMPLEMENTATION 

This chapter first describes how Insense was adjusted to run on Unix-based systems that 

operate with multiple cores. Then, a description of the main work performed on implementing 

schemes for memory management and thread placement is described. 



!33

1. type IHello is interface (out string output)
2. type IPrinter is interface (in string input)
3.
4. component Hello presents IHello {
5.     msg = "Hello World\n"
6.     constructor() { }
7.     behaviour {
8.         send msg on output
9.     }
10. } 
11.
12. component Printer presents IPrinter {
13.     constructor() { }
14.     behaviour {
15.         receive msg from input
16.         printString(msg)
17.     }
18. } 
19.
20. hello = new Hello()
21. printer = new Printer()
22. connect hello.output to printer.input

Figure 8.1 The “Hello” program written in Insense. 

Figure 8.1 presents the source code of a single example program written in Insense that will 

be used throughout the chapter. It will be used at various stages of explanation to showcase 

different aspects of the implementation of multi-core Insense. Essentially, it is a “Hello 

world“ example. The program has two components: “Hello” and “Printer”. The “Hello” 

component contains a string object, it sends the object over a channel to the “Printer” 

component, where the string is outputted on the screen. 

8.1 Base Unix Implementation 

When the project was started, modifying Insense to an extent that allows running a demo 

application on a Unix-based system was set to be a minor step that needs to be taken in the 

beginning. While working on porting the language to Unix it was learnt that time commitment 

and amount of work had been largely underestimated. Every step that had to be taken to 

modify Insense came with issues that took time and effort that had not been previously 

expected. Working on this stage took more than two months. Problems that were met on this 

phase of the project could be explained by the fact that development was based around using 

two relatively large projects (Insense compiler and Insense runtime environment) that in total 

are comprised of more than 1,700 files written in three languages: C, Java and Insense itself. 

 



!34
Additionally, the code is not well-documented. While working on providing support for 

executing Insense applications on multi-core Unix-based machines, a better level of 

understanding was achieved in how pieces of the whole system behind Insense fit together 

and what principles of software engineering were used in development of Insense language. 

8.1.1 Components 

Code related to Insense components may be found in component.c and component.h files. 

The main difference between components in the form they are used in the multi-core 

implementation of Insense and variation of Insense designed for InceOS and Contiki resides 

in the fact that components are run on POSIX-type threads. 

1. struct IComponent_data {            // The supertype for all components
2.     void (*decRef)(void *pntr);     // For ref counting garbage collection
3.     bool stopped;                   // Has the component been stopped
4.     pthread_t behav_thread;         // Process implementing behaviour
5.     sem_t component_create_sem;     // Semaphore for component_create
6. };

Figure 8.2 The supertype structure for Insense components. 

Every Insense component instance is described by a structure that stores various metadata 

about a component in question. The original design of the structure used for this task that was 

developed for the InceOS and Contiki operating systems had to be changed to accommodate 

for the multithreaded environment. In the current implementation, each Insense component is 

described by the structure of type IComponent_data, source code of which is given in Figure 

8.2. The structure contains the following information about a component: 

1. void (*decRef)(void *pntr) - pointer to a function used for reference counting garbage 

collecting described in Section 8.1.5. 

2. bool stopped - Boolean flag indicating whether a component can run (set to FALSE) or if it 

has been stopped (set to TRUE). 

3. pthread_t behav_thread - This is a handle to a POSIX thread implementing the 

component instance's behaviour. 

4. sem_t component_create_sem - a semaphore used to avoid synchronisation issues that arise 

in the component creation stage where more than one component use private heaps for 

memory management. 



!35

To create a component, one needs to use the function void *component_create(behaviour_ft 

behaviour, int struct_size, int stack_size, int argc, void *argv[]). Appendix 4 

contains source code of the function. The initial part of the function creates a structure 

*this_ptr of type IComponent_data that is used for storing metadata described in the 

beginning of this section. Figure 8.3 shows that a mutex was added to the code of the 

component_create() function, it is required to avoid problems with scheduling of threads. 

1. pthread_mutex_lock(&thread_lock); 
2. pthread_create(&this_ptr->behav_thread, NULL, startRoutine, argStruct);
3. pthread_mutex_unlock(&thread_lock);

Figure 8.3 A part of component_create() where component is assigned to a POSIX thread 

Once the this_ptr structure for the component is initialised, the component’s behaviour 

function is ready to be run with the POSIX thread. This operation is achieved through calling 

the pthread_create function (“pthread_create(3)” 2013). This function allows passing only 

one parameter along with the function that is to be run inside of the thread. The component's 

this structure, the pointer to the Insense constructor function and its arguments are placed 

into a struct and passed to the start_routine function as a single argument (as required by 

pthread_create). The start_routine is then able to call the Insense constructor. A wrapper 

function that “wraps” three objects into one structure that can then be passed to the 

pthread_create had to be designed. Figure 8.4 illustrated the source code. 

1. void * startRoutine(void *args_p) {
2.     pthread_mutex_lock(&thread_lock);// Avoid problems with scheduling
3.     struct argStructType *args = (struct argStructType *) args_p;
4.     args->behaviour(args->this_ptr, args->argc, args->argv);
5.     free(args_p);
6.     pthread_mutex_unlock(&thread_lock); // Unlock mutex
7.     return ((void *) 1);
8. }

Figure 8.4 The wrapper function used to pass three parameters to the function run inside of a 

POSIX thread. 

Figure 8.5 shows the function void component_stop(void * this_ptr). It is used for stopping 

components. This action is possible by calling stop inside of a component to stop this 

component or stop(sender) to stop a component instanced sender. 
 



!36

1. void component_stop(void * this_ptr) {
2.     struct IComponent_data *t = (struct IComponent_data*) this_ptr;
3.     t->stopped = 1;
4. }

Figure 8.5 The function for stopping Insense components. 

Let us take a look at now familiar Insense program “Hello” as an example of how components 

are handled by the Insense runtime. The program was extended and two calls to “stop” were 

added, for the purposes of demonstration.  

(a)                     (b) 

Figure 8.6 (a): “Hello” program that illustrates management of components. (b): timeline of 

calls of functions dealing with management of Insense components during execution of the 

“Hello” program. 

Figure 8.6 shows the program along with a timeline of calls to functions that create and stop 

components, which are outlined above. Each use of the new keyword (e.g. hello = new 

type IHello is interface (out string output)
type IPrinter is interface (in string input)
component Hello presents IHello {
    msg = "Hello World\n"
    constructor() { }
    behaviour {
        send msg on output
        stop
    }
} 
component Printer presents IPrinter {
    msg = ""
    constructor() { }
    behaviour {
        receive msg from input
        printString(msg)
        stop
    }
} 
hello = new Hello()
printer = new Printer()
connect hello.output to printer.input

1.component_create for Hello
2.component_create for Printer

3.component_stop for Hello, after 
1 run of behaviour
4.component_stop for Printer, 
after 1 run of behaviour



!37
Hello()) in Insense code, once compiled and run, results in a call to the component_create 

function.  

As stated above, the stop keyword is called twice in the program, each call is done in the end 

of the first run through the behaviour function. These calls result in the function 

component_stop being called, which terminate execution of components. 

8.1.2 Arrays 

No major changes had to be made to the compiler or runtime in order to get arrays to work 

efficiently on Unix except for changes made to the following function array_loc in IArray.c 

inside of Insense runtime (Figure 8.7). 

1. void *array_loc(IArrayPNTR a, unsigned i){
2.     if (i >= a->length){
3.         i = 0; // do safe deref of array element 0 which is always created
4.     }
5.     return ((void *) (((char *) a->data) + i * a->type_size));
6. }

Figure 8.7 Adapted to multi-core architecture array_loc function. 

To support understanding of source code above, we present a description of the mechanism 

behind instantiating and accessing arrays in Insense. Insense arrays are instantiated by the 

keyword new (e.g. a = new integer[5] of 0 where 5 indicates size of the array and 0 shows 

which value is given to all members of the array during instantiation). Elements of the array 

can be accessed by following a common pattern of using square brackets (e.g. a[1]). A value 

of an element of the array can be overwritten by using the “:=” operator (e.g. a[1] := 3). In 

the last example, array_loc function would be used in the runtime to access array element 1 

to set it to the value 3. It returns a pointer to array element a[i] (line 5 in Figure 8.7) or a 

predefined default location if array index out of bounds (lines 2 - 4).

During performing tests described in Chapter 9 it was discovered that the exception handling 

mechanism in array_loc function is extremely inefficient for multi-core use as it accesses a 

global variable to indicate success of its operation. Removing this global variable improved 

performance on multi-core systems in situations when arrays are used. The runtime and the 

compiler had to be adapted. 

 



!38
8.1.3 Channels 

Code related to channels may be found in channel.c and channel.h files. 

An existing channel design and implementation provided by Andrew Bell was used in this 

project and explained in (Bell 2013), but an outline of the algorithms and data structures is 

nevertheless provided in this document for the reader's convenience. 

All channels are described by the structure shown in Figure 8.8. As with components, 

channels are garbage collected and the decRef element is a pointer to the garbage collection 

function for channel objects. Channels have a direction, which is defined by chan_dir 

direction. The chan_dir enumeration can take values of CHAN_IN (for an incoming channel 

from which data may be received) or CHAN_OUT (for an outgoing channel over which data can 

be sent). A channel is assigned with a list of other channels, which it is connected to, the list is 

defined by List_PNTR connections. A number of semaphores and a mutex were added to each 

channel to support scheduling, their usage is described by comments in source code. Other 

elements of the structure can be considered as self-explanatory. 

1. struct Channel {
2.     void (*decRef)(Channel_PNTR pntr); // GC decRef
3.     chan_dir direction;    // for error checking in bind, etc.
4.     size_t typesize;       // how large the buffer is
5.     void* buffer;          // pointer to data to send/receive
6.     bool ready;            // ready flag
7.     bool nd_received;      // used by select
8.     List_PNTR connections; // channels we're connected to
9.     sem_t conns_sem;       // connections available mutex
10.     pthread_mutex_t mutex; // for locking the channel
11.     sem_t blocked;         // block component if waiting for other channel
12.     sem_t actually_received; // make sure data can't be changed until after a 

receive has completed
13. };

Figure 8.8 Structure used to describe Insense channels on Unix. 

The most critical aspect of ensuring correct work of channels is avoiding problems with 

synchronisation, as shown in (Bell 2013). In order to support sending and receiving data 

between channels and their synchronous work, three semaphores and one mutex were used in 

the project. 



!39
Six main operations involving channels are supported by the system. They are outlined in the 

remaining part of this section. 

Creation of channels: supported by the function Channel_PNTR channel_create(chan_dir 

direction, int typesize, bool contains_pointers). As Figure 8.9 shows, when a new 

channel is created in this function, information about the channel is initialised through 

assigning appropriate values to elements of the Channel structure described in the Figure 8.8. 

1. Channel_PNTR channel_create(chan_dir direction, int typesize, bool 
contains_pointers) {

2.     Channel_PNTR this = (Channel_PNTR)DAL_alloc(sizeof(struct Channel), 
true);

3.     if(this == (void*) 0){
4.         DAL_error(CHAN_OUT_OF_MEMORY_ERROR);
5.         return NULL;
6.     }
7.
8.     this->decRef = Channel_decRef;
9.     this->direction = direction;
10.     this->typesize = typesize;
11.     this->ready = false;
12.     this->nd_received = false;
13.     DAL_assign(&(this->connections), Construct_List()); //List of connections
14.
15.     // Initialise mutexes and semaphores
16.     sem_init(&(this->conns_sem), 0, 0);        
17.     pthread_mutex_init(&(this->mutex), NULL);
18.     sem_init(&(this->blocked), 0, 0);
19.     sem_init(&(this->actually_received), 0, 0);
20.
21.     return(this);
22. }

Figure 8.9 Function responsible for creation of half-channels. 

Binding channels: supported by bool channel_bind(Channel_PNTR id1, Channel_PNTR id2). 

This function connects two components with one channel. The source code of the function in 

Figure 8.10 ensures that such properties of channels as their directions and types of data that 

they carry are checked at the first stage of the logic behind this function. If their directions are 

equal (both have CHAN_IN or CHAN_OUT assigned to their chan_dir direction attributes) or if 

they are meant to be medium for data of different type (values of size_t typesize are not the 

same), it serves as an indication of a logical flaw, and the binding process is aborted. The 

other reason why the function can be aborted is if half-channels that are supposed to be 

 



!40
connected already have each other in their connections lists: in this case further execution of 

the function is also cancelled.  

1. bool channel_bind(Channel_PNTR id1, Channel_PNTR id2) {
2.     pthread_mutex_lock(&conn_op_mutex);
3.     
4.     // Check not both CHAN_IN or CHAN_OUT
5.     if(id1->direction == id2->direction) {
6.         pthread_mutex_unlock(&conn_op_mutex);
7.         return false;
8.     } 
9.     if (id1->typesize != id2->typesize) {
10.         pthread_mutex_unlock(&conn_op_mutex);
11.         return false;
12.     }
13.
14.     pthread_mutex_lock(id1->direction == CHAN_IN ? &(id1->mutex) : &(id2-

>mutex));
15.     pthread_mutex_lock(id1->direction == CHAN_IN ? &(id2->mutex) : &(id1-

>mutex));
16.
17.     // Check if channels are not already connected. Assuming bind always adds 

to both channels' lists, we only need to check one channel for the other
18.     if(containsElement(id1->connections, (void*)id2)) {
19.         pthread_mutex_unlock(&conn_op_mutex);
20.         return false;
21.     }
22.
23.     // Add to connection lists
24.     insertElement(id1->connections, id2);
25.     insertElement(id2->connections, id1);
26.
27.     // Unlock conns mutex in both channels
28.     int val = 0;
29.
30.     sem_getvalue(&(id1->conns_sem), &val);
31.     // Never allow semaphore to go above 1; make it act like a mutex
32.     if(val == 0) {
33.         sem_post(&(id1->conns_sem));
34.     }
35.
36.     sem_getvalue(&(id2->conns_sem), &val);
37.     if(val == 0) {
38.         sem_post(&(id2->conns_sem));
39.     }
40.     
41.     pthread_mutex_unlock(&(id1->mutex));
42.     pthread_mutex_unlock(&(id2->mutex));
43.     pthread_mutex_unlock(&conn_op_mutex);
44.     return true;
45. }

Figure 8.10 Function responsible for binding two half-channels into one complete channel. 



!41
If conditions outlined above do not hold true, the binding process can be initialised. The 

process behind this action is not complicated. To bind two half-channels into one complete 

channel, add the half-channel on the opposite side of the channel to the connections list. This 

procedure is protected by mutexes which are blocked before and unlocked after performing 

manipulations on the lists of connections. 

Unbinding channels: supported by void channel_unbind(Channel_PNTR id). The logic behind 

this function is similar to that of the function responsible for binding channels. The following 

action is performed for two half-channels that need to be unbound: a half-channel on the other 

side of the channel is removed from the connections list. This operation is performed for both 

half-channels and for all connections found in the connections list. As for the binding 

process, this action is protected by two mutexes and two semaphores. 

Sending data over channels: supported by int channel_send(Channel_PNTR id, void *data, 

void *ex_handler). This function is an implementation of the algorithm that was described in 

Figure 7.1 in Section 7.1.2.  

Receiving data from channels: supported by int channel_receive(Channel_PNTR id, void 

*data, bool in_ack_after). As with the send operation, this function is also based on the 

corresponding algorithm that was described in Figure 7.1. 

