
Impact'of'Cache'on'Data/Sharing'

in'Multi/Threaded'Programmes'

'

Pavlo'Bazilinskyy'

Dissertation'2014'

Erasmus'Mundus'MSc'in'Dependable'Software'Systems'

'

'

'

Department'of'Computer'Science'

National'University'of'Ireland,'Maynooth'

Co.'Kildare,'Ireland'

'

A'dissertation'submitted'in'partial'fulfilment''

of'the'requirements'for'the'

Erasmus'Mundus'MSc'Dependable'Software'Systems'

'

Head'of'Department':'Dr'Adam'Winstanley'

Supervisor':'Dr'Stephen'Brown'

June'2014'

'

Abstract

This thesis answers the question whether a scheduler needs to take into ac-

count where communicating threads in multi-threaded applications are exe-

cuted. The impact of cache on data-sharing in multi-threaded environments

is measured. This work investigates a common base–case scenario in the

telecommunication industry, where a programme has one thread that writes

data and one thread that reads data. A taxonomy of inter-thread com-

munication is defined. Furthermore, a mathematical model that describes

inter-thread communication is presented. Two cycle–level experiments were

designed to measure latency of CPU registers, cache and main memory.

These results were utilised to quantify the model. Three application–level

experiments were used to verify the model by comparing predictions of the

model and data received in the real-life setting. The model broadens the

applicability of experimental results, and it describes three types of com-

munication outlined in the taxonomy. Storing communicating data across

all levels of cache does have an impact on the speed of data–intense multi-

threaded applications. Scheduling threads in a sender–receiver scenario to

di↵erent dies in a multi-chip processor decreases speed of execution of such

programmes by up to 37%. Pinning such threads to di↵erent cores in the

same chip results in up to 5% decrease in speed of execution. The findings of

this study show how threads need to be scheduled by a cache-aware sched-

uler. This project extends the author’s previous work, which investigated

cache interference.

Category: B.4.1 [Input/output and Data Communications]: Data Com-

munications Devices - Processors

General terms: Measurement, Performance, Reliability, Experimentation.

Keywords: cache, multi-core, multi-threaded, environment, processor, CPU,

speed, latency, throughput, scheduler, cache-aware, level 1, level 2, level 3,

main memory, experiment, model, taxonomy.

Declaration

I herewith declare that I have produced this thesis without the prohibited

assistance of third parties and without making use of aids other than those

specified; notions taken over directly or indirectly from other sources have

been identified as such. This thesis has not previously been presented in

identical or similar form to any other Irish, Scottish or foreign examination

board.

The thesis work was conducted from October 2013 to June 2014 under

the supervision of Stephen Brown and Niall O’Connell at the University

of Ireland, Maynooth. The word count of the content part of the thesis is

21,951.

Maynooth, Pavlo Bazilinskyy

To Dasha, Olena, Katerina, and Jessey.

Acknowledgements

Special thanks should be given to Dr Stephen Brown, my research project

supervisor for his professional guidance and valuable support and to Niall

O’Connell from Openet for his useful and constructive recommendations on

this project. I would like to show my gratitude to the EACEA (Education,

Audiovisual and Culture Executive Agency) for funding my research, as well

as my two-year long join Master’s programme that has changed my life and

proved that nothing is impossible. Assistance and help provided by Openet

was greatly appreciated.

I would also like to extend my thanks to the technicians of the laboratory of

the department of Computer Science of the National University of Ireland,

Maynooth for their help in o↵ering me the resources for conducting this

study. I want to especially show my gratitude to Dr Vanush Paturyan, I

would not be able to handle Linux without him.

Finally, I wish to thank my family for their support and encouragement

throughout my study. Specifically, Dasha for giving me motivation to con-

quer new horizons and improve myself.