Destruction of channels (garbage collection): supported by void 

Channel_decRef(Channel_PNTR this). Figure 8.11 shows the source code of the function. The 

channel is unbound from all of its connections. Then, the list of connections is garbage 

collected and mutexes and semaphores are destroyed. 

1. void Channel_decRef(Channel_PNTR this){
2.     channel_unbind(this);           // Disconnect from all other channels
3.     DAL_decRef(this->connections);  // Garbage collect connections list
4.     // Now destroy mutexes and semaphores
5.     sem_destroy(&(this->conns_sem));
6.     pthread_mutex_destroy(&(this->mutex));
7.     sem_destroy(&(this->blocked));
8.     sem_destroy(&(this->actually_received));
9. }

Figure 8.11 Function responsible for destroying channels. 

 



!42

Let us take the “Hello” example into consideration again. Figure 8.12 describes what 

functions are called by the compiled executable when channels are used in components. 

Channels (half-channels) are created by calling the channel_create function when the new 

keyword is used to create a new component (that contains a description of a half-channel in its 

interface type, e.g. type IHello is interface (out string output)). Then, two half-

channels are bound together by using the connect keyword. 

Sending data is possible by utilising the send keyword inside of the behaviour function. 

Naturally, the name of the half-channel needs to be correct; in case of the example, it is 

output. Receiving data follows similar logic: receive keyword called from the behaviour 

function results in information being sent over the channel. 

(a)                     (b) 

Figure 8.12 (a): “Hello” program that illustrates channels. (b): timeline of calls of functions 

dealing with channels during execution of the “Hello” program. 

Providing support for channels was crucial for the project since it offers possibilities to extend 

complexity of tests that can be run for comparing performance of private heaps / shared heap 

memory management schemes and static / dynamic thread placement methods. 

type IHello is interface (out string output)
type IPrinter is interface (in string input)
component Hello presents IHello {
    msg = "Hello World\n"
    constructor() { }
    behaviour {
        send msg on output
    }
} 
component Printer presents IPrinter {
    constructor() { }
    behaviour {
        receive msg from input
        printString(msg)
    }
} 
hello = new Hello()
printer = new Printer()
connect hello.output to printer.input

4.string object is sent from 
“output”

5.string object is received on 
“input”

1.channel “output” created
2.channel “input” created
3.channels “input” and “output” 
are bound together. Ready to 
communicate now.



!43

8.1.4 Program Entry Point 

Code related to the program entry point may be found in the file runtime_main.c. 

The system-level entry-point to the Insense program is executed as the main thread and it 

calls the programmer-defined entry-point to the Insense program, which is defined by the 

code sequence following all component declaration.  

1. int main() {
2. #if HEAPS // Private Heaps
3.    if (pthread_mutex_init(&thread_lock, NULL) != 0) { // Initialize mutex
4.         return NULL;
5.    }
6. #else // Shared Heaps
7.    if (pthread_mutex_init(&alloc_lock, NULL) != 0) { // Initialize mutex
8.         return NULL;
9.    }
10. #endif
11.
12.     mainThread = pthread_self(); // Note the ID of the main thread.
13.     // Create a list for storing references to p-threads
14.     threadList = listCreate();
15.     // Create map used to store memory locations of private heaps
16.     SHList = listCreate();
17.     // Create map used to store locations of what is allocated using malloc()
18.     mallocList = listCreate();
19.     
20.     primordial_main(NULL); // Call primordial_main.
21.     
22.     if (threadList != NULL ) { 
23.         listJoinThreads(threadList); // Join all p-threads
24.     }
25.
26.     // Destroy lists, mutexes and free memory
27.     listDestroy(threadList);
28.     listDestroy(SHList);
29.     listDestroy(mallocList);
30.     pthread_mutex_destroy(&thread_lock);
31.     pthread_mutex_destroy(&alloc_lock);
32.     return 1;
33. }

Figure 8.13 The main function in Insense runtime. 

As all program written in C, the Insense runtime has the main function, which serves as a 

point of entry to the runtime. Figure 8.13 shows the source code of it. Let us discuss this 

function in detail. The first stage in the function is initialisation of global variables and data 

structures. Lines 2 - 10 handle initialisation of mutexes used to avoid problems with 1. 

scheduling that occurs during the component creation stage and 2. allocation and deallocation 
 



!44
of memory into the shared heap (see Section 8.1.1 for more details). Code in line 12 initilises 

a global variable that stores ID of the main thread. Lines 13 - 18 are responsible for creating 

global thread-safe linked lists that store records of: POSIX threads, private heaps, and 

memory allocated with malloc. 

1. void primordial_main( void *this ) {
2.     HelloPNTR hello_glob = NULL;
3.     DAL_assign(&hello_glob , component_create( Construct_Hello0, 

sizeof( HelloStruct ) , 46, 0, NULL ) );
4.     component_yield( ) ;
5.     PrinterPNTR printer_glob = NULL;
6.     DAL_assign(&printer_glob , component_create( Construct_Printer0, 

sizeof( PrinterStruct ) , 46, 0, NULL ) );
7.     component_yield( ) ;
8.     channel_bind( hello_glob->output_comp,printer_glob->input_comp ) ;
9.     component_exit( ) ; // For compatibility with InceOS.
10. }

Figure 8.14 The primodial_main function generated for the “Hello” Insense runtime. 

Figure 8.14 shows the primordial_main function generated for the “Hello” test program. This 

function is executed from the main function. It is the programmer-defined entry point to the 

Insense program. One may see from the example above that components are created in this 

function, in the case of this example, two components are created, namely, Hello and Printer. 

Additionally, the only channel between these components that is described in the program is 

bound in this function. Calls of component_yield do nothing. A compiler could have been 

modified to remove these calls, but it was decided to keep the compiler as similar as possible 

to the Insense compiler for InceOS. 

After execution of the primodial_main function, the main thread waits for the POSIX-type 

threads defined for Insense components by the use of pthread_join function. Figure 8.13 

demonstrates this in lines of code 22 - 24. Lines 26 - 32 are for destroying no longer needed 

objects, mutexes and freeing memory. 

8.1.5 Memory Management & Garbage Collection 

The original version of Insense that was used with InceOS and Contiki works on 16-bit 

devices. As Figure 8.15 shows, the memory header had to be changed to cater for the 64-bit 

architecture used in machines in the lab used to conduct testing. Size of the ref_count, which 



!45
corresponds to a number of references of the object stored in the allocated piece of memory 

that follows the header, in the modified version is 63 bits. 
1. typedef struct MemHeader {
2.     unsigned long ref_count :63; // 63 bits used in 64-bit architecture.
3.     unsigned short mem_contains_pointers :1;
4. }*MemHeader, MemHeaderStruct;

Figure 8.15 Insense memory header structure adjusted for the 64-bit architecture. 

Otherwise, all remaining aspects of the garbage collection scheme used in Insense were not 

changed and they were taken from the versions of Insense deployed for InceOS and Contiki. 

(a)                     (b) 

Figure 8.16 (a): “Hello” program that illustrates memory management and garbage 

collection. (b): descriptions of behaviour of the garbage collector. 

To further explain principles behind work of garbage collection in Insense, let us again take 

the “Hello” program as an example. Figure 8.16 outlines a sequence of actions that are 

undertaken by the garbage collector to transfer a string object between two components. Each 

time an object of any type needs to be passed between components via a channel, instead of 

moving the object from one component to another, the copy of it is transferred through the 

channel. In the case of the “Hello” program, the Hello component sends a string object msg to 

the Printer component. Step 1 indicates a point in time when memory for the string object is 

allocated. The reference count at this stage is 1. Step 2 in the timeline shows that instead of 
 

type IHello is interface (out string output)
type IPrinter is interface (in string input)
component Hello presents IHello {
    msg = "Hello World\n"
    constructor() { }
    behaviour {
        send msg on output
    }
} 
component Printer presents IPrinter {
    constructor() { }
    behaviour {
        receive msg from input
        printString(msg)
    }
} 
hello = new Hello()
printer = new Printer()
connect hello.output to printer.input

1. New string object is created. 
Reference count = 1.

2. A copy of a string object is 
constructed prior to send. The 
reference count is incremented 
incremented to '1' on the sender 
side and then sent over the 
channel. Action is repeated on 
each iteration of the behaviour.
3. A copy of a string object is 
received from input. The reference 
count is decremented to '0' on the 
receiver side at the end of the 
behaviour loop thereby forcing the 
string object to be garbage 
collected.



!46
physically moving the string and changing its memory location, a copy of the object is 

created. Also, the reference count is incremented: at this stage two copies of the string exist in 

the program each with a reference count of 1. The copy of the string is sent over the channel 

rather than the original. Then, in step 3, the object is received by the Printer component. The 

reference count of the received object copy is then decremented and set back to 0 at the end of 

the receiver's behaviour loop forcing the copy of the string to be garbage collected. These 

actions are repeated on each iteration of the behaviour. The string object itself is garbage-

collected on the exit from the program. 

8.1.6 Thread-safe List 

Code related to Insense components may be found in ThreadSafeList.c and 

ThreadSafeList.h files. 

This project involves concurrent execution of multiple POSIX threads. Any data structures 

that are used by the runtime environment and the compiler consequently need to be thread-

safe. On multiple occasions a linked list had to be utilised, namely for: storing a list of POSIX 

threads running in the program, keeping track of private heaps used by threads, and for noting 

what memory is allocated by calls of the malloc function. A custom-built thread-safe list was 

developed as a part of this project to handle aforementioned tasks. Its implementation is 

trivial. Figure 8.16 shows that the structure which is used to describe the list contains one 

mutex that is utilised to avoid problems caused by concurrency issues. 

1. struct threadSafeList {
2.     int count;             // Number of elements in the list.
3.     struct listItem *head; // First element in the list.
4.     struct listItem *tail; // Last element in the list.
5.     pthread_mutex_t mutex; // Mutex for locking functions. Makes it thread-

safe.
6. };

Figure 8.17 Structure that describes the thread-safe linked list. 

All elements of the list contain a their value in void *value, pointers to the previous element 

prev and to the next element next. The first element in the list has its prev attribute set to 

NULL, the next attribute of the last element equals NULL as well. 



!47

1. struct listItem * listAdd(struct threadSafeList *l, void *content) {
2.     struct listItem *listItem;
3.     pthread_mutex_lock(&(l->mutex)); // Lock mutex.
4.     // Allocate memory.
5.     listItem = (struct listItem *) malloc(sizeof(struct listItem));
6.     listItem->value = content;
7.     listItem->next = NULL;
8.     listItem->prev = l->tail;
9.     // Handle tail and head.
10.     if (l->tail == NULL ) {
11.         l->head = l->tail = listItem;
12.     } else {
13.         l->tail->next = listItem;
14.         l->tail = listItem;
15.     }
16.     l->count++; // Increase count of objects in the list.
17.     pthread_mutex_unlock(&(l->mutex));     // Unlock mutex.
18.     return listItem;
19. }

Figure 8.18 Thread-safe “add” operation in the linked list. 

Figure 8.18 shows an example of a thread-safe implementation of the “add” function. The 

mutex is locked in the beginning of the function and unlocked in the end of it. Otherwise, 

implementation of this function and its behaviour follows conventions. 

8.1.7 Build System 

The Insense compiler is written in Java, which generates C code. Generated code can then be 

compiled by using gcc and is linked with the runtime library which is also written in C. 

Insense programs are built into runnable files in a series of stages: 

1. Compilation is initialised. C files are compiled along with a makefile, which allows to 

type in the make command in the Terminal on a Unix-based machine and create an 

executable. Figure 8.19 demonstrates how this operation can be performed in Scientific 

Linux. Also, an address of Insense runtime needs to be defined in order to make Insense 

programs. It is achieved by the following terminal command: export 

INSENSE_RUNTIME_INCEOS=”/Address_to_runtime/”.  

2. An executable file has now been created. Insense program can be executed. Figure 8.19 

demonstrates how the program can be run on Scientific Linux (after the and “&&” symbol, 

 



!48
running a compiled C program on Linux is done by using the “./

NAME_OF_THE_EXECUTABLE” operation). 

Figure 8.19 Command to “make” and run the “Hello” Insense program on Linux. 

Figure 8.20 shows an excerpt from the output of the “Hello” program. A string “Hello World” 

is received through a channel and outputted onto the screen on each iteration of the behaviour 

function of the Printer component. 

 



!49
Figure 8.20 Output of the “Hello” program after successful compilation and execution. 

By default, behaviour functions of Insense components are executed indefinitely. A user may 

either modify source code so the component stops after a certain amount of time/number of 

executions of behaviour or force to stop execution by pressing ctrl+c in the terminal, from 

which the program is run. 

8.2 Data Placement Schemes 

Code related to data placement may be found in files DAL_mem.h, DAL_mem_common.c, 

DAL_BH_mem_common.c, and DAL_SH_mem_common.c. 

Successfully reaching a point where a simple Insense program could be run on Unix provided 

a base implementation for the project. The main part of work was centered around 

experimenting with memory placement and thread affinity schemes described in Chapter 7. 

Working on this stage of the project took about three months. 

Two memory placement schemes were implemented in the scope of this work: allocation of 

memory into one shared heap and into multiple private heaps. 

(a)                     (b) 

 

type IHello is interface (out string output)
type IPrinter is interface (in string input)
component Hello presents IHello {
    msg = "Hello World\n"
    constructor() { }
    behaviour {
        send msg on output
    }
} 
component Printer presents IPrinter {
    constructor() { }
    behaviour {
        receive msg from input
        printString(msg)
    }
} 
hello = new Hello()

Printer = new Printer()

connect hello.output to printer.input

5. Memory for copy of String 
"Hello World" is allocated

1. “this” structure is allocated.
2. Half-channel “output” is 
allocated.
3. “this” structure is allocated.
4. Half-channel “input” is 
allocated.



!50
Figure 8.21 (a): “Hello” program that illustrates allocation of memory with the shared heap. 

(b): timeline of allocation of data. 

The “Hello” test program is also utilised here to show allocation of data. Figure 8.21 outlines 

a timeline of allocations of memory as requested by the program. This example will be used 

to demonstrate a sequence of function calls that take place when new Insense components and 

channels are created. One may see that the first two allocations of memory take place when 

Insense components are created with the new keyword. This is the first allocation of memory 

that takes place when an Insense component is created. The this structure (described in 

details in sections 7.1.1 and 8.1.1) is allocated on the shared or private heap, depending on the 

active data placement scheme. Allocation of space needed for this is handled inside of the 

component_create function described in Section 8.1.1. 

1. void Hello_init_globals(HelloPNTR this) { 
2.     this->decRef = decRef_Hello;
3.     this->output_comp = channel_create(CHAN_OUT, sizeof(StringPNTR), true) ;
4.     DAL_assign(&this->msg_comp, Construct_String0("Hello World\n")) ;
5. } 

Figure 8.22 Compiled code of the “Hello” example program dealing with allocation of 

memory for a channel and a local variable. 

The previous paragraph focused on allocation of memory for a newly created component. 

After that process has been completed, channels are put on the heap by calling the 

channel_create function (described in Section 8.1.2). In case of this example, channels 

output (in the Hello component, line 3 in Figure 8.22) and input (in the Printer component) 

are assigned with space in main memory. Finally, space required for component variables is 

allocated. Figure 8.22 demonstrates the void Hello_init_globals(HelloPNTR this) function 

taken from the compiled code of the “Hello” program. It shows that the “Hello” program asks 

for memory for a string “Hello World” created inside of the “Hello” component, line 4. It can 

be noticed that allocation of memory required for channels and component variables is 

handled by calls of functions component_create, channel_create, and DAL_assign  (which is 

described in Section 8.2.2). Allocation of memory required for components is handled by the 

thread that serves as the entry point to the program (sections 7.1.3 and 8.1.4 focus on it), but 

allocation of memory for channels and component variables takes place from the actual 

POSIX-type thread assigned to the component. 



!51

1. void *DAL_alloc(size_t size, bool mem_contains_pointers) {
2.     void* pntr = NULL;
3. #if HEAPS // Private Heaps
4.        // 2 is passed to indicate that a new private heap needs to be 

created.
5.     if(mem_contains_pointers == 2) { 
6.         pntr = (void *) SH_create_small_heap(); // Create a new private heap.
7.     } else {
8.         // Allocate into an existing private heap.
9.         pntr = (void *) SH_alloc(size + sizeof(MemHeaderStruct) );    }
10. #else // Shared Heap
11.     // Allocate memory into the shared heap.
12.     pntr = (void *) BASE_mem_alloc( size + sizeof(MemHeaderStruct) );
13.     // Note down that memory was allocated with malloc().
14.     listAdd(mallocList, pntr); 
15.     // Log into a file, if required.
16.     log_into_file("malloc     at", pntr, size + sizeof(MemHeaderStruct)); 
17. #endif
18.
19. #if DEBUG == 1
20.   if(pntr > last_max_malloc){
21.       last_max_malloc = pntr;
22.       printf("\nm(%u): %p", size, pntr);
23.   }
24. #endif
25.   if(pntr == NULL){
26.       printf("DAL_alloc pointer is NULL.\n");
27.     DAL_error(OUT_OF_MEMORY_ERROR);
28.     return NULL;
29.   }
30.
31. #if DEBUG == 2
32.   printf("\nm(%u): %p", size, pntr);
33. #endif
34.   // Zero memory area to avoid having to set all pointer types to NULL prior 

to DAL_assign
35.   memset(pntr, 0, (size + sizeof(MemHeaderStruct)) );
36.   ((MemHeader) pntr)->ref_count = 0;
37.   ((MemHeader) pntr)->mem_contains_pointers = mem_contains_pointers;
38.   if (mem_contains_pointers == 2)
39.        ((MemHeader) pntr)->mem_contains_pointers = true;
40.   return ((pntr + sizeof(MemHeaderStruct)));
41. }

Figure 8.23 Modified and extended function for dynamically allocating memory in Insense. 

Further, Figure 8.23 shows a version of the function void *DAL_alloc(size_t size, bool 

mem_contains_pointers) that was modified to accommodate for both the “shared heap” and 

“private heaps” schemes. This function serves as an entry point to dynamic allocation of 

memory in all Insense programs. It is called whenever dynamic allocation of memory is 

 



!52
required in runtime and in generated C code. The C preprocessor conditions (e.g. “#if 

HEAPS”) were used to switch between using the shared heap and private heaps for memory 

management. There are two possible scenarios of working with private heaps that are 

considered by the function DAL_alloc. Firstly, at the component creation stage, when the 

function is called by a thread that has not been linked to a private heap (line 3 in Figure 8.3), a 

new private heap is created and gets linked to that POSIX thread. Instead of altering the 

InceOS Insense compiler in multiple places, a single alteration was made to pass special flag 

“2” as value for the argument bool mem_contains_pointers to the function to indicate that a 

new private heap needs to be created: DAL_alloc(0, 2). Secondly, a more common scenario is 

when the function is called by a thread that has already been assigned a particular private heap 

in which any thread-local dynamic allocation and deallocation can take place. In this case, the 

function void * SH_alloc(unsigned size) is called and it allocates memory within the 

private heap associated with the calling thread. 

8.2.1 Shared Heap 

The key point for implementing this scheme was making sure that the appropriate dynamic 

memory allocator is called whenever Insense structures, arrays or channels are constructed at 

runtime. It was achieved by ensuring that the C malloc function (“malloc(3)” 2013) is called 

in all of the aforementioned cases. The malloc function requests allocation of a block of 

memory in the heap. In case of a successful request, the operating system reserves the 

requested amount of memory. 

Figure 8.24 Allocation of memory required by the “Hello” program in the shared heap. 

Let us take the “Hello” example into consideration. Figure 8.21 shows at which stages of the 

program’s execution memory is allocated and for which data structures. Figure 8.24 describes 



!53
how memory is allocated for two “this” structures, two channels, and one local variable. Red 

colour represents memory allocated for the Hello component, blocks coloured with blue 

indicate memory given to data that originates from the Printer component. Numbers above 

the allocation space indicate a sequence of allocations. 

Figure 8.24 indicates the possibility that memory allocated for components is not contiguous, 

relative to other pieces of data allocated by the same component. In this test case, after 

allocation of memory for the this structure of the Hello component inside of the 

component_create function, the processor did not switch to the newly created POSIX thread 

that was running behaviour of Hello such that memory for the this structure of the Printer 

component, is still allocated from the entry point thread (Section 8.1.1 describes component 

creation). Similar behaviour can be seen when allocating memory for channels and the string 

object. Over time such behaviour resulting in memory allocated in an noncontiguous manner 

may become significantly more complicated when a larger number of Insense components are 

used. 

8.2.2 Private Heaps 

In this scheme allocation of memory is supported by multiple heaps, instead of a single large 

heap. 

Figure 8.25 Allocation of memory required by the “Hello” program in two private heaps. 

Let us again look at the “Hello” program as an example. Figure 8.21 shows at which stages of 

the program’s execution memory is allocated and for which data structures. Figure 8.25 

describes how memory is allocated for two this structures, two channels, and one local 

variable, when private heaps are utilised. As before, red colour represents memory allocated 

 



!54
for the Hello component, blue blocks correspond to the Printer component. Numbers above 

the allocation space indicate a sequence of allocations, sorted by time. 

Compared to the "shared heap" allocation in 8.2.1 above, here memory allocated for 

components is contiguous, relative to other pieces of information allocated by the same 

component. Similar to the case with the shared heap, in this test case, after allocation of 

memory for the this structure of the Hello component inside of the component_create 

function, the processor switches back to the main thread and allocates memory for the this 

structure of the Printer component. Nevertheless, this time memory requested for the 2nd 

this structure is allocated on a separate, second, heap. Memory for channels and the string 

object is subsequently allocated. Memory allocated for a particular thread is always put into 

the private heap assigned to the thread (component) in question. 

Also, dynamically allocated storage for data structures on a sender-side private heap is not 

copied to a receiving component's heap in this implementation. A receiver of an object will 

receive a reference to a copied object located in the sender-side heap. In contrast, data of type 

integers, real and of other basic types is sent by value, i.e. in this case no cross-references 

between heaps exist.  

The rest of this section describes changes and additions to existing Insense runtime library 

code and newly created functions that support the “private heaps” memory allocation scheme.  

8.2.2.1 Creation of a New Private Heap  

Creation of private heaps is supported by the void *mmap(void *addr, size_t len, int 

prot, int flags, int fildes, off_t off) function (“mmap” 2004). This function offers a 

way to map data or files to memory. Most implementations of malloc use mmap for allocation. 

The main reason behind using mmap in case of Insense is that it allows contiguous allocation of 

data into a fixed region of memory protected from being used by the operating system and 

external processes. 

1. void * SH_create_small_heap() {
2.     void * heap = mmap(NULL, heapSize, PROT_READ | PROT_WRITE, MAP_SHARED | 

MAP_ANON, -1, 0);
3.     if (heap == MAP_FAILED)
4.         PRINTFMC("MMAP failed");
5.     return heap;



!55
6. }

Figure 8.26 Function for creation of a new private heap. 

Figure 8.26 provides a listing of the function where creation of private heaps is implemented. 

heapSize is set statically to a default value. The following flags are utilised with the call of the 

mmap function : 

1. MAP_SHARED | MAP_ANON - the MAP_SHARED flag indicates that changes made to memory after 

the mmap() call are visible in the mapped region. The MAP_ANON flag demonstrates that 

mapping is anonymous, meaning that no file is mapped into memory.  

2. PROT_READ | PROT_WRITE - data inside of the mapped region can be read and overwritten. 

(“mmap” 2004) 

8.2.2.2 Allocation and Deallocation of Memory within the Private Heaps 

The C language does not offer standard tools that can be used for memory management in 

case of using multiple private heaps. Hence, functions that can support allocation and 

deallocation of memory within a private heap had to be developed. Extensive amount of 

research on the methods that could be used for supporting such tasks has already been 

conducted by the scientific community (Knuth 1997). Methods described by Knuth and Ervin 

were used as the underlying base for developing the functions that allocate and deallocate 

memory within a pre-allocated private heap. An existing implementation of a publicly 

available custom-built allocator and deallocator was taken as a base for functions 

implemented in this project (“User mnicky” 2013). 

The solution presented in the project and described lower may not be the fastest possible 

approach. However, it is rather easy to understand and implement and the solution has a 

relatively low space complexity, which may be beneficial for improving results of 

experiments. 

1. struct shMapType {
2.     pthread_t thread_id; // ID of the thread that is linked to the private 

heap
3.     unsigned int * memArea; // The actual memory range used for allocating 

memory within the private heap
4.     unsigned int memAreaSize; // Size of the private heap
5.     unsigned int available;   // How much memory is available for allocation
6. };

 



!56

Figure 8.27 A structure that stores meta information for a new private heap. 

Let us continue with the description of implementation of the system used for allocating and 

deallocating memory. The first step that needs to be done is setting up a structure that stores 

meta data about a newly initialised private heap. Figure 8.27 outlines the structure in the way 

it was implemented. The following information is initialised on this stage: 

1. pthread_t thread_id - ID of the POSIX thread that is linked to the private heap. 

2. unsigned int * memArea - pointer to the start of the memory range used for allocating 

memory within the private heap. 

3. unsigned int memAreaSize - size of the private heap. 

4. unsigned int available - amount of memory available for allocation. 

1. struct shMapType * SH_init(void *ptr, pthread_t thread) {
2.     struct shMapType * shMapElement = malloc(sizeof(struct shMapType));
3.     shMapElement->mem = (MEMTYPE *) ptr;
4.     shMapElement->memSize = heapSize / sizeof(MEMTYPE);
5.     shMapElement->mem[0] = heapSize / sizeof(MEMTYPE) - 1;
6.     shMapElement->mem[shMapElement->memSize - 1] = heapSize / 

sizeof(MEMTYPE);
7.     shMapElement->thread_id = thread;
8.     shMapElement->avail = 0;
9.     return shMapElement;
10. }

Figure 8.28 Initialisation of a structure that stores meta information for a new private heap. 

Figure 8.28 shows a listing of code used to provide initialisation of aforementioned attributes 

that characterise a new private heap. The heap can be considered as initialised when: it is 

given a size, a thread/component is linked to the heap, and a starting location of the heap in 

main memory is know. All private heaps are given the same size. The current implementation 

of the project assumes this size to be 4,000,980B (defined by the heapSize variable previously 

mentioned in Figure 8.26). This number was achieved through performing experiments. It 

was concluded that this size is large enough to accommodate memory needs of components of 

different nature. In the implementation for this project which is tailored towards running 

specific experiments, heaps are not extendable, and the implementation does not contain a 

mechanism for estimating size that an Insense component would need. 



!57

After a new heap has been created and initialised, allocation of memory within that private 

heap becomes possible. Figure 8.29 outlines implementation of the function  

void * SH_alloc(unsigned size) that calls an appropriate allocator to allocate requested 

memory.  

At its entry point the function attempts to retrieve information about the heap that is linked to 

the thread that the function was called from. It is achieved by calling the 

listGetMemoryLocation function which traverses the thread-safe linked list SHList in search 

of an entry that contains a reference to the calling thread. If the function fails to find such 

entry, NULL is returned. 

1. void * SH_alloc(unsigned size) {
2.     // Return NULL pointer after attempt to allocate 0-length memory
3.     if (size == 0) {  
4.         return NULL ;
5.     }
6.     struct shMapType * shMapEntry = listGetMemoryLocation(SHList, (unsigned) 

pthread_self()); // Receive metadata about the current heap
7.     if (shMapEntry == NULL ) {
8.         if ((unsigned) mainThread == (unsigned) pthread_self()) {
9.             // If it is the main thread - malloc space
10.             void * result = (void *) malloc(size + sizeof(MemHeaderStruct));
11.             listAdd(mallocList, result);
12.             return result;
13.         }
14.         // If nothing can be done - return NULL
15.         return NULL ;
16.     } else {
17.         return SH_alloc_at_base(size, shMapEntry);
18.     }
19. }

Figure 8.29 Allocation of memory into a private heap assigned to the current POSIX thread. 

The function was implemented in a way that allows splitting it into two sub-routines: 

1. Calling malloc when allocation is required by the main thread: preceded by NULL being 

returned by the call of listGetMemoryLocation. Memory requested by the main thread is 

allocated using the malloc allocator, since, as was justified in Section 7.1.3, amount of 

space needed for the main thread is relatively small and location in memory of data 

allocated by the thread serving as the entry point has low impact on performance. The ID 

 



!58
of the main thread is established at runtime by code in the file runtime_main.c (described 

in more details in Section 8.1.4).  

2. Allocation into an existing private heap: Alternatively, if the heap for the calling thread is 

found then SH_alloc_at base is used to allocate the requested amount of memory in that 

private heap. 

As stated in point 2 above, allocation of memory within a specific private heap is performed 

by the function with a signature that has the following form: 

void *SH_alloc_at_base (unsigned int size, struct shMapType * shMapEntry). The 

function was implemented to require storing as little amount of meta information as possible 

(“User mnicky” 2013). The first node of every allocated range stores an integer. This number 

identifies the number of allocated nodes that follow in the range in question. 

Figure 8.30 presents a diagram that gives insight into this mechanism. In this figure white 

blocks indicate free space and red blocks - allocated memory. Three scenarios are taken into 

account: A. represents the initial situation where the whole allocation range contains only free 

memory blocks; B. shows the same allocation space, but with four allocated blocks of 

memory: blocks 0 - 3; C. outlines a scenario where three blocks have been allocated with data 

(blocks 3 - 5) and the memory allocated in scenario B has been deallocated. 

Figure 8.30 Allocation of memory with SH_alloc_at_base. 

A similar approach to keeping track of allocated memory logic is also used for marking free 

space. A number of free blocks that the free space contains is stored in the first node of the 

free range, similarly to storing a number of allocated blocked in the first node of an allocated 



!59
region. For example, in Figure 8.30, in situation A, the 0th block indicates that there are 

exactly nine free block that follow; in situation B, after allocating four blocks of memory, the 

0th block now carries information about the allocated range, and the 4th block now contains 

“5”, which indicates that the cell is followed by five free blocks ready to be allocated. 

The last node of the free range points to the ID of the starting node of the next free range. 

Figure 8.30 gives an example of it: in situation A, the 9th block contains an integer 10 - it 

indicates that the next free block is outside of the allocation space in question. In situation C, 

the 2nd block that is the last block in the free region contains “6” and, indeed, the next free 

region starts from the 6th block. 

Finally, freeing allocated memory had to be designed and implemented as well (“User 

mnicky” 2013). The function’s signature is: void SH_free(void *ptr). The source code for 

this function is shown in Appendix 5. A high-level description of the steps performed during 

de-allocation is shown below: 

1. Check if pntr refers to a memory location that is inside of the shared heap. If yes, use 

free() function offered by C. 