Contents

List of Figures vii

List of Tables ix

Listings x

1 Introduction 1

1.1 The Aim of the Thesis . 3

1.2 Dissertation Structure . 5

2 Related Work 6

2.1 CPU . 6

2.2 Cache . 8

2.2.1 Cache A�nity . 12

2.2.2 Cache Latency and Throughput 13

2.3 Benchmarks for Testing Performance of Cache in Multi-Core Systems . 14

3 Taxonomy and Model of Inter-Thread Communication 16

3.1 Taxonomy of Inter-Thread Communication 16

3.2 Model of Inter-Thread Communication 18

4 Experimental Environment and Experiments 24

4.1 Organisation of Solution . 27

4.2 Experiments . 28

4.2.1 Cycle-Level Experiments . 29

4.2.1.1 Experiment 0 . 29

4.2.1.2 Experiment 1 . 30

iii

CONTENTS

4.2.2 Application-Level Experiments 31

4.2.2.1 Experiments 2 – 4 . 31

4.2.3 Organisation of Experiments . 33

4.3 Configuring Experimental Environment 35

4.3.1 Avoiding Overhead from Operating System 35

4.3.2 Measuring Interrupts and Minor and Major Page Faults 38

4.4 Timing . 41

4.4.1 Measuring Time at Nano-Second Accuracy 41

4.4.1.1 Using clock gettime(3) 42

4.4.1.2 Using RDTSC/RDTSCP 43

4.5 Support for Mac OS . 46

4.6 Measuring Duration of Interrupts and Minor Page Faults 46

4.7 Dependability . 47

5 Conducting Experiments 48

5.1 Hardware . 48

5.2 Constraints . 51

5.3 Experiments . 51

5.3.1 Running Experiments on Servers 51

5.3.2 Execution of Experiments . 53

5.3.3 Cycle-Level Experiments. Experiments 0 and 1 54

5.3.4 Application-Level Experiments. Experiments 2 – 4 56

6 Results 57

6.1 Cycle-Level Experiments . 57

6.1.1 Experiment 0 . 57

6.1.2 Experiment 1 . 57

6.1.3 Measuring Latency of Cache with lmbench 62

6.2 Application-Level Experiments. Experiments 2 – 4 65

6.3 Measuring Duration of Interrupts and Minor Page Faults 68

iv

CONTENTS

7 Evaluation of Results 70

7.1 Deriving Parameters in the Model . 70

7.1.1 Deriving Latency of Cache and Main Memory 70

7.1.2 Applying Sizes of Cache and Memory to the Model 72

7.1.3 Deriving Amount of Overhead from the OS 73

7.1.4 Quantified Model . 78

7.2 Evaluation of the Model . 82

7.2.1 Accuracy of the Model . 83

7.2.2 Implications for Scheduling . 84

7.3 Possible E↵ects not Included in the Model 87

7.4 Survey of Similar Results . 90

8 Conclusions and Future Work 92

8.1 Limitations . 93

8.2 Future Work . 94

References 96

Appendices 99

A Source code of pagefaults fopen.c 100

B Source code of clock-gettime test.c 107

C Source code of the function void test rdtsc(void) 110

D Bash code for running lmbench on the Xeon E5-2695 v2 112

E Source code of the main function of void test time int pf.c 114

F Source code of the experiment with threads residing on the same core117

G Makefile used to run experiments 120

H Average duration of interrupts and minor page faults, Xeon 5130 122

I Average duration of interrupts and minor page faults, Xeon E5-2695

v2 124

v

CONTENTS

J Results of Experiment 1, filtered data, Xeon 5130 126

K Results of Experiment 1, filtered data, Xeon E5-2695 v2 129

L Results of running the memory benchmark from lmbench 132

M Results of Experiment 2, unfiltered data, Xeon 5130 135

N Results of Experiment 2, unfiltered data, Xeon E5-2695 v2 138

O Results of Experiment 3, unfiltered data, Xeon 5130 141

P Results of Experiment 3, unfiltered data, Xeon E5-2695 v2 144

Q Results of Experiment 4, unfiltered data, Xeon 5130 147

R Results of Experiment 4, unfiltered data, Xeon E5-2695 v2 150

vi

List of Figures

2.1 Cache Structure of the Pentium 4 and Intel Xeon Processors [1] 9

2.2 An example of a direct mapped cache 11

3.1 Communication between threads in a multi-core environment 17

3.2 Writing and reading a cache line in a Write-back cache 20

4.1 Overview of the solution . 25

4.2 A diagram showing the flow of the process of running an experiment . . 26

4.3 A diagram showing the interactions between threads in Experiment 3 . 32

5.1 Diagram of the layout of Xeon 5130 . 50

5.2 Diagram of the layout of Xeon E5-2695 v2 50

5.3 Commands required to SSH into the Xeon 5130 and run the experiments 52

6.1 Xeon 5130: data copying times (filtered data, Experiment 1) 58

6.2 Xeon 5130: data copying times (unfiltered data, Experiment 1) 59

6.3 Xeon 5130: data copying times, where 8 <= n <= 400064 (filtered data,

Experiment 1) . 60

6.4 Xeon 5130: data copying times, where 8 <= n <= 400064 (unfiltered

data, Experiment 1) . 61

6.5 Xeon E5-2695 v2: data copying times (filtered data, Experiment 1) . . . 61

6.6 Xeon E5-2695 v2: data copying times (unfiltered data, Experiment 1) . 62

6.7 Xeon E5-2695 v2: data copying times, where 8 <= n <= 400064 (filtered

data, Experiment 1) . 63

6.8 Xeon E5-2695 v2: data copying times, where 8 <= n <= 400064 (unfil-

tered data, Experiment 1) . 63

vii

LIST OF FIGURES

6.9 Xeon 5130: latency of cache, measured with lmbench 64

6.10 Xeon E5-2695 v2: latency of cache, measured with lmbench 65

6.11 Xeon 5130: throughput of copying data in inter-thread communication

(Experiments 2-4) . 66

6.12 Xeon E5-2695 v2: throughput of copying data in inter-thread communi-

cation (Experiments 2-4) . 67