2. Otherwise, find which private heap contains the piece of memory that needs to be freed. 

3. Then, free memory by altering relevant free and used entries in the data structure that 

outlines allocated and free regions of the heap. 

8.3 Thread Placement Schemes 

Another important part of the project is investigation of possible thread placement schemes. 

Code related to Insense components may be found in affinity.c and affinity.h files. This 

section discusses the process of implementation of methods described in Section 7.3.  

8.3.1 Dynamic Placement 

Let us take a modified version of the “Hello” program as an example. Figure 8.31 shows how 

affinity is set for six instances of two components. To use an example that should hopefully be 

familiar to the reader, this figure outlines an Insense program that is a realisation of the 

network topology presented in Figure 3.3 in Section 3.2. 

 



!60
Figure 8.31 (b) shows that affinity of component instances is set dynamically: affinity is 

decided by the system and the programmer/computer program has no control of the 

mechanisms behind adjusting affinity of threads. 

Figure 8.31 (a): “Hello” program that illustrates dynamic thread affinity. (b): setting affinity 

to instances of Insense components on a machine with 4 cores. 

To go into more details. Components are created in the function component_create (described 

in sections 7.1.1 and 8.1.1). When this function is called, it starts a POSIX thread. The thread 

does not have any affinity set up thereby permitting the OS to decide which core to use for 

this thread. 

8.3.2 Static Placement 

This approach relies on taking control of affinity of threads. The static placement of threads 

depends on manually setting affinity to POSIX threads assigned to Insense components. 

type IHello is interface (out string output)
type IPrinter is interface (in string input)
component Hello presents IHello {
    msg = "Hello World\n"
    constructor() { }
    behaviour {
        send msg on output
    }
} 
component Printer presents IPrinter {
    msg = ""
    constructor() { }
    behaviour {
        receive msg from input
        printString(msg)
    }
} 
hello1 = new Hello()
hello2 = new Hello()
hello3 = new Hello()
printer1 = new Printer()
printer2 = new Printer()
connect hello1.output to printer1.input
connect hello2.output to printer1.input
connect hello3.output to printer1.input
connect hello2.output to printer2.input
connect hello3.output to printer2.input

1. Affinity set to any core
2. Affinity set to any core
3. Affinity set to any core
4. Affinity set to any core
5. Affinity set to any core



!61
Figure 8.32 presents a listing of the functions used for implementation of thread affinity. The 

function int setAffinity(pthread_t thread) is responsible for the actual process of setting 

affinity of a given thread to a particular core. The strategy for choosing cores that the thread is 

pinned to is chosen through use of the C preprocessor conditions (e.g. #if AFFINITY_ALGO == 

1), where AFFINITY_ALGO is a constant that indicates which affinity algorithms needs to be 

used in the current run of the program. It receives the ID of the thread that needs to have its 

affinity set. 

1. /*
2.  * Set affinity of POSIX thred with pthread_t thread.
3.  */
4. int setAffinity(pthread_t thread) {
5. #if AFFINITY_ALGO == 1
6.     // Round-Robin
7.     return setAffinityToCore(thread, receiveCoreIdForThread(thread));
8. #elif AFFINITY_ALGO == 2
9.     // Set all threads to one single core
10.     return setAffinityToCore(thread, 0);
11. #else
12.     // Set affinity to a random core
13.     return setAffinityToCore(thread, rand() % receiveNumberCores());
14. #endif
15. }
16.
17. /*
18.  * Set affinity of POSIX thread "thread" to core with ID “core".
19.  */
20. int setAffinityToCore(pthread_t thread, int core) {
21.     // First check if value of core exceeds a number of cores in CPU
22.     if (core >= receiveNumberCores())
23.         return -1;
24.
25.     // Define CPUSET which describes the CPU
26.     cpu_set_t cpuset;
27.     CPU_ZERO(&cpuset);
28.     CPU_SET(core, &cpuset);
29.
30.     // Set affinity
31.     int s = pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
32.     if (s != 0) // Check for errors
33.         handle_error_en(s, "pthread_setaffinity_np");
34.     return s;
35. }

Figure 8.32 Functions used for setting affinity of threads. 

The function receiveCoreIdForThread returns the core that a thread in question is to be pinned 

to, based on the algorithm in use. This approach works with all algorithms of static placement 

described in this study. 

 



!62

Another function setAffinityToCore is where the actual alteration of affinity of a given thread 

takes place. It uses functionality provided by the standard POSIX library. If it encounters an 

error, a “-1” value is returned; otherwise, a value yielded by the call of 

pthread_setaffinity_np is outputted from this function. 

1. #if !(AFFINITY_ALGO == 0)
2.     if (core != -1) {
3.         // Use passed ID of a core.
4.         setAffinityToCore(this_ptr->behav_thread, core); 
5.     } else {
6.         setAffinity(this_ptr->behav_thread);
7.     }
8. #endif

Figure 8.33 Part of component_create function responsible for changing affinity of the newly 

created POSIX thread. 

Figure 8.32 illustrates a part of component_create where a newly created p-thread, which is 

responsible for executing the behaviour function of a just created component, is statically 

pinned to a particular core. A parameter core is passed to component_create function. This 

variable may be used by a developer who wishes to take full control of thread pinning for a 

particular component instance. “-1” is given as a default value of core when Insense programs 

are compiled: it indicates that the the parameter needs to be ignored and a value of 

AFFINITY_ALGO is to be used for choosing an algorithm that handles static affinity. If one 

wishes to use the core parameter, its value has to be changed in compiled code. As a note, 

setCore function was also added to Insense, it allows setting affinity to components inside of 

Insense programs. 

8.3.2.1 Even Distribution of Threads Among Cores 

The first and, perhaps, the most straight-forward approach to static thread placement is 

distributing threads evenly among cores by setting AFFINITY_ALGO to “1”. The “Hello” 

program will serve as an example of how it works. Threads are assigned to cores from the 

pool of available units of computation, one by one. Figure 8.31 demonstrated how affinity of 

threads is set to cores dynamically. A reader may use this figure as an example for this scheme 

as well. In this case instances of Hello component would be set to cores 1, 2, and 3 

respectively; instances of Printer: 4, 1, and 2 respectively Providing that threads perform 



!63
computations of the same level of complexity, this approach attempts to make equal use of all 

cores in the system. If a number of threads is not a multiple of the amount of cores, certain 

cores may be assigned to one extra thread. 

8.3.2.2 Static Placement of Threads to a Single Core 

In this vision of static placement all threads are pinned to a single core. In order to use this 

scheme AFFINITY_ALGO needs to be set to “2”. Once again, Figure 8.31 may be seen as an 

example. Only, in this case all instances of Insense components would be pinned to a single 

core (e.g. “Core 3”). On systems where all cores inside of a processor are equal and represent 

essentially the same piece of hardware, the ID of the core that is chosen for changing affinity 

of threads has no impact on the program. 

8.3.2.3 Static Placement of Threads Based on Communication 

With this algorithm, threads are linked to cores based on the nature of communication with 

other Insense components that they undergo. Benefits of using this system may be shown 

when threads that have high levels of communicating with each other are set to the same core. 

Section 7.3.2 outlines grouping components into five categories. 

9 EXPERIMENTS 

All experiments were performed on identical pieces of hardware. The computers available in 

the MSc laboratory of St Andrews University were used in the project. They have multi-core 

processors with four cores (Intel® Core™ i5-3470S, 2.90GHZ) and 8GB of RAM. The 

processor supports Intel® Hyper-Threading Technology (Intel® HT Technology) that allows 

an execution core to function as two logical processors. While some execution resources such 

as caches, execution units, and buses are shared, each logical processor has its own 

architectural state with its own set of general-purpose registers and control registers. This 

feature must be enabled using the BIOS and requires operating system support. 

Experiments were performed using Scientific Linux 6.3. The -O0 flag of the compilation 

command was used to remove effect of optimisation of gcc compiler (“gcc(1)” 2013), it was 

done to be able to have full control of thread placement and memory management. Execution 

time of experiments was measured using the time(1) (“time(1)” 2013) function, which shows 

 



!64
both CPU and real time. For the sake of brevity, the results of timing experiments presented in 

this section contain only real time measurements (outputted by time(1) function). Appendix 9 

contains more detailed graphs that also feature system and user time in case the reader wishes 

to see these as well. 

9.1 Effects of Memory Management Schemes on Allocation and Deallocation of Memory 

The main goal of this experiment is to look into benefits of using multiple private heaps for 

allocation and deallocation of memory. 

9.1.1 Design of Experiments 

Experiments: 

• Different numbers of component instances - one and four - are instantiated. They allocate 

space for a large 2-dimensional (2D) array in each iteration of behaviour - dynamic 

allocation takes place. Both memory management schemes are tested: private heaps / shared 

heap. Instances are run on a single core, their affinity is set dynamically, and when they are 

evenly distributed between cores. 

Parameters affecting results: 

• Size of the 2D array. Sizes tested: 100 by 5 = 500 integers and 1000 by 5 = 5000 integers. 

Evaluation: 

• Compare execution time. 

Expected results: 

• “Lock behaviour” is expected, i.e. in case of using a single shared heap, instances of 

components need to wait their turn to perform allocation and deallocation due to the heap 

being locked by another core. Private heaps should perform considerably better. 

• Also, fragmentation will have its effect: allocation will be further slowed down since more 

time will be spent on looking for a free space in the heap. Fragmentation is more likely to be 

visible if the experiment has more than a single component running on the same core. 

Therefore, this experiment has 4 components for running on a 4-core processor. 



!65
9.1.2 Program Used 

Appendix 6 presents source code of a program that was used to conduct experiments outlined 

in Section 9.1. This simple program contains a single Insense component that creates a matrix 

of integers inside of its behaviour. A number of instances of the component are created, each 

creates an array on every iteration of behaviour. The array is then garbage collected (memory 

assigned for it is deallocated) at the end of the behvaiour prior to the next iteration of the 

behaviour loop. 

9.1.3 Experimental Results 

The only parameter varied in this experiment is size of the array a in the Comp component. 

Figure 9.1 shows results of the first experiment that was run: comparing performance of the 

“shared heap” (“SH”) and “private heaps” (“PH”) schemes when used with a single 

component instance, for which affinity is dynamically chosen by the OS (since there is only 

one instance, other thread placement schemes considered in the study do not produce different 

results). “Dynamic” indicates dynamic placement of threads, where the OS takes care of 

thread placement. This notation is used throughout this chapter. 

Figure 9.1: Results of running an experiment with utilising multiple heaps for (de-)allocation 

of memory. One component. 

Figure 9.2 below shows execution times of running various combinations of memory and 

thread placement schemes, when four component instances are used. “1 core” refers to a 

scheme of thread placement where all threads are pinned to a single core; “RR” refers to the 

round-robin scheme were threads are evenly distributed over cores, these schemes are 

described in more detail in Section 7.3. This notation is also used throughout this chapter. In 

total six cases were considered for this experiment.  

 

SH - Dynamic

PH- Dynamic

0.000 0.575 1.150 1.725 2.300

1.380

2.256

Real time (s)



!66

Figure 9.2: Results of running an experiment with utilising multiple heaps for (de-)allocation 

of memory. Four component instances and size of array: 1000x5 elements. 

These results are discussed in the following section. 

9.1.4 Discussion of Results 

Figure 9.1 shows results of running a single component that performs a large number of 

allocations and deallocations. It outlines that the “private heaps” scheme offers speedup of a 

factor 1.5 compared to the “shared heap” scheme in this base example where no parallel 

execution of Insense components takes place. This difference in performance may be 

explained by fragmentation of memory that occurs when a single shared heap is utilised. 

Next, Figure 9.2 contains results of executing a more complex example where four 

component instances allocate and deallocate space for the array in their behaviour functions. 

First, comparison of execution time of the “SH - Dynamic” and “PH - Dynamic” 

configurations is given (notation used in the figures is described in Section 9.1.3). This 

example shows that utilising the “private heaps” scheme along with dynamic placement of 

threads offers a considerable speedup by a factor of 16, compared to using the “shared heap” 

scheme. Degradation in performance for the “shared heap” scheme is likely to be due to 

multiple threads trying to access a single shared heap concurrently from different processor 

cores. Appendix 9.2, which contains measurement of CPU time (user time + system time) for 

“SH - Dynamic”, shows that most of the CPU time is spent in kernel mode, which can be 

explained by reduction of performance caused by locking that occurs in the dynamic memory 

SH - Dynamic

PH- Dynamic

SH - 1 core

PH - 1 core

SH - RR

SH - RR

0.0 10.0 20.0 30.0 40.0

2.225

28.610

5.851

8.996

2.223

33.541

Real time (s)



!67
allocation routines; in case of Doug Lea’s malloc implementation - by using mutexes (Lea 

1996). Such locking is not present when allocating into a private heap, in which case each 

core can allocate and deallocate memory concurrently with other allocation and deallocation 

calls taking place in other private heaps. 

Further, improved performance of “SH - 1 core” compared to the “SH - Dynamic” can be 

explained by the fact that allocations and deallocations do not take place at the same time. If 

all Insense component are run on the same core, there is less chance that locking must be 

imposed to secure a shared heap: if there is less chance, less time is spent on locking. “PH - 1 

core” still performs better that “SH - 1 core”. The reason behind: even though threads are 

interleaved, there is no concurrent access to the heap. With the “private heaps” scheme time is 

not lost because no locking due to mutex/semaphore protection takes place. 

Lastly, results achieved by using the “PH - RR” configuration are of similar order as with “PH 

Dynamic”. In this case, multiple cores are also trying to access shared heap concurrently. “PH 

- RR” offers a speedup by a factor of 12 compared to “SH - RR”. 

Figure 9.3: Running out of memory with an array of size 850x5 elements. 

 



!68

Another issue when using “shared heap” allocation scheme was detected: all programs 

suffered from gradual increase in memory usage. In certain cases, meaning that the computer 

would run out of memory. It was put down to inefficient usage of the shared heap. In these 

cases Valgrind (“Valgrind’s homepage” 2012) was used to verify that there was no actual 

memory leak in the program. Figure 9.3 shows a screenshot of the system state before the OS 

halted. 

9.2 Effects of Memory Management Schemes on Cache Usage 

The goal of this experiment is to investigate benefits of using multiple private heaps for 

improving memory cache usage. Size of Level 1 cache on the machine used for this 

experiment is 32KB and cache line size is 64B. 

9.2.1 Design of Experiments 

Experiments: 

• A component has four instances, which increment values in the 2-dimensional array during 

each iteration of its behaviour function. The instances are placed on a single core, their 

affinity is set dynamically, and placed evenly. Both memory management schemes are 

tested: “shared heap” and “private heaps”. Two configurations of the size of the array are 

used: ~93% and ~24% of the size of L1 cache. 

Parameters affecting results: 

• Size of the array inside of the component. 

Evaluation: 

• Compare rate of Level 1 cache misses. Section 7.2.3 introduces the concept of cache misses. 

The Cachegrind tool, which is a part of Valgrind (“Valgrind’s homepage” 2012) distribution, 

was utilised to measure cache misses. Cachegrind can be used to run experiments for L1 

cache, but not L2 cache. 

• Compare execution time. 

Expected results: 

• Private heaps are expected to perform better because of a reduced number of cache misses 

and, hence, faster performance. The expectation is that interleaving allocation of memory, as 



!69
discussed in Section 7.2.2, will result in the less optimal use of directly mapped and set-

associative cache. 