7.1 Xeon 5130: prediction of throughput of copying data in inter-thread

communication . 81

7.2 Xeon E5-2695 v2: prediction of throughput of copying data in inter-

thread communication . 82

7.3 Performance of three ways of scheduling threads, Xeon 5130 85

7.4 Performance of three ways of scheduling threads, Xeon E5-2695 v2 . . . 87

viii

List of Tables

5.1 Description of the processors used in the study 49

5.2 A sample of a CSV file with filtered data 54

6.1 Latency of cache and main memory as reported by lmbench 65

6.2 Overhead of inter-thread communication 68

6.3 Average duration of interrupts and minor page faults 69

7.1 Fetch cycle with active data prefetching on Xeon 5130 88

7.2 Single line fetch with no active data prefetching on Xeon 5130 89

7.3 Fetch cycle when Advanced Smart Cache is enabled on Xeon 5130 . . . 90

ix

Listings

4.1 Experiment 0: measuring latency of registers 29

4.2 Experiment 1: measuring latency of cache 30

4.3 A structure used to pass multiple arguments to the pthread create() func-

tion . 32

4.4 Function for choosing the length of an experiment 33

4.5 A function for assigning a thread to a particular processor core 34

4.6 Setting higher priority of the process . 36

4.7 Alignment of data . 37

4.8 Results from the experiment that proves that one minor page fault is

generated per file-read . 39

4.9 Measuring time after timer tick or after recording a timer interrupt . . . 40

4.10 An excerpt from running the test clockgettime programme on the Xeon

5130 . 42

4.11 The wrapper function for calling RDTSC with Assembly language . . . 43

4.12 An excerpt from running the test rdtsc() function on the Xeon 5130 . . 45

5.1 Command to schedule a job on one node in the Xeon E5-2695 v2 52

5.2 The error message caused by termination of lmbench on the Xeon E5-

2695 v2 . 55

x

1

Introduction

This study describes measuring the impact of the memory1 cache on data-sharing in

multi-threaded2 environments. It incorporates both theoretical and practical research.

The theoretical investigation involved the creation of a taxonomy of inter-thread com-

munication and of a simplified model that describes the inter-thread communication in

a multi-core3 environment. A number of experiments were designed. They characterise

the cache performance, which is necessary for verification of the model. This thesis

discusses the impact of cache and speculates about its positive influence on the speed

of multi-threaded programmes. It continues the study that was conducted during last

year [2], where the negative e↵ects of cache interference were discussed.

It is estimated that processor manufacturers will be using 5nm technology in 2019

[3, 4], and some researchers claim that Moore’s law [5] will no longer be valid after this

milestone has been reached [6]. Others state that this is not the case, but that our

civilization will meet considerable limitations in the area of manufacturing micropro-

cessors soon [7]. Therefore, investigating ways of improving e�ciency of the current

and future generations of central processing units (CPUs) is important. It is often

assumed that the clock rate of a CPU is the main and often the only parameter that

defines how fast and with what speed programmes are executed. However, a more ac-

curate statement is that the speed of the CPU is not the only variable in the equation

that dictates performance. Structure of cache, amount of disk memory, e�ciency of

compilers: all of these factors play their role. Additionally, all pieces of software have

1
CPU : Central Processing Unit.

2
Thread : a series of instructions that can be scheduled independently.

3
Core: an independent central processing units, any multi-core system consists of at least two cores.

1

1. INTRODUCTION

unique performance requirements. Optimised work of all of these components is crucial

for achieving high performance [8].

Nowadays most software is executed on multi-core systems that provide load-balancing

mechanisms for thread placement. Multi-core systems o↵er better performance due to

parallelism [9]. Threads need to be scheduled in a multi-core environment: decisions on

which hardware resources need to be accessable by which threads must be taken. Load

balancing of available resources is important for achieving satisfactory speed of execu-

tion of running programmes. Coscheduling programmes that involve multiple threads

is complicated because of the complex architecture of multi-threaded systems [10, 11];

it imposes numerous challenges and complications. These include: 1) excessive power

consumption [12]; 2) di�culties in achieving scalability [13]; 3) avoiding deadlocks [14];

4) achieving portable and predictable performance. Multi-threaded programmes often

utilise di↵erent patterns of cache usage. It is argued that optimisation of utilisation

of cache in multi-core processors may be beneficial for optimising work of modern-day

systems and reducing overhead1 caused by these factors. Development of a cache-aware

scheduler2 will be advantageous for the future of microprocessor design.