9.2.2 Program Used 

Appendix 7 presents source code of a program that was used to conduct experiments outlined 

in Section 9.2. There is a single Insense component in this program. This components 

contains a 220 by 5 2-dimensional array a that contains integers, which for an Insense 2-D 

Array struct occupies 7,928B (24% of the size of L1 cache used in the testing environment). 

Another configuration used in the experiment is 850 by 5 (93% of the size of L1 cache). The 

component performs incrementation of elements in the array during each iteration of 

behaviour. 

9.2.3 Experimental Results 

The parameter that affected results achieved in this experiment is dimensions and size of the 

array a of integers in the component Comp. Various sizes of the array were experimented with. 

Achieved results indicated a pattern that is consistent throughout all configurations used. 

Figure 9.4 shows results of the experiment where a 2-dimensional array of size 220 by 5 was 

put to use: comparing rate of cache misses for “private heaps” and “shared heap” memory 

management schemes under three thread placement models: “Dynamic”, “1 core”, and 

“Round-Robin” (“RR”); these thread placement schemes are described in detail in Section 7.3, 

notation used in Figure 9.3 is described in Section 9.1.3. Appendix 11 presents full output of 

Cachegrind for this test. 

Figure 9.4: Amount of cache misses with different memory and thread placement schemes. 

Another metric used to evaluate performance is execution time. Figure 9.5 shows a graph of 

execution time measurements with different memory management and thread placement 
 

SH - Dynamic
PH- Dynamic

SH - 1 core
PH - 1 core

SH - RR
PH - RR

L1 cache misses
0 1250 2500 3750 5000

3400
4879

3399
4930

3366
4891



!70
schemes. In this case the program operates with a 2D array of size 30,608B, which is ~93% of 

L1 cache size. 

Figure 9.5: Execution time of test_cache program with an array of size 850 by 5 and 500,000 

behaviour cycles. 

Figure 9.6 also present readings of execution time of the program outlined in Section 9.2.2. In 

this case the program operates with an array of size 9,008B (~27% of L1 cache). 

Figure 9.6: Execution time of test_cache program with an array of size 220 by 5 and 500,000 

behaviour cycles. 

These results are discussed in the following Section. 

9.2.4 Discussion of Results 

The conducted experiment shows that when a single shared heap is utilised for memory 

management, cache lines in a cache of a particular core are overwritten by data that is not 

desired by the unit of computation in question. Furthermore, due to potential fragmentation of 

memory allocations, as described in Section 7.2.2, a situation may occur where a certain 

element of the 2D array inside of the component that is run on the core maps to the same 

cache block as another element. As a result, accesses to that element of the array will evict 

BH - Dynamic
SH- Dynamic

BH - 1 core
SH - 1 core

BH - RR
SH - RR

Real (s)
0.0 22.5 45.0 67.5 90.0

25.363
25.107

88.358
87.677

25.543
25.087

BH - Dynamic
SH- Dynamic

BH - 1 core
SH - 1 core

BH - RR
SH - RR

Real (s)
0.0 6.5 13.0 19.5 26.0

7.407
7.398

25.880
25.818

7.419
7.400



!71
other array elements from the cache, resulting in a cache miss when trying to access the 

evicted member on later stages of execution of the program. 

On the other hand, for the private heaps an expectation was to achieve less fragmentation: 

each POSIX thread allocates into its own private heap, so regardless of allocation order, all 

allocated memory is contiguous. Additionally, L1 caches are private for each CPU core. 

Therefore, in this situation, a better use of the cache and barring capacity misses (when the 

cache is too small for the array), the expectation was to receive fewer conflict misses. 

And, indeed, results described in Section 9.2.3 demonstrate that a larger number of cache 

misses occurs when a single shared heap is utilised for memory management. One can see 

that under all thread placement schemes “private heaps” had fewer cache misses. The 

achieved difference in readings of cache missed in the “shared heap” and “private heaps” 

schemes is ~30%, in favour of “private heaps”. Figures 9.5 and 9.6 demonstrate that no 

significant reduction of execution time of programs is achieved by utilising private heaps for 

these particular examples. A couple of speculations about why this result did not match 

expectations may be presented: 1. the Valgrind simulation is not precise enough, or a better 

set of parameters could be used; 2. the 256kB unified L2 cache (private to each core) has a 

pre-dominant effect on performance. 

9.3 Effects of Thread Placement and Communication Between Components on 

Performance 

The main goal of this experiment is to investigate effects of thread placement and 

communication between components on performance. 

9.3.1 Design of Experiments 

Experiments described lower follow communication patterns, which are introduced in Section 

7.3.2. All results reported here are from experiments run with the “shared heap” memory 

management scheme. Through conducting experimentations, it was shown that choice of the 

memory management scheme does not affect results achieved through running experiments 

described in this section. 

Experiments: 

 



!72
1. “Sender - Receiver” pattern. This experiment was run with two senders and two receivers. 

Each sender is connected to one receiver, no receiver is connected to more than one 

sender. 

2. “Client - Server” pattern. Configuration: three servers and twelve clients where each 

server is connected to 3 clients, no client is connected to more than one server. 

3. “Dispatch - Worker” pattern. Configuration: three dispatch instances and twelve workers 

where each dispatch instance is connected to three workers, no worker is connected to 

more than one dispatch instance. 

4. “No communication” pattern. Operates with four component instances. They perform 

computation (incrementation of elements in an array defined inside of the component). As 

the name suggests, no inter-component communication takes place. 

All experiments are run on all three thread placement schemes taken into account in this study 

(Section 7.3 describes them). 

Parameters affecting results: 

• Amount of computation performed by instances.  

• Amount of overhead caused by channel communication. 

Evaluation: 

• Compare execution time. 

Expected results: 

• In cases of experiments where component instances have inter-component channel 

communication, running instances that have channel communication between each other on 

the same core is expected to be either as efficient or more efficient than running on 

multiple cores, due to reduced channel communication overhead when communicating 

between components that are on different cores. 

• Results of running the “Client - Server” and “Dispatch - Worker” experiments dealing with 

the “N:M” communication scheme should be similar. 

9.3.2 Programs Used 

Appendix 8 presents source code of programs that were used to conduct experiments outlined 

in the previous subsection. 



!73
Appendix 8.1 demonstrates a program used to test the impact of thread placements schemes 

on the “Sender - Receiver” communication pattern. Neither receiving nor sending components 

perform computation. This program is used to experiment with adjusting the level of channel 

communication and observ impact of this action on performance of thread placement 

schemes. 

The program listed in appendix 8.2 focuses on the “Client - Server” communication pattern. 

Instances of the Client component perform no calculation. Their job is to determine how 

much computation connected Server instances must undertake. Instances of the Server 

component perform incrementation of elements in the array a. This operation is carried out 

runTime number of times. The amount of computation completed during each iteration can be 

adjusted by modifying value of the variable calcTime sent by a client: it indicates how many 

times values in the array are incremented. As shown in the code listing, Server instances may 

be connected to multiple Client instances. 

Appendix 8.3 outlines source code of a program used to test the “Dispatch - Worker” 

communication pattern. This program is identical to what is shown in appendix 8.2, except in 

this configuration a single instance of Dispatch is connected to multiple instances of Worker. 

The Worker components performs incrementation of the array and the Dispatch instance has to 

wait to send data until at least one Worker component is ready to accept data. 

A program shown in Appendix 8.4 deals with the “No communication” pattern. This program 

allows to test a situation where no overhead caused by inter-component communication takes 

place. Instances of the Server component perform incrementation of elements of the array a. 

A number of times incrementation needs to take place is defined by the runTime variable. 

9.3.3 Experimental Results 

Firstly, Figure 9.7 shows results of running an experiment with the “Sender - Receiver” 

communication pattern where all instances of Sender and Receiver components that are part 

of the communicating pair of components are running on the same core (“Same core”), on 

different cores (“Different cores”), or placed dynamically (“Dynamic”). 

 



!74

Figure 9.7: Results from “Sender - Receiver” example with two senders and two receivers. 

Secondly, Figure 9.8 below shows results of running an experiment with the “Client - Server” 

communication pattern. In this situation, four thread placement schemes are taken into 

account: “Dynamic” indicates dynamic placement of threads, where the OS takes care of 

thread placement; “1 core” refers to a scheme of thread placement where all threads are 

pinned to a single core; “Servers on individual cores and all clients on 1 core” is a scheme 

where all servers (in this case there are three of them) are placed on three cores, one server 

per core, and all twelve clients are pinned to a single forth core; “1 server and 3 clients on the 

same core” points to a configuration where groups of components that have communication 

between each other are placed on the same core: there are four groups of such components 

(one server and three clients in each) in this set-up. Values on the Y-axis represent 

configurations used in the experiments. The first integer in the pair of numbers (e.g. “400, 

100”) represents a number of behaviour cycles of a single Server instance, hence it defines 

how much channel communication takes place. The second number shows how many times 

incrementation of elements in the array is performed during one behaviour cycle, thus 

establishing amount of computation performed. These values are consistent throughout all 

Server instances. 

Different cores

Same core

Dynamic

0 20 40 60 80

74.583

28.860

70.000

Real (s)



!75

Figure 9.8: Results from “Client - Server” example with 12 clients and 3 servers. 

Thirdly, Figure 9.9 contains results of running an experiment with the “Dispatch - Worker” 

design pattern (Section 7.3 introduces this pattern). In this pattern, four thread placement 

schemes are taken into account: “Dynamic” and “1 core” (both are described in the previous 

paragraph); “3 workers a core on 3 cores and all dispatch instances on 1 core” is a scheme 

where all workers (in this case there are twelve of them) are placed on three cores, three 

workers per core, and all three dispatch instances are pinned to a single forth core; “1 dispatch 

and 3 workers per core on 3 cores” is a scheme where each group of one dispatch instance 

and three workers are placed on a different core (within a group, worker and 3 dispatch 

instances are on the same core). Note that in the last scheme, one server is left without any 

threads pinned to it. As with the previous figure, values on the Y-axis represent configurations 

used in the experiments. The first integer in the pair of numbers (e.g. “400, 100”) represents a 

number of behaviour cycles of a single Worker instance. The second number shows how many 

 

400, 100

4000, 100

400, 1000

0.0 35.0 70.0 105.0 140.0

45.500

45.670

4.590

45.250

45.900

4.600

125.680

126.870

12.712

45.290

45.890

4.615

Real (s) - Dynamic
Real (s) - 1 core
Real (s) - Servers on individual cores and all clients on 1 core
Real (s) - 1 server and 3 clients on the same core



!76
times incrementation of elements in the array is performed during one behaviour cycle. These 

values are consistent throughout all Worker instances. 

Figure 9.9: Results from “Dispatch - Worker” example with 3 dispatch instance and 12 

workers. 

Finally, Figure 9.10 below shows results of running an experiment with the “No 

communication” pattern. In this case, three thread placement schemes are taken into account: 

“Dynamic”, “1 core”, and “Round-Robin”. All of these schemes are described briefly in the 

beginning of this Section and in more details in segment 7.3.2. Once again, values on the Y-

axis represent configurations used in the experiments. The first integer in the pair of numbers 

(e.g. “400, 100”) represents a number of behaviour cycles of a single component instance The 

400, 100

4000, 100

400, 1000

0.0 35.0 70.0 105.0 140.0

44.990

45.410

4.570

45.040

45.600

4.590

124.196

124.840

12.520

34.80

35.15

3.54

Real (s) - Dynamic
Real (s) - 1 core
Real (s) - 3 workers a core on 3 cores and all dispatch instances on 1 core
Real (s) - 1 dispatch and 3 workers per core on 3 cores



!77
second number shows how many times incrementation of elements in the array is performed 

during one behaviour cycle. These values are consistent throughout all instances. 

Figure 9.10: Results from “No communication” example with 4 workers and two sizes of the 

array. 

These results are discussed in the following Section. 

9.3.4 Discussion of Results 

With the “Sender - Receiver” example (see Figures 9.7 for results) received results show that 

utilising a single core for placement of pairs of connected Sender and Receiver instances is 

more efficient than both placing them on different cores and using dynamic thread placement. 

It may be explained by the fact that component instances used in the test perform no heavy 

computation and their execution time depends heavily on the overhead caused by inter-

component communication with another instances. Appendix 9.3 makes it visible that system 

time spent with the “Different cores” scheme is relatively large, it can be explained by threads 

being stalled while cache coherence is assured. Cache coherency is assured due to one thread 

having access to data that other thread has access to, this is due to accessing semaphores and 
 

1000x5 - 10

1000x5 - 100

5000 - 10

5000 - 100

0.0 10.5 21.0 31.5 42.0

0.848

0.306

11.600

1.215

2.986

0.313

41.228

4.140

0.849

0.091

11.600

1.170

Real (s) - Dynamic Real (s) - 1 core Real (s) - RR



!78
mutexes in the channel synchronisation code. Copying memory during channel 

communication between sender and receiver also takes place, which has further impact on 

total execution time. “Dynamic” scheme was the slowest. It may be explained by the fact that 

in order to balance load, the OS may decide to place the components on different cores, which 

in turn slows down inter-component component communication. 

With the “Client - Server” example (see Figure 9.8) received results show that utilising a 

single core for placement of components that are engaged in the M:1 communication scheme 

is not reasonable. It may be explained by the following logic: servers perform considerable 

amounts of computation and when they are placed on the same core as their clients and other 

servers only one server can execute instructions at any given moment in time. In two static 

placement schemes that were tested in this experiment an attempt was made to anticipate the 

load due to work and communication and then distribute servers and clients over cores. 

Results showed that the OS provides efficient load balancing in this case, which is similar to 

the custom-defined load balancing static configuration mentioned before. 

The “Dispatch - Worker” example. As expected, results achieved through conducting 

experiments with this scheme (see Figure 9.9) mirror those of the “Client - Server” example: 

utilising a single core for placement of components that are engaged in the N:M 

communication scheme is not reasonable. Dynamic thread placement scheme showed the best 

results. Once again, anticipation of where to place load statically was attempted. However, it 

is impossible to know what other processes take place on the machine during execution of the 

experiment. In this case dynamic always outperforms static placement schemes. 

Lastly, Figure 9.10 shows results of running the “No communication” example. This 

experiment did not have a surprising outcome. As expected, placing component instances that 

do not rely on channel communication on a single processor core resulted in the total 

execution time being a multiple of the number of cores (in this case - 4) higher than what is 

achieved by dynamic thread placement. The “Round-Robin” scheme produces results that are 

of similar order as those from the dynamic placement. 

10 CONCLUSIONS AND FURTHER WORK 



!79
This project involved adapting the Insense compiler and runtime to run on Unix-based 

systems and make use of the a variety of thread placement and memory allocation schemes. 

The main objective of the project was to compare the efficiency of these schemes on multi-

core systems for the Insense programming language. All primary objectives outlined in 

Chapter 2 were successfully completed. The secondary objective, which was to evaluate the 

potential benefit of strong encapsulation of components, was not completed because of lack of 

time. 

Memory placement schemes under investigation included: utilisation of private private heaps 

for component instances (one heap per component) compared to permitting memory to be 

allocated on the shared large heap. With regard to allocation and deallocation of memory 

taking place in component instances, on different cores, the efficiency of using a private heap 

for each component resulted in speedup up to a factor of 16, compared to utilising a shared 

large heap. Using    

Thread placement schemes under examination were: distributing component instances over 

cores, statically placing them on a single core, distributing over cores according to 

communication pattern, and allowing the OS to set their affinity depending on the load. 

Distributing components over cores according to communication patterns, for the most part 

performed similar to trusting the OS to take care of thread placement, apart from the “Sender 

- Receiver” scheme in which static placement outperformed due to the fact that the 

computational load of components was almost entirely due to channel communication. This 

most likely caused the OS to place components on different cores, thereby slowing down 

channel communication. As a result, dynamic placement of components by the OS resulted in 

a performance drop by a factor of 2.6 when compared to the static placement scheme 

The accuracy of data received through experiments outlined in this document can be 

improved if a single user mode (“Single User” 2006) available on Linux was used. It would 

reduce impact on outcomes caused by the OS and other processes that run on the machine 

during experiments. The laboratory set up used for testing did not permit to use this mode 

easily. 

 



!80
Further work that can be done in this project may involve: adapting compiler to place 

components according to statically known communication patterns; modifying the channel 

communication to be more efficient for multi-core architecture; allowing private heaps to be 

elastic - giving heaps ability to change their size at runtime; due to the design of the Insense 

language (prevention of nested structs, fixed compile-time specification of array sizes), the 

Insense compiler could also be adapted to work out the worst-case dynamic memory usage 

which could then be used when allocating a private heap for a component; different options in 

the channel implementation could be explored in which dynamically allocated data types may 

be copied by value to another heap to avoid inter-heap references; providing support for other 

operating systems such as Mac OS; a number of other optimization such as further improving 

access to arrays. 

11 BIBLIOGRAPHY 

Bell, A. 2013, Insense on Unix, University of St Andrews. 

Daconta, M.C. 1993, C pointers and dynamic memory management, QED, London. 

Dearle, A. 2011, Insense Tutorial, University of St Andrews. 

Dearle, A., Balasubramaniam, D., Lewis, J. & Morrison, R. 2008, A Component-Based Model 
and Language for Wireless Sensor Network Applications, Proceedings of the 2008 32nd 
Annual IEEE International Computer Software and Applications Conference, IEEE 
Computer Society, Washington, DC, USA, pp. 1303. 

Devarakonda, M. & Mukherjee, A. 1992, Issues in Implementation of Cache-Affinity 
Scheduling. 

Garg, A. 2009, Real-Time Linux Kernel Scheduler [Linux Journal]. Available: http://
www.linuxjournal.com/magazine/real-time-linux-kernel-scheduler. Updated 1.9.2009. 
Referred 22.5.2013. 

gcc(1) - Linux man page [die.net] 2013. Available: http://linux.die.net/man/1/gcc. Referred 
19.6.2013. 

Geer, D. 2005, Chip makers turn to multicore processors, Computer, vol. 38, no. 5, pp. 11-13. 

Ghosh, S., Martonosi, M. & Malik, S. 1997, Cache miss equations: An analytical 
representation of cache misses, Proceedings of the 11th international conference on 
SupercomputingACM, pp. 317. 

Gove, D. 2011, Multicore application programming : for Windows, Linux, and Oracle 
Solaris, Addison-Wesley, Upper Saddle River, NJ., London. 

Gupta, A., Tucker, A. & Urushibara, S. 1991, The impact of operating system scheduling 
policies and synchronization methods of performance of parallel applications, ACM 
SIGMETRICS Performance Evaluation Review, ACM, pp. 120. 

http://www.linuxjournal.com/magazine/real-time-linux-kernel-scheduler
http://linux.die.net/man/1/gcc


!81
Halfacree, G. 2012, IBM releases "world's most powerful" 5.5GHz processor [Bit-tech]. 

Available: http://www.bit-tech.net/news/hardware/2012/08/29/ibm-zec12. Updated 
29.8.2012. Referred 23.5.2013. 

Handy, J. 1998, The cache memory book, 2nd edn, Morgan Kaufmann Pub. 

Harvey, P., Dearle, A., Lewis, J. & Sventek, J.S. 2012, Channel and Active Component 
Abstractions for WSN Programming - A Language Model with Operating System Support, 
SENSORNETS, eds. M. van Sinderen, O. Postolache & C. Benavente-Peces, SciTePress, 
pp. 35. 

Hennessy, J.L. 2007, Computer architecture : a quantitative approach, 4th edn, Morgan 
Kaufmann, London. 

Hill, M.D. 1988, A case for direct-mapped caches, Computer, vol. 21, no. 12, pp. 25-40. 

Intel Introduces The Pentium® 4 Processor 2000. Available: http://web.archive.org/web/
20070403032914/http://www.intel.com/pressroom/archive/releases/dp112000.htm. 
Updated 20.11.2000. Referred 29.5.2013. 

Knuth, D.E. 1997, The art of computer programming. Volumes 1-4, Addison-Wesley, Upper 
Saddle River. 

Lam, M.D., Rothberg, E.E. & Wolf, M.E. 1991, The cache performance and optimizations of 
blocked algorithms, ACM SIGARCH Computer Architecture NewsACM, pp. 63. 

Lea, D. 1996, A Memory Allocator. Available: http://g.oswego.edu/dl/html/malloc.html. 
Referred 14.6.2013. 

Lewis, J. 2013, Repository of the Insense compiler for InceOS [University of St Andrews]. 
Available: http://quicksilver.hg.cs.st-andrews.ac.uk/InsenseCompilerInceOS/file/
0ed57d153be3/insense_progs. Updated 7.5.2009. Referred 30.5.2013. 

Lewis, J. & Dearle, A. 2011, High-level abstractions for programming self-managing wireless 
sensor network applications. 

malloc(3) - Linux man page [die.net] 2013. Available: http://linux.die.net/man/3/malloc. 
Referred 24.5.2013. 

May, E.L. & Zimmer, B.A. 1996, The Evolutionary Development Model for Software, 
Hewlett-Packard Journal, vol. 8. 

McKee, S.A. 2004, Reflections on the memory wall, Proceedings of the 1st conference on 
Computing frontiersACM, pp. 162. 

mmap [The Open Group] 2004. Available: http://pubs.opengroup.org/onlinepubs/009695399/
functions/mmap.html. Referred 5.5.2013. 

Park, N., Hong, B. & Prasanna, V.K. 2003, Tiling, block data layout, and memory hierarchy 
performance, Parallel and Distributed Systems, IEEE Transactions on, vol. 14, no. 7, pp. 
640-654. 

Philbin, J., Edler, J., Anshus, O.J., Douglas, C.C. & Li, K. 1996, Thread scheduling for cache 
locality, SIGOPS Oper.Syst.Rev., vol. 30, no. 5, pp. 60-71. 

pthread_create(3) - Linux man page [die.net] 2013. Available: http://linux.die.net/man/3/
pthread_create. Referred 31.5.2013. 

Rouse, M. 2007, Definition of multi-core processor [TechTarget]. Available: http://
searchdatacenter.techtarget.com/definition/multi-core-processor. Updated 27.3.2009. 
Referred 23.5.2013. 

 

http://www.bit-tech.net/news/hardware/2012/08/29/ibm-zec12/
http://web.archive.org/web/20070403032914/http://www.intel.com/pressroom/archive/releases/dp112000.htm
http://g.oswego.edu/dl/html/malloc.html
http://quicksilver.hg.cs.st-andrews.ac.uk/InsenseCompilerInceOS/file/0ed57d153be3/insense_progs
http://linux.die.net/man/3/malloc
http://pubs.opengroup.org/onlinepubs/009695399/functions/mmap.html
http://linux.die.net/man/3/pthread_create
http://searchdatacenter.techtarget.com/definition/multi-core-processor


!82
Salehi, J.D., Kurose, J.F. & Towsley, D. 1995, The performance impact of scheduling for 

cache affinity in parallel network processing, High Performance Distributed Computing, 
1995., Proceedings of the Fourth IEEE International Symposium onIEEE, pp. 66. 

Schauer, B. 2008, Multicore processors–A necessity, ProQuest Discovery Guides 1–14. 

Schmid, P. 2004, NetBurst Architecture: Now 31 Pipeline Stages [Tom's hardware]. Available: 
http://www.tomshardware.com/reviews/intel,751-5.html. Updated 2.1.2004. Referred 
29.5.2013. 

Sharma, O., Lewis, J., Miller, A., Dearle, A., Balasubramaniam, D., Morrison, R. & Sventek, 
J. 2009, Towards Verifying Correctness of Wireless Sensor Network Applications Using 
Insense and Spin, Proceedings of the 16th International SPIN Workshop on Model 
Checking SoftwareSpringer-Verlag, Berlin, Heidelberg, pp. 223. 

Silberschatz, A. 2009, Operating system concepts, 8th edn, John Wiley, Hoboken, N.J. 

Single User Mode Definition [The Linux Information Project] 2006. Available: http://
www.linfo.org/single_user_mode.html Updated 2013. Referred 1.6.2013. 

Sommerville, I. 2011, Software engineering, 9th edn, Pearson, Boston, Mass., London. 

Stallings, W. 2009, Operating Systems: Internals and Design Principles, 6/E, Pearson 
Education India. 

time(1) - Linux man page [die.net] 2013. Available: http://linux.die.net/man/1/time. Referred 
10.4.2013. 

Understanding the pros and cons of the Waterfall Model of software development 
[TechRepublic] 2006. Available: http://www.techrepublic.com/article/understanding-the-
pros-and-cons-of-the-waterfall-model-of-software-development/6118423. Updated 
22.9.2006. Referred 3.2.2013. 

User mnicky [Stack Overflow] 2013. Available: http://stackoverflow.com/users/626431/
mnicky. Updated 8.6.2013. Referred 8.6.2013. 

Valgrind's homepage 2012. Available: http://valgrind.org. Referred 16.6.2013. 

Vaswani, R. & Zahorjan, J. 1991, The implications of cache affinity on processor scheduling 
for multiprogrammed, shared memory multiprocessors, SIGOPS Oper.Syst.Rev., vol. 25, 
no. 5, pp. 26-40. 

Wall, D.W. 1991, Limits of instruction-level parallelism, ACM. 

Wilson, P.R., Johnstone, M.S., Neely, M. & Boles, D. 1995, Dynamic storage allocation: A 
survey and critical review in Memory Management Springer, pp. 1-116. 

Wulf, W.A. & McKee, S.A. 1995, Hitting the memory wall: implications of the obvious, ACM 
SIGARCH computer architecture news, vol. 23, no. 1, pp. 20-24. 

Yang, B. 2010, Assign Processor Affinity to Improve Performance [Tune Up Blog]. Available: 
http://blog.tune-up.com/windows-insights/assign-processor-affinity-to-improve-
performance. Updated 27.8.2010. Referred 31.5.2013.  

http://www.tomshardware.com/reviews/intel,751-5.html
http://www.linfo.org/single_user_mode.html
http://linux.die.net/man/1/time
http://www.techrepublic.com/article/understanding-the-pros-and-cons-of-the-waterfall-model-of-software-development/6118423
http://stackoverflow.com/users/626431/mnicky
http://valgrind.org/
http://blog.tune-up.com/windows-insights/assign-processor-affinity-to-improve-performance/


APPENDICES (! )83
APPENDICES 



APPENDICES (! ) 84
APPENDIX 1: List of Figures 



APPENDICES (! )85
Figure 3.1 Three components connected by two channels. 5

Figure 3.2 Topology with two components connected by a single channel. 6

Figure 3.3 Topology with five components connected by nine channels. 7

Figure 3.4. “Hello World” program written with Insense language. 8

Figure 3.5 Connection topologies supported by channels in Insense. 9

Figure 3.6 Insense application with a temperature sensor and two channels. 10

Figure 3.7 Declaration of a 3-dimensional array in Insense. 10

Figure 3.8 Creation of a structure and an instance of it. 11

Figure 3.9 Function declaration in Insense. 11

Figure 4.1 The evolutionary development model. 15

Figure 7.1 Send and Receive algorithm proposed by (Sharma et al. 2009). 19

Figure 7.2 Header prepended to allocated memory (in the shared heap). 20

Figure 7.3 Dynamically allocated memory for three components inside of the shared 

heap.

21

Figure 7.4 Dynamically allocated memory for three components inside of private heaps. 22

Figure 7.5 Retrieving data from directly mapped cache. 24

Figure 7.6 Cache misses with the “shared heap” scheme. 25

Figure 7.7 Cache misses with the “private heaps” scheme. 26

Figure 7.8 40 threads linked to Insense components dynamically placed on 4 cores. 27

Figure 7.9 40 threads linked to Insense components statically placed with the “Round-

Robin” algorithm.

28

Figure 7.10 40 threads linked to Insense components statically placed on a single core. 28

Figure 7.11 Component connectivity patterns. 30

Figure 7.12 11 threads linked to Insense components statically placed on cores based on 

the nature of communication with other threads.

31

Figure 8.1 The “Hello” program written in Insense. 32

Figure 8.2 The supertype structure for Insense components. 33

Figure 8.3 A part of component_create where initialisation of the structure for storing 

metadata describing the component and creation of a private heap take place.

34



APPENDICES (! ) 86
Figure 8.4 The wrapper function used to pass three parameters to the function run inside 

of a POSIX thread.

34

Figure 8.5 The function for stopping Insense components. 35

Figure 8.6 (a): “Hello” program that illustrates management of components. (b): 

timeline of calls of functions dealing with management of Insense components during 

execution of the “Hello” program.

35

Figure 8.7 Adapted to multi-core architecture array_loc function. 36

Figure 8.8 Structure used to describe Insense channels on Unix. 37

Figure 8.9 Function responsible for creation of half-channels. 38

Figure 8.10 Function responsible for binding two half-channels into one complete 

channel.

39

Figure 8.11 Function responsible for destroying channels. 40

Figure 8.12 (a): “Hello” program that illustrates channels. (b): timeline of calls of 

functions dealing with channels during execution of the “Hello” program.

41

Figure 8.13 The main function in Insense runtime. 42

Figure 8.14 The primodial_main function generated for the “Hello” Insense runtime. 43

Figure 8.15 Insense memory header structure adjusted for the 64-bit architecture. 44

Figure 8.16 (a): “Hello” program that illustrates memory management and garbage 

collection. (b): descriptions of behaviour of the garbage collector 

44

Figure 8.17 Structure that describes the thread-safe linked list. 45

Figure 8.18 Thread-safe “add” operation in the linked list. 46

Figure 8.19 Command to “make” and run the “Hello” Insense program on Linux. 47

Figure 8.20 Output of the “Hello” program after successful compilation and execution. 47

Figure 8.21 (a): “Hello” program that illustrates allocation of memory with the shared 

heap. (b): timeline of allocation of data

48

Figure 8.22 Compiled code of the “Hello” example program dealing with allocation of 

memory for a channel and a local variable.

49

Figure 8.23 Modified and extended function for dynamically allocating memory in 

Insense.

50

Figure 8.24 Allocation of memory required by the “Hello” program in the shared heap. 51



APPENDICES (! )87
Figure 8.25 Allocation of memory required by the “Hello” program in two private 

heaps.

52

Figure 8.26 Function for creation of a new private heap. 53

Figure 8.27 A structure that stores meta information for a new private heap. 54

Figure 8.28 Initialisation of a structure that stores meta information for a new private 

heap.

55

Figure 8.29 Allocation of memory into a private heap assigned to the current POSIX 

thread.

56

Figure 8.30 Allocation of memory with SH_alloc_at_base. 57

Figure 8.31 (a): “Hello” program that illustrates dynamic thread affinity. (b): setting 

affinity to instances of Insense components on a machine with 4 cores.

59

Figure 8.32 Functions used for setting affinity of threads. 60

Figure 8.33 Part of component_create() function responsible for changing affinity of 

the newly created POSIX thread.