Also, such applications are commonly allocated on a single large heap shared by all

threads and processes running on the OS. However, this approach may not always be

considered as the best for a given application due to overhead caused by the mecha-

nisms involved in inter-thread communication and their parallel execution. Moreover,

programming multi-threaded code3 often demands complex co-ordination of threads

and can easily introduce subtle and di�cult-to-find defects due to the interweaving of

processing on data shared between threads, which may result in deployment of unde-

pendable software systems. It is argued that in certain situations running programmes

on multiple cores must be avoided.

Numerous companies around the world, such as Openet4 and Intel5, are investing

large quantities of money and resources on optimising their hardware and software sys-

tems for more e�cient use of the parallel programming paradigm. In the post-Moore’s

1
Overhead from the OS is a decrease in speed of a programme caused by events that take place in

the OS.
2
Scheduler controls access of threads or processes to processor time.

3
Multi-threaded application is a piece of software that incorporates more than one (main) thread.

4
http://www.openet.com

5
http://www.intel.com

2

http://www.openet.com
http://www.intel.com

1.1 The Aim of the Thesis

law era, the e�ciency of hardware, and not software, will be of bigger importance. This

particular interest in the IT industry gave motivation for this research. The project

was initiated by Openet. It is a Dublin-based company that works in the area of

telecommunications and their services are used to analyse and commercialize activity

on the network. This thesis focuses on a basic case of a multi-threaded programme,

which involves two threads: one sending thread and one receiving thread (described in

3.2). A more realistic scenario where thousands or millions of threads are used can be

evaluated based on the findings in this document.

1.1 The Aim of the Thesis

The aim of this thesis is to investigate the impact of thread placement on the perfor-

mance of communication between threads that reside on di↵erent cores/CPU chips1 in

applications run on systems that have various levels of multi-core inter-process com-

munication. The thesis describes the specific case of data transfer from one thread to

another via shared memory, and not data sharing in general. Such analysis is intended

to help to determine how scheduling should take this into account.

Based on the results, the importance of thread placement2 when scheduling decisions

are made is discussed. The main research question RQ and four secondary research

questions RQ1 – RQ4 are asked in the study:

RQ Should a scheduler take into account where a receiving thread is executed?

RQ1 At what stage does allocation of threads that are engaged in intensive data-

sharing on di↵erent cores of the same CPU chip increase the speed of execution?

RQ2 At what stage does allocation of threads that are engaged in intensive data-

sharing on di↵erent CPU chips increase the speed of execution?

RQ3 Can the model describe the inter-thread communication with enough level of

precision?

RQ4 Can the model be used to develop a cache-aware scheduler?

1
Chip: an integrated circuit that contains the entire central processing unit (core)[15].

2
Thread placement – deciding which unit of computation a thread needs to be assigned to.

3

1. INTRODUCTION

Six objectives were outlined to achieve the final aim, answer all research questions,

and define the evaluation criteria:

1. Develop a mathematical model of multi-core cache communication for both single-

and multi-chip systems. Such model needs to be outlined because it will allow

to predict to a certain degree of accuracy the impact of the decision made for

scheduling the receiving thread for any CPU, for which the parameters can be

obtained for and that matches the model. Without the model, the impact of

cache on inter-thread communication would have to be analysed for each CPU

on an individual basis. The behaviour of cache needs to be understood. For

succeeding with this objective, a taxonomy of inter-thread communication needs

to be created.

2. Determine parameters for the systems used in the study. Collect data on latency

of accessing di↵erent levels of cache and memory.

3. Predict the impact of thread placement for di↵erent bu↵er lengths.

4. Evaluate performance of the model through designing a series of application-level

experiments. Working with such test cases where data needs to pass through

di↵erent configurations of levels of cache and computer memory allows to compare

the predictions of the model and data gathered in the real-life environments.

Received data needs to be filtered1 by detecting occurrences of interrupts and

page faults: time-consuming events that are handled by the Linux kernel and

cannot be avoided by real-world applications. Achieved results also help evaluate

the taxonomy.

5. Validate the model against the data gathered in a real-world setting.

6. Use the model and experiment results to determine the impact of placement on

performance.

Answers to these questions are given in chapter 7. The mathematical model that

described inter-thread communication is presented in chapter 3. The outcome of this

1
Filtered data shows results with as little overhead from the OS as possible. The experiments were

designed to explicitly measure overhead, and discount results that included it.

4

1.2 Dissertation Structure

study provides a basis for thread scheduling to take cache performance into account.

In addition, such results may be used for development of a cache-aware scheduler.

1.2 Dissertation Structure

The remainder of this dissertation is structured as follows: chapter 2 surveys the related

content applicable to this thesis, it gives a brief description of multi-core systems and

the cache. Chapter 3 introduces a taxonomy and a mathematical model of inter-thread

communication. Chapter 4 gives a description of the experimental environment and

experiments used in the practical section of the study. Then, chapter 5 outlines the

process of conducting experiments. It also includes a brief overview of the hardware

used in the project described in this thesis. Chapter 6 talks about achieved results.

Chapter 7 gives the evaluation of achieved results. Lastly, chapter 8 sums up what was

accomplished and sketches possible directions for future work.

5

2

Related Work

In this chapter, the basic principles of two critical components of any modern-day

computer – CPU and cache – are described. An overview of the related to the thesis

questions theory and publications is given. The chapter finishes with an evaluation

of a number of existing benchmarks that can be used to test various aspects of the

hardware.

2.1 CPU

The first x86 microprocessor Altair 8086 was created in 1978 [16]. Since then the world

has seen a number of improvements in performance of CPUs. The most measurable

improvement has been gain in speed of processors that has come from increasing the

clock speed (frequency at which a processor is running), and to a lesser extend through

developing sophisticated in-build optimisation strategies.

Moreover, improvements in performance of processors were achieved by exploit-

ing means of simultaneously performing multiple operations in a computer program –

instruction-level parallelism [17]. Processors that use instruction-level parallelism are

able to issue numerous instructions concurrently. In their pipelines, instructions are

pre-fetched, split into sub-components and executed out-of-order [18]. The Pentium IV

CPU released in 2000 was one of the last and the most powerful single-core processors

[19]. The Prescott and Cedar Mill cores from Pentium IV family featured as many as

31 stages in their pipelines, the longest in the history of mainstream computing [20].

However, there are certain factors that limit speed of systems that rely on this ap-

6

2.1 CPU

proach. Achieving satisfactory performance of instruction-level parallelism depends on

e�ciency of branch prediction performed by hardware or software. This is not trivial,

which was proved as early as in 1991 [21].

More recent advancements in the development of hardware for performing com-

putations have mostly emphasised the importance of increasing the number of cores

that are embedded on a single die1, rather than experimenting with changing the clock

rate or improving methods behind instruction-level parallelism. As a result, a new

type of systems powered by a single processor that incorporates more that one central

processing unit was developed. These cores are responsible for reading and executing

instructions given to the CPU by programmes. Having additional cores on a silicon

base improves performance and increases the upper bound of the amount of work that

can be done by the processor by a factor of the total number of cores that the CPU

obtains [16].

The motivation behind switching to multi-core systems resides in the fact that

improving serial performance (performance of CPUs with one core) has become in-

creasingly hard [22]. One of the most commonly used methods of increasing speed of

execution of commands in single-core processors is improving clock frequency by deeper

pipelining. However, the advantage of utilising the deeper pipeline is reduced when the

inserted Flip-Flops delay is comparable to the combinational logic delay. Such approach

also increases cycles-per-instruction (CPI) and has a negatively impact on the overall

system performance. Also, the number of logic gates in one pipeline stage determines

the clock frequency. Reducing the segment size becomes hard on the smaller scale,

creating a frequency wall. In addition, the emergence of the power wall means that the

higher the clock speed, the more costly it is to remove heat, which applies limitations

on the design and e↵ectiveness of the system.

To overcome the challenges in performance and power management, an innovative

and di↵erent vision of the processor architecture and design had to be realised. The

multi-core architecture is one of the most recent and promising technologies in the

industry and starting from 2004 it has been dominating on the market of processors

[18, 23, 24]. A multi-core processor is a CPU that consists of multiple independent

units that reside on the same processor chip, such structure is capable of executing

1
The word die is used in a meaning of a computer chip throughout this document, unless stated

otherwise.

7

2. RELATED WORK

instructions in a (not virtual) parallel fashion. Today multi-core processors may be

found in all computer markets: server systems, desktop systems, mobile phones, and

embedded systems. The popularity of this architecture is a true paradigm shift. A

parallel computer is now a de facto machine for performing computation of all levels of

complexity. [22]

A shift to multi-core systems is beneficial for energy consumption since multi-core

CPUs can allow both the clock frequency and supply voltage to be reduced when

there is no need to perform heavy computation to avoid power overconsumption. Also,

such systems are highly scalable since a single processor can be designed and a system

could be built by linking together multiple processors. Furthermore, now multi-core

processors also di↵er by a number of chips that they contain, i.e. one may buy a

processor that consists of more than one independent CPU. With introduction of such

new devices, the field of mass market computing entered a new era and with it a new

need for performance analysis techniques and capabilities has risen.