61

Figure 9.1 Results of running an experiment with utilising multiple heaps for 

(de-)allocation of memory. One component.

64

Figure 9.2 Results of running an experiment with utilising multiple heaps for 

(de-)allocation of memory. Four component instances and size of array: 1000x5 

elements.

65

Figure 9.3 Running out of memory with an array of size 850x5 elements. 66

Figure 9.4 Amount of cache misses with different memory and thread placement 

schemes.

68

Figure 9.5 Execution time of test_cache program with an array of size 850 by 5 and 

500,000 behaviour cycles.

69

Figure 9.6 Execution time of test_cache program with an array of size 220 by 5 and 

500,000 behaviour cycles.

69

Figure 9.7 Results from “Sender - Receiver” example with two senders and two 

receivers.

73

Figure 9.8 Results from “Client - Server” example with 12 clients and 3 servers. 74

Figure 9.9 Results from “Dispatch - Worker” example with 3 dispatch instance and 12 

workers.

75



APPENDICES (! ) 88
Figure 9.10 Results from “No communication” example with 4 workers and two sizes 

of the array.

76



APPENDICES (! )89
APPENDIX 2: Gantt Chart for the Project 



APPENDICES (! ) 90
APPENDIX 3: Instruction on Executing Insense Programs 

In order to run Insense program one needs to follow the following steps: 

1. Obtain multi-core Insense compiler and runtime for a Unix-based machine (e.g. Scientific 

Linux). The runtime may be downloaded from https://github.com/Hollgam/Multi-Core-

Insense-Runtime. And, the compiler may be found at https://github.com/Hollgam/Multi-Core-

Insense-Compiler. 

2. Compile the Insense program using the aforementioned multi-core Insense compiler. It can 

be achieved with help of Eclipse IDE: 

Figure: Example of arguments used for compiling an Insense program with Eclipse IDE. 

3. Make the compiled program into an executable with the make command in Terminal. 

Note: a configuration of memory and thread placement schemes is defined in the file 

GlobalVars.h in runtime. To use a different scheme one needs to change values of HEAPS and 

AFFINITY_ALGO constants.  

APPENDIX 4: Creation of a New Component 
1. void *component_create(behaviour_ft behaviour, int struct_size, int 

stack_size, int argc, void *argv[], int core) {
2.     struct IComponent_data *this_ptr; // Define thread
3.     // Allocate space for the struct, create a new private heap (if required)
4. #if HEAPS // Private Heaps

https://github.com/Hollgam/Multi-Core-Insense-Runtime
https://github.com/Hollgam/Multi-Core-Insense-Compiler


APPENDICES (! )91
5.     // Passing 2 to indicate that a new heap needs to be created
6.     void * newHeap = ((struct IComponent_data *) DAL_alloc(0, 2));  
7.     // Create a new element to be put to the map     
8.     struct shMapType * heapElement = SH_init(newHeap, NULL );
9.     // Allocate space for this_ptr in the newly created private heap 

          
10.     this_ptr = SH_alloc_at_base(struct_size, heapElement);             
11.     if (this_ptr == NULL ) {
12.         return NULL ;
13.     } else {
14.         memset(this_ptr, 0, struct_size);
15.     }
16. #else // Shared Heap
17.     if ((this_ptr = ((struct IComponent_data *) DAL_alloc(struct_size, 

true))) == NULL ) {
18.         return NULL;
19.     } else {
20.         memset(this_ptr, 0, struct_size);
21.     }
22. #endif
23.     // Initialize this->comp_create_sem sem_init call.
24.     sem_init(&(this_ptr->component_create_sem), 0, 0);
25.
26.     // Setup the stopped condition
27.     if (struct_size) {
28.         struct IComponent_data *t = (struct IComponent_data*) this_ptr;
29.         t->stopped = 0;
30.     }
31.
32.     // Define new structure for arguments for the wrapper function
33.     // Whenever dealing with garbage collection, first define as NULL
34.     struct argStructType * argStruct = malloc(sizeof(struct argStructType));
35.     argStruct->behaviour = behaviour;
36.     argStruct->argc = argc;
37.     argStruct->argv = argv;
38.     argStruct->this_ptr = this_ptr;
39.
40.     // Create thread
41. #if HEAPS // Private Heaps
42.     // Lock mutex to avoid problems with scheduling
43.     pthread_mutex_lock(&thread_lock); #endif
44.     // Create a POSIX thread
45.     pthread_create(&this_ptr->behav_thread, NULL, startRoutine, argStruct); 
46.     //Set affinity
47. #if !(AFFINITY_ALGO == 0)
48.     if (core != -1) { // Manually passed Core ID
49.         setAffinityToCore(this_ptr->behav_thread, core);
50.     } else { // Core ID was not passed to the component_create function
51.         // Use an algorithm defined in GlobalVars.h
52.         setAffinity(this_ptr->behav_thread);
53.     }
54.     // Check if setting affinity worked.
55.     getAffinityThread(this_ptr->behav_thread); 
56. #endif
57.
58.     // If private heaps are used new entry in the map with a pointer to a 

newly created pthread.
59. #if HEAPS // Private Heaps
60.     heapElement->thread_id = this_ptr->behav_thread; // Put a thread id to 

the element to be to the map
61.     listAdd(SHList, heapElement);
62.     pthread_mutex_unlock(&thread_lock); // Unlock mutex



APPENDICES (! ) 92
63. #endif
64.     // Insert thread into the list of threads
65.     listAdd(threadList, this_ptr->behav_thread);
66.     // Wait for creation of the component
67.     sem_wait(&this_ptr->component_create_sem); 
68.     return this_ptr;
69. }

APPENDIX 5: Deallocation of Memory for Private Heaps 
1. void SH_free(void *ptr) {
2.     //First check if memory was allocated using malloc()
3.     void * adr = listGetMallocedMemoryAdr(mallocList, ptr);
4.     if (adr != NULL ) {
5.         free(adr); // Memory was allocated using malloc(), use free instead
6.         listRemove(mallocList, adr); // Remove address from the list
7.         return;
8.     }
9.
10.     // Else, find which private heap it was put into.
11.     struct shMapType * shMapEntry = listGetMemoryLocation(SHList, 

pthread_self());
12.     unsigned int toFree;  // Pointer to block that needs to be freed
13.     unsigned int cur, prev;
14.
15.     toFree = ((unsigned int *) ptr - (shMapEntry->memArea + 1));
16.
17.     // If block, that is being freed is before the first free block
18.     if (toFree < shMapEntry->available) {  
19.     // If next free block is immediately after block that is being freed    
20.        if (((refToNextBlock(toFree, shMapEntry->memArea) + 1) == shMapEntry-

>available) && shMapEntry->available < shMapEntry->memAreaSize)
21.             shMapEntry->memArea[toFree] += (shMapEntry->memArea[shMapEntry-

>available] + 1);  // Defragmentation of free space
22.         
23.         else
24.               shMapEntry->memArea[refToNextBlock(toFree, shMapEntry-

>memArea)] = shMapEntry->available;
25.
26.         shMapEntry->available = toFree;
27.     }
28.
29.     // If block, that is being freed isn't before the first free block
30.     else {  
31.         prev = cur = shMapEntry->available;
32.
33.         while (cur < toFree) {
34.             prev = cur;
35.             cur = nextBlock(cur, shMapEntry->memArea);
36.         }
37.     // If previous free block is immediately before block that is being freed
38.         if ((refToNextBlock(prev, shMapEntry->memArea) + 1) == toFree) { 
39.
40.             shMapEntry->memArea[prev] += (shMapEntry->memArea[toFree] + 

1); // Defragmentation of free space
41.
42.     // If next free block is immediately after block that is being freed
43.             if (((refToNextBlock(toFree, shMapEntry->memArea) + 1) == cur) && 

cur < shMapEntry->memAreaSize) 
44.                 shMapEntry->memArea[prev] += (shMapEntry->memArea[cur] + 1);  

// Defragmentation of free space



APPENDICES (! )93
45.             else
46.                 shMapEntry->memArea[refToNextBlock(toFree, shMapEntry-

>memArea)] = cur;
47.         } else {
48.             shMapEntry->memArea[refToNextBlock(prev, shMapEntry->memArea)] = 

toFree;
49.             shMapEntry->memArea[refToNextBlock(toFree, shMapEntry->memArea)] 

= cur;
50.         }
51.     }
52. }

APPENDIX 6: Test_alloc Program Used to Evaluate Effects of Using Multiple Heaps for 

(De-)allocation of Memory 
1. type IComp is interface () // Interface for Comp component
2.
3. component Comp presents IComp {
4.     runTime = 5000   // Amount of times behaviour is to be executed.
5.     count = 0        // Used to track number of times behaviour has executed.
6.     
7.     constructor() {}
8.
9.     behaviour {
10.         a = new integer[1000][5] of 0  // 5002 allocation take place
11.         
12.         count := count + 1 // Increment a counter of executions of behaviour
13.         // Show percentage done: 50% - 100%
14.         if (count % (runTime / 2) == 0) then {        
15.             printInt(100 / (runTime / count))
16.             printString("% done.\n")
17.         }
18.         // If a limit of execution has been exceeded - stop
19.         if (count >= runTime) then {
20.             stop
21.         }
22.     }
23. } 
24.
25. // Create and test components
26. comp1 = new Comp()
27. comp2 = new Comp()
28. comp3 = new Comp()
29. comp4 = new Comp()

APPENDIX 7: Test_cache Program Used to Evaluate Effects of Memory Management 

Schemes on Cache Usage 
1. type CompCache is interface()
2.
3. component Comp presents CompCache {
4.     // 250*28+250*8+8 = 9008 Bytes of memory, < 32KB size of L1 cache
5.     a = new integer[250][5] of 0 
6.     runTime = 50000      // Amount of times behaviour is to be executed.
7.     count = 0     // Used to track number of times behaviour has executed.
8.         
9.     proc incrementArray(){
10.         for i = 0 .. a.length-1 do {



APPENDICES (! ) 94
11.             for j = 0 .. a [i].length-1 do {
12.                 a[i][j] := a[i][j] + 1
13.             }
14.         }
15.     }
16.
17.     constructor() { }
18.     
19.     behaviour {
20.         incrementArray()
21.                 
22.         count := count + 1 // Increment a counter of executions of behaviour
23.         // Show percentage done: 50% - 100%
24.         if (count % (runTime / 2) == 0) then {        
25.             printInt(100 / (runTime / count))
26.             printString("% done.\n")
27.         }
28.         // If a limit of execution has been exceeded - stop
29.         if (count >= runTime) then {
30.             stop
31.         }
32.     }
33. } 
34.
35. // Insense main
36. comp1 = new Comp()
37. comp2 = new Comp()
38. comp3 = new Comp()
39. comp4 = new Comp()

APPENDIX 8:  Programs Used to Evaluate Effects of Thread Placement and 

Communication Between Components on Performance 

Appendix 8.1: “Sender - Receiver” Scheme 
1. type IReceiver is interface( in integer input )
2. type ISender is interface( out integer output )
3.
4. component Sender presents ISender {
5.     runTime = 100    // Amount of times behaviour is to be executed.
6.     count = 0        // Used to track number of times behaviour has executed.
7.     
8.     constructor(){ }
9.
10.     behaviour {
11.         send 0 on output // First send an int to a server
12.         
13.         count := count + 1 // Increment a counter of executions of behaviour
14.         // Show percentage done: 50% - 100%
15.         if (count % (runTime / 2) == 0) then {        
16.             printInt(100 / (runTime / count))
17.             printString("% done.\n")
18.         }
19.         // If a limit of execution has been exceeded - stop
20.         if (count >= runTime) then {
21.             stop
22.         }
23.     }



APPENDICES (! )95
24. }
25.
26. component Receiver presents IReceiver {
27.     runTime = 100    // Amount of times behaviour is to be executed.
28.     count = 0        // Used to track number of times behaviour has executed.
29.
30.     constructor(){ }
31.
32.     behaviour {
33.         receive blank from input // First receive an int from a client
34.         
35.         count := count + 1 // Increment a counter of executions of behaviour
36.         // Show percentage done: 50% - 100%
37.         if (count % (runTime / 2) == 0) then {        
38.             printInt(100 / (runTime / count))
39.             printString("% done.\n")
40.         }
41.         // If a limit of execution has been exceeded - stop
42.         if (count >= runTime) then {
43.             stop
44.         }
45.     }
46. }
47.
48. //Insense main
49. sender1 = new Sender()
50. sender2 = new Sender()
51. receiver1 = new Receiver()
52. receiver2 = new Receiver()
53.
54. // Connect senders and receiver with channels.
55. connect sender1.output to receiver1.input
56. connect sender2.output to receiver2.input

Appendix 8.2: “Client - Server” Scheme 
1. type IServer is interface( in integer input )
2. type IClient is interface( out integer output )
3.
4. component Client presents IClient {
5.     runTime = 100    // Amount of times behaviour is to be executed.
6.     count = 0        // Used to track number of times behaviour has executed.
7.     calcTime = 100   // Times a server is requested to perform computation.
8.     
9.     constructor(){ }
10.
11.     behaviour {
12.         send calcTime on output // First send an int to a server
13.         
14.         count := count + 1 // Increment a counter of executions of behaviour
15.         // Show percentage done: 50% - 100%
16.         if (count % (runTime / 2) == 0) then {        
17.             printInt(100 / (runTime / count))
18.             printString("% done.\n")
19.         }
20.         // If a limit of execution has been exceeded - stop
21.         if (count >= runTime) then {
22.             stop
23.         }
24.     }
25. }



APPENDICES (! ) 96
26.
27. component Server presents IServer {
28.     a = new integer[1000][5] of 0 // Array used for computations.
29.     runTime = 400    // Amount of times behaviour is to be executed.
30.     count = 0        // Used to track number of times behaviour has executed.
31.     
32.     // Increment elements of an array "num" times
33.     proc incrementArray(integer num) {
34.         for i = 0 .. num do {
35.             for j = 0 .. a.length-1 do {
36.                 for k = 0 .. a[j].length-1 do {
37.                     a[j][k] := a[j][k] + 1
38.                 }
39.             }
40.         }
41.     }
42.     
43.     constructor(){ }
44.
45.     behaviour {
46.         receive calcTime from input // First receive an int from a client
47.         
48.         incrementArray(calcTime) // Perform calculations
49.         
50.         count := count + 1 // Increment a counter of executions of behaviour
51.         // Show percentage done: 50% - 100%
52.         if (count % (runTime / 2) == 0) then {        
53.             printInt(100 / (runTime / count))
54.             printString("% done.\n")
55.         }
56.         // If a limit of execution has been exceeded - stop
57.         if (count >= runTime) then {
58.             stop
59.         }
60.     }
61. }
62.
63. //Insense main
64. server1 = new Server()
65. server2 = new Server()
66. server3 = new Server()
67. client1 = new Client()
68. client2 = new Client()
69. client3 = new Client()
70. client4 = new Client()
71. client5 = new Client()
72. client6 = new Client()
73. client7 = new Client()
74. client8 = new Client()
75. client9 = new Client()
76. client10 = new Client()
77. client11 = new Client()
78. client12 = new Client()
79.
80. // Connect clients and servers with channels.
81. connect client1.output to server1.input
82. connect client2.output to server1.input
83. connect client3.output to server1.input
84. connect client4.output to server1.input
85. connect client5.output to server2.input
86. connect client6.output to server2.input
87. connect client7.output to server2.input