2.2 Cache

A cache serves as a layer between a processor and main memory [25]. A cache1 is an

essential component of any modern-day processor that by storing frequently-used data

ensures that future requests for accessing that data are served faster. Cache can store

both information that has been computed earlier and copies of data that is stored on

other levels of memory hierarchy of the system. Data in caches is stored in basic units

of cache storage, cache lines, blocks of fixed size that may contain multiple bytes of

memory. The minimum amount of information that can be read from a cache is one

cache line, i.e. if one wants to read 1 byte of data stored in a cache of any level, the

amount of data that is sent is still what is stored in one cache line (e.g. 64 bytes in the

Xeon 5130). When caches are enabled, data and instructions go through the caches

without the need for explicit software control. Additionally, utilisation of cache often

creates a challenge of reducing the level of energy consumption [26]. Understanding the

behavior of the cache is useful for optimising performance of both single- and multi-

threaded software.

1
The word cache is used to refer to the memory cache throughout this document, unless stated

otherwise.

8

2.2 Cache

This project focuses on the Intel 64 architecture. Besides cache, this architecture

also incorporates translation look aside bu↵ers (TLBs)1, and a store bu↵er for tem-

porary on-chip (and external) storage of instructions and data [1]. These technologies

are only involved in virtual memory management, which is not a subject of this thesis.

Figure 2.1 shows the arrangement of caches, TLBs, and store bu↵ers in Intel Pentium

4 and Intel Xeon CPUs. The cache normally consists of multiple levels [17]. In modern

microprocessors the primary cache is split into two caches of (normally) equal size –

one cache is used to store programme data, and the other one is used to hold micropro-

cessor instructions. Some old microprocessors utilized “unified” primary cache, which

was used to store both data and instructions in the same cache. In the case of Xeon

processors, the Level 1 cache is divided into two sections. The Level 2 cache is shared

between two chips in a dual-chip Xeon processor – it is a unified data and instruction

cache.

Figure 2.1: Cache Structure of the Pentium 4 and Intel Xeon Processors [1]

Two other very important concepts are cache hits and cache misses. Cache hits

occur when the cache can satisfy a request for the data required for further computation.

1
Translation lookaside bu↵er (TLB) is a new type of cache that is used to improve virtual address

translation speed [27].

9

2. RELATED WORK

If requested data cannot be found in the cache, of which the request was made, a cache

miss occurs. Cache hits are a desired property of a computational system because they

improve overall performance by reducing overhead caused by accessing data from bigger

and slower levels of the memory hierarchy (e.g. RAM, a hard disk); system architects

try to reduce the number of cache misses. Essentially, the larger the amount of data

that can be provided directly from the cache, the greater the speed. The cache miss

ratio is one of the ways to measure e�ciency of cache usage; the lower the cache miss

ratio, the faster the system is [28]. Also, it is important to know that a cache line fill

happens when the CPU sees that a quantum of data, that is being read from memory,

can be stored in a cache; the memory controller writes an entire cache line into the

appropriate level(-s) of cache [1].

Studies indicate that fast cache-to-cache communication is crucial for achieving the

best performance and scalability of multi-threaded programmes [29, 30, 31]. However,

with increases in the clock rate, the system starts to su↵er from the high level of cache

miss ratio: caches are used more intensly. Heavy usage of processor hardware support

(utilising larger caches and branch tables) and a bigger level of awareness on memory

performance have helped processor designers manage cache misses and branches [22].

A term bus sni�ng is commonly used to describe a technique that is employed to

support cache coherence, i.e. the consistency of data stored in di↵erent levels of cache

[17]. Each controller of cache monitors instructions that may invalidate a cache line in

the cache. They ensure that the same memory location is not loaded into more than

one cache and if a quantum of data is requested, only one value is returned from all

levels of memory [32].

A fundamental decision in cache design is whether each piece of data can be stored

in a cache once (in any cache line), or in only some of the lines [33]. It is called cache

associativity. One may define three distinct types of cache associativity based on the

way information is stored in the cache [17]:

Direct mapped cache Each quantum of data can be saved in only a single cache

line. It makes a cache block of data easy to find, but cache loses in flexibility of

allocation of data.

N-way set associative cache Every piece of data can be stored in one of N lines in

the cache. For example, in a 8-way set associative cache, each quantum of data

10

2.2 Cache

can saved in 8 di↵erent lines of cache. The index must be implemented to support

locating data within the set.

Fully associative cache Each quantum of information can be saved in any cache line;

one may say that the cache works as a simple hash-table. Every tag associated

with a quantum of data in the cache must be compared when looking for a block

of data in the cache, but placement of data is simplified.