APPENDICES (! )97
88. connect client8.output to server2.input
89. connect client9.output to server3.input
90. connect client10.output to server3.input
91. connect client11.output to server3.input
92. connect client12.output to server3.input

Appendix 8.3: “Dispatch - Worker” Scheme 
1. type IWorker is interface( in integer input )
2. type IDispatch is interface( out integer output )
3.
4. component Dispatch presents IDispatch {
5.     runTime = 300    // Amount of times behaviour is to be executed.
6.     count = 0        // Used to track number of times behaviour has executed.
7.     calcTime = 100   // Times a server is requested to perform computation.
8.     
9.     constructor(){ }
10.
11.     behaviour {
12.         send calcTime on output // First send an int to a server
13.         
14.         count := count + 1 // Increment a counter of executions of behaviour
15.         // Show percentage done: 50% - 100%
16.         if (count % (runTime / 2) == 0) then {        
17.             printInt(100 / (runTime / count))
18.             printString("% done.\n")
19.         }
20.         // If a limit of execution has been exceeded - stop
21.         if (count >= runTime) then {
22.             stop
23.         }
24.     }
25. }
26.
27. component Worker presents IWorker {
28.     a = new integer[1000][5] of 0 // Array used for computations.
29.     runTime = 100    // Amount of times behaviour is to be executed.
30.     count = 0        // Used to track number of times behaviour has executed.
31.     
32.     // Increment elements of an array "num" times
33.     proc incrementArray(integer num) {
34.         for i = 0 .. num do {
35.             for j = 0 .. a.length-1 do {
36.                 for k = 0 .. a[j].length-1 do {
37.                     a[j][k] := a[j][k] + 1
38.                 }
39.             }
40.         }
41.     }
42.     
43.     constructor(){ }
44.
45.     behaviour {
46.         receive calcTime from input // First receive an int from a client
47.         
48.         incrementArray(calcTime) // Perform calculations
49.         
50.         count := count + 1 // Increment a counter of executions of behaviour
51.         // Show percentage done: 50% - 100%
52.         if (count % (runTime / 2) == 0) then {        
53.             printInt(100 / (runTime / count))



APPENDICES (! ) 98
54.             printString("% done.\n")
55.         }
56.         // If a limit of execution has been exceeded - stop
57.         if (count >= runTime) then {
58.             stop
59.         }
60.     }
61. }
62. //Insense main
63. dispatch1 = new Dispatch()
64. dispatch2 = new Dispatch()
65. dispatch3 = new Dispatch()
66. worker1 = new Worker()
67. worker2 = new Worker()
68. worker3 = new Worker()
69. worker4 = new Worker()
70. worker5 = new Worker()
71. worker6 = new Worker()
72. worker7 = new Worker()
73. worker8 = new Worker()
74. worker9 = new Worker()
75. worker10 = new Worker()
76. worker11 = new Worker()
77. worker12 = new Worker()
78.
79. // Connect dispatch instances and workers with channels.
80. connect dispatch1.output to worker1.input
81. connect dispatch1.output to worker2.input
82. connect dispatch1.output to worker3.input
83. connect dispatch1.output to worker4.input
84. connect dispatch2.output to worker5.input
85. connect dispatch2.output to worker6.input
86. connect dispatch2.output to worker7.input
87. connect dispatch2.output to worker8.input
88. connect dispatch3.output to worker9.input
89. connect dispatch3.output to worker10.input
90. connect dispatch3.output to worker11.input
91. connect dispatch3.output to worker12.input

Appendix 8.4: “No communication” Scheme 
1. type IWorker is interface( )
2.
3. component Worker presents IServer {
4.     a = new integer[1000][5] of 0 // Array used for computations.
5.     runTime = 100    // Amount of times behaviour is to be executed.
6.     count = 0        // Used to track number of times behaviour has executed.
7.     
8.     // Increment elements of an array "num" times
9.     proc incrementArray(integer num) {
10.         b = 0
11.         for i = 0 .. num do {
12.             for j = 0 .. a.length-1 do {
13.                 for k = 0 .. a[j].length-1 do {
14.                     a[j][k] := a[j][k] + 1
15.                 }
16.             }
17.         }
18.     }
19.     
20.     constructor(){ }



APPENDICES (! )99
21.
22.     behaviour {
23.         incrementArray(1000) // Perform calculations
24.         
25.         count := count + 1 // Increment a counter of executions of behaviour
26.         // Show percentage done: 50% - 100%
27.         if (count % (runTime / 2) == 0) then {        
28.             printInt(100 / (runTime / count))
29.             printString("% done.\n")
30.         }
31.         // If a limit of execution has been exceeded - stop
32.         if (count >= runTime) then {
33.             stop
34.         }
35.     }
36. }
37.
38. //Insense main
39. worker1 = new Worker()
40. worker2 = new Worker()
41. worker3 = new Worker()
42. worker4 = new Worker()

APPENDIX 9:  Real, User, and System Time of Running Experiments 

Notation used in this appendix is described in Section 9.1.3. 

Appendix 9.1: Experiment with (De-)allocation of Memory, 1 Component 

 

SH - Dynamic

PH- Dynamic

0.000 0.400 0.800 1.200 1.600

0.001

0.001

0.143

1.441

0.148

1.450

Real (s) User (s) System (s)



APPENDICES (! ) 100
Appendix 9.2: Experiment with (De-)allocation of Memory, 4 components 

 

Appendix 9.3: Results from “Sender - Receiver” example with 2 senders and 2 receivers 

 

SH - Dynamic

PH- Dynamic

SH - 1 core

PH - 1 core

SH - RR

PH - RR

0.0 17.5 35.0 52.5 70.0

0.003

55.190

0.002

0.429

0.001

67.160

7.886

39.047

5.827

8.540

7.882

45.132

2.225

28.610

5.851

8.996

2.223

33.541

Real (s) User (s) System (s)

Different cores

Same core

Dynamic placement

0 45 90 135 180

170.337

22.38

149.26

16.877

6.380

23.460

74.583

28.860

70.000

Real (s) User (s) System (s)



APPENDICES (! )101
Appendix 9.4: Results from “Client - Server” example 

 

400, 100

4000, 100

400, 1000

0.0 35.0 70.0 105.0 140.0

0.137

0.079

0.017

135.60

136.39

13.65

45.50

45.67

4.59

0.047

0.050

0.010

135.21

137.35

13.77

45.25

45.90

4.60

0.005

0.037

0.089

125.30

126.46

12.65

125.680

126.870

12.712

0.043

0.066

0.014

135.24

137.34

13.70

45.290

45.890

4.615

Real (s) - Dynamic
User (s) - Dynamic
System (s) - Dynamic
Real (s) - 1 core
User (s) - 1 core
System (s) - 1 core
Real (s) - Servers on individual cores and all clients on 1 core
User (s) - Servers on individual cores and all clients on 1 core
System (s) - Servers on individual cores and all clients on 1 core
Real (s) - 1 server and 3 clients on the same core
User (s) - 1 server and 3 clients on the same core
System (s) - 1 server and 3 clients on the same core



APPENDICES (! ) 102
Appendix 9.5: Results from “Dispatch - Worker” example 

400, 100

4000, 100

400, 1000

0.0 35.0 70.0 105.0 140.0
0.016

0.040

0.007

0.016

0.040

0.007

134.48

135.70

13.62

44.99

45.41
44.99

44.99

45.41

4.57

0.011

0.016

0.008

134.65

136.60

13.69

45.04

45.60

4.59

0.013

0.027

0.011

123.80

124.43

12.46

124.196

124.840

12.520

0.010

0.036

0.008

138.600

139.870

14.012

34.80

35.15

3.54

Real (s) - Dynamic
User (s) - Dynamic
System (s) - Dynamic
Real (s) - 1 core
User (s) - 1 core
System (s) - 1 core
Real (s) - 3 workers per core on 3 cores and all dispatch instances on 1 core
User (s) - 3 workers per core on 3 cores and all dispatch instances on 1 core
System (s) - 3 workers per core on 3 cores and all dispatch instances on 1 core
Real (s) - 1 dispatch and 3 workers per core on 3 cores
Real (s) - 1 dispatch and 3 workers per core on 3 cores
Real (s) - 1 dispatch and 3 workers per core on 3 cores
User (s) - 1 dispatch and 3 workers per core on 3 cores
System (s) - 1 dispatch and 3 workers per core on 3 cores
System (s) - 1 dispatch and 3 workers per core on 3 cores



APPENDICES (! )103
 

Appendix 9.6 Results from “No communication” example with 4 workers and two sizes 

of the array 

 

1000x5 - 10

1000x5 - 100

5000 - 10

5000 - 100

0.0 12.5 25.0 37.5 50.0

0.003

0.003

0.006

0.003

3.326

0.000

46.213

4.640

0.848

0.306

11.600

1.215

0.001

0.003

0.001

0.001

2.971

0.305

41.105

4.120

2.986

0.313

41.228

4.140

0.001

0.001

0.004

0.005

3.327

0.334

46.200

4.600

0.849

0.091

11.600

1.170

Real (s) - Dynamic User (s) - Dynamic
Sys (s) - Dynamic Real (s) - 1 core
User (s) - 1 core Sys (s) - 1 core
Real (s) - RR User (s) - RR
Sys (s) - RR



APPENDICES (! ) 104
APPENDIX 10:  Ethics approval form 

!



APPENDICES (! )105

!



APPENDICES (! ) 106

!



APPENDICES (! )107

!



APPENDICES (! ) 108

!



APPENDICES (! )109

APPENDIX 11:  Output of Cachegrind for the test_cache program. 

Appendix 11.1: Shared Heap - Dynamic 
==13397== 
==13397== I   refs:      19,258,620,065
==13397== I1  misses:             1,028
==13397== LLi misses:             1,027
==13397== I1  miss rate:           0.00%
==13397== LLi miss rate:           0.00%
==13397== 
==13397== D   refs:      11,779,768,219  (9,028,425,520 rd   + 2,751,342,699 wr)
==13397== D1  misses:             4,891  (        1,636 rd   +         3,255 wr)
==13397== LLd misses:             4,880  (        1,625 rd   +         3,255 wr)
==13397== D1  miss rate:            0.0% (          0.0%     +           0.0%  )
==13397== LLd miss rate:            0.0% (          0.0%     +           0.0%  )
==13397== 
==13397== LL refs:                5,919  (        2,664 rd   +         3,255 wr)
==13397== LL misses:              5,907  (        2,652 rd   +         3,255 wr)
==13397== LL miss rate:             0.0% (          0.0%     +           0.0%  )

Appendix 11.2: Private Heaps - Dynamic 
==13110== 
==13110== I   refs:      19,257,838,664
==13110== I1  misses:             1,007
==13110== LLi misses:             1,006
==13110== I1  miss rate:           0.00%
==13110== LLi miss rate:           0.00%
==13110== 
==13110== D   refs:      11,779,609,775  (9,028,349,805 rd   + 2,751,259,970 wr)
==13110== D1  misses:             3,366  (        1,626 rd   +         1,740 wr)
==13110== LLd misses:             3,365  (        1,625 rd   +         1,740 wr)
==13110== D1  miss rate:            0.0% (          0.0%     +           0.0%  )
==13110== LLd miss rate:            0.0% (          0.0%     +           0.0%  )
==13110== 
==13110== LL refs:                4,373  (        2,633 rd   +         1,740 wr)
==13110== LL misses:              4,371  (        2,631 rd   +         1,740 wr)
==13110== LL miss rate:             0.0% (          0.0%     +           0.0%  )

Appendix 11.3: Shared Heap - 1 core 
==13904== 
==13904== I   refs:      19,258,659,144
==13904== I1  misses:             1,059
==13904== LLi misses:             1,058
==13904== I1  miss rate:           0.00%
==13904== LLi miss rate:           0.00%
==13904== 
==13904== D   refs:      11,779,788,309  (9,028,440,406 rd   + 2,751,347,903 wr)
==13904== D1  misses:             4,930  (        1,673 rd   +         3,257 wr)
==13904== LLd misses:             4,911  (        1,654 rd   +         3,257 wr)
==13904== D1  miss rate:            0.0% (          0.0%     +           0.0%  )



APPENDICES (! ) 110
==13904== LLd miss rate:            0.0% (          0.0%     +           0.0%  )
==13904== 
==13904== LL refs:                5,989  (        2,732 rd   +         3,257 wr)
==13904== LL misses:              5,969  (        2,712 rd   +         3,257 wr)
==13904== LL miss rate:             0.0% (          0.0%     +           0.0%  )

Appendix 11.4: Private Heaps - 1 core 
==14394== 
==14394== I   refs:      19,257,877,876
==14394== I1  misses:             1,038
==14394== LLi misses:             1,037
==14394== I1  miss rate:           0.00%
==14394== LLi miss rate:           0.00%
==14394== 
==14394== D   refs:      11,779,629,921  (9,028,364,725 rd   + 2,751,265,196 wr)
==14394== D1  misses:             3,399  (        1,656 rd   +         1,743 wr)
==14394== LLd misses:             3,398  (        1,655 rd   +         1,743 wr)
==14394== D1  miss rate:            0.0% (          0.0%     +           0.0%  )
==14394== LLd miss rate:            0.0% (          0.0%     +           0.0%  )
==14394== 
==14394== LL refs:                4,437  (        2,694 rd   +         1,743 wr)
==14394== LL misses:              4,435  (        2,692 rd   +         1,743 wr)
==14394== LL miss rate:             0.0% (          0.0%     +           0.0%  )

Appendix 11.5: Shared Heap - Round-Robin 
==14666== 
==14666== I   refs:      19,258,663,865
==14666== I1  misses:             1,062
==14666== LLi misses:             1,061
==14666== I1  miss rate:           0.00%
==14666== LLi miss rate:           0.00%
==14666== 
==14666== D   refs:      11,779,789,660  (9,028,441,543 rd   + 2,751,348,117 wr)
==14666== D1  misses:             4,879  (        1,655 rd   +         3,224 wr)
==14666== LLd misses:             4,878  (        1,654 rd   +         3,224 wr)
==14666== D1  miss rate:            0.0% (          0.0%     +           0.0%  )
==14666== LLd miss rate:            0.0% (          0.0%     +           0.0%  )
==14666== 
==14666== LL refs:                5,941  (        2,717 rd   +         3,224 wr)
==14666== LL misses:              5,939  (        2,715 rd   +         3,224 wr)
==14666== LL miss rate:             0.0% (          0.0%     +           0.0%  )

Appendix 11.6: Private Heaps - Round-Robin 
==14937== 
==14937== I   refs:      19,257,882,642
==14937== I1  misses:             1,038
==14937== LLi misses:             1,037
==14937== I1  miss rate:           0.00%
==14937== LLi miss rate:           0.00%
==14937== 
==14937== D   refs:      11,779,631,231  (9,028,365,644 rd   + 2,751,265,587 wr)
==14937== D1  misses:             3,400  (        1,655 rd   +         1,745 wr)
==14937== LLd misses:             3,399  (        1,654 rd   +         1,745 wr)
==14937== D1  miss rate:            0.0% (          0.0%     +           0.0%  )
==14937== LLd miss rate:            0.0% (          0.0%     +           0.0%  )



APPENDICES (! )111
==14937== 
==14937== LL refs:                4,438  (        2,693 rd   +         1,745 wr)
==14937== LL misses:              4,436  (        2,691 rd   +         1,745 wr)
==14937== LL miss rate:             0.0% (          0.0%     +           0.0%  )

View publication statsView publication stats

https://www.researchgate.net/publication/281319882