Figure 2.2 shows an example of a direct mapped cache and its interaction with

blocks of data in main memory. Each block in main memory is associated with exactly

one block in a cache.

Figure 2.2: An example of a direct mapped cache

Then, there are two main methods of caching (organising access to caches) available

[1]:

Write-back (WB) Both operations of writing and reading data to and from main

memory are stored in caches. Data being cached is written only to the cache.

The cached data is used to update main memory. This type of caching decreases

bus tra�c by eliminating many unnecessary writes to main memory. Processors

used in this research have Write-back caches.

11

2. RELATED WORK

Write-through (WT) Both operations of writing and reading data to and from main

memory are also stored in caches. Data being cached is written both to the cache

and to the main memory. When writing through to main memory, unused cache

lines are not cleaned (indicate that it was unchanged since it was read from

main memory), and valid cache lines are either filled (references memory in main

memory when a word is not found in cache) or invalidated (marked as having

incoherent copy of data in main memory). A write operation is not considered

complete until the write to main memory is finished.

Finally, performance of processors is often impacted by implicit and explicit caching

[1]. Implicit caching occurs when a piece of memory is marked as potentially cacheable,

although the element may never have been accessed. Implicit caching occurs in recent

processor families due to data prefetching, branch prediction1, and TLB miss handling.

Explicit caching is observed due to overuse of prefetch instructions (e.g. PREFETCHh

instruction, which was introduced in the Pentium III processor family). These instruc-

tions give “hints” that a quantum of data will be used soon and should be cached as

soon as possible. The explicit caching can lead to resource conflicts, which decrease

the performance of an application. These events are di�cult to handle on the software

level and should be eliminated on the OS level.

2.2.1 Cache A�nity

One of the most commonly used metrics for measuring performance of multi-threaded

systems is cache a�nity [34, 35, 36]. Cache a�nity is described as the amount of

process’s data or instructions stored inside of the cache. A�nity can be both high and

low, depending on how much state has been accumulated. Speed of multi-threaded

programmes is a↵ected by the ability of processor cores to get access of required data

by traveling through as few levels of cache and memory as possible [37]. Cache a�nity

is often exploited by schedulers (algorithms that load-balance workload on processors)

by rescheduling processes to run on a recently used processor.

Cache a�nity has a direct impact on the level of cache misses in the system. The

cache miss penalty to main memory, which costs hundreds of CPU cycles, and com-

plexity of hardware that needs to be built, often reduce benefits that can be achieved

1
Branch prediction: when a CPU attempts to guess in which way a logical branch (e.g. if-then-else

statement) will be executed before it can be known with certainty.

12

2.2 Cache

from implementing instruction-level parallelism [38]. Reduction of cache misses is ben-

eficial for improving performance as well, as was shown in the project conducted by

the author in the University of St Andrews [2].

2.2.2 Cache Latency and Throughput

Cache latency is the time taken to access a block of data in a cache. Cache throughput

is the amount of data that can be accessed in a unit of time. It is desirable to read

as much data as quickly as possible, hence the lower the latency and the higher the

throughput, the better.

CPUs often contain data prefetchers, which transfer information into caches heuris-

tically, i.e. they predict which data will also be accessed in the future and store it in the

cache to be ready when required [39]. By using the data prefetchers, one may reduce

the amount of time that the CPU has to wait for the data to be fetched, i.e. data does

not have to travel all the way from the main memory, but only from the faster cache.

The Xeon processors used in the study utilise hardware data prefetchers [40].

Applications often use data that is stored closely to what has been referenced re-

cently, it is known as data locality. There are two kinds of locality: 1) Temporal locality :

where there is a relatively big chance that a recently used quantum of data is likely to be

used again in the near future; 2) Spatial locality : pieces of data with nearby addresses

are often referenced close together in time [41]. Data Locality of information stored

in the cache has a particularly large e↵ect on the speed of multi-threaded applications

[42, 43].

Data prefetchers use the principles of data locality and operate by analysing patterns

in the access of data during the execution of programmes. Therefore, latency and

throughput of accessing data depend on whether the prefetchers have been successful

at comprehending the pattern of data usage and whether they have fetched the right

piece of information into the caches. [44, p. 811]

Cache latency and throughput a↵ect both unichip and multichip systems. Benefits

that can be received through reducing cache latency and increasing cache throughput

di↵er across various multi-core architectures, i.e. multi-core uniprocessors and multi-

core multiprocessors. The topic of the impact of the cache on speed of software has been

discussed in the scientific community for more than two decades now; some examples of

published results may be found in [28, 45, 46]. The paper [45] proposed an algorithm for

13

2. RELATED WORK

a�nity-aware scheduling of threads that reduces the number of cache misses by up to

36%; however, it was written in 1995 and the results cannot be considered as applicable

to the modern-day computer architecture. The authors of [28] merely discuss already

built solutions that were developed in 1990s, and [46] focuses only on the shared last-

level cache (LLC). Considerably fewer resources discuss the e↵ect of cache on multi-core

than on classic single-CPU architectures.

To summarize, the speed of multi-threaded programmes depends on a number of

processes, as well as attributes associated with caches. This section has discussed a

number of them: cache interference and cache miss ratio, the way caching is handled,

and cache associativity. The context survey revealed that the impact of cache on data-

sharing in multi-threaded environments is not covered extensively in published research.

The motivation for this project came after realising that modern Linux kernels do not

take the impact of the cache into account when scheduling of threads takes place in

multi-core environments [47, 48]. Therefore, creation of a model of inter-thread com-

munication in multi-core systems is investigated. The theoretical background o↵ered

by the model is tested by conducting a number of experiments on real hardware that

form two distinct multi-core systems. A taxonomy of inter-thread communication is

presented to support the model.

2.3 Benchmarks for Testing Performance of Cache in Multi-

Core Systems

A number of existing benchmarking suites were evaluated to understand if existing so-

lutions could be utilised for answering the research questions. Providing a standardised

set of tools for measuring and comparing performance of di↵erent parts of the system is

currently a widely-discussed topic. Standardisation organisations1 and conferences fo-

cused on the topic2, that are meant to help software developers and hardware vendors,

are emerging.

System- and component-level benchmarking tools were analysed. Namely: lm-

1
http://www.spec.org/

2
http://icpe2014.ipd.kit.edu/

14

http://www.spec.org/
http://icpe2014.ipd.kit.edu/

2.3 Benchmarks for Testing Performance of Cache in Multi-Core Systems

bench1, Intel’s VTune2, Valgrind3, and CPU20004. VTune is a popular solution that

is commonly used for fine-tuning high performance software that relies on hardware

from Intel; it is not applicable to this study because of limited support for underlying

libraries in the laboratory settings and lack of documentation on measuring latency and

throughput of di↵erent layers of memory. It was found that Valgrind does not perform

simulation on physical hardware, but, rather, through virtualisation, in this instance it

cannot guarantee accuracy of results achieved from experiments. In addition, CPU2000

is an outdated product that is not supported by its developers and hence it o↵ers little

value to the scientific community. The tool lmbench is an open-source solution that was

developed in early 1990s. Despite the lack of extensive documentation, it was possible

to confirm that it is capable of checking latency of accessing cache.

1
http://www.bitmover.com/lmbench/

2
https://software.intel.com/en-us/intel-vtune-amplifier-xe

3
http://valgrind.org/

4
https://www.spec.org/cpu2000/

15

http://www.bitmover.com/lmbench/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://valgrind.org/
https://www.spec.org/cpu2000/

3

Taxonomy and Model of

Inter-Thread Communication

This chapter describes a developed mathematical model of the involvement of cache in

inter-thread data transfer. Creation of the exact model of what is expected when data

is shared between threads that reside on di↵erent parts of the processor is a complex

undertaking. Processor hardware is updated rapidly and each new generation of CPUs

incorporates unseen before technologies that require more complex models that can

describe the inter-thread communication. Such model is created to predict the impact

of scheduling of the receiving thread for any CPU, it allows to generalise the proposed

solution. It helps to develop the experiments that allow to characterise the performance

of the data transfer through di↵erent levels of cache and main memory. In order to

measure the impact of scheduling, the model is required as well. A number of resources

of existing models of the cache are discussed in this chapter. Analysis of cache of

inter-thread communication leads to a taxonomy shown in the next section.

3.1 Taxonomy of Inter-Thread Communication

Multi-core systems handle usage of cache in multi-threaded programmes di↵erently.

Cache in most modern-day processors is organised in the following way: Level 1 (L1)

and Level 2 (L2) data and instruction caches are private for each core and Level 3

(L3) cache is shared. Besides the mentioned in section 2.2 Intel 64 architecture, such

hierarchy is also commonly used in products of other manufacture, for example, IBM’s

16

3.1 Taxonomy of Inter-Thread Communication

POWER7 [49] and AMD’s Opteron [50] chips that are utilised in servers and worksta-

tions. Additionally, in this type of architecture, private for each core levels of cache are

inaccessible by private levels of cache associated with other cores. The private cores are

each connected to the shared cache (normally L3) via the shared data bus. Providing

external access to processors’ cache memory is problematic, since caches from di↵erent

levels have no direct physical connections between them. If one core needs to access

data that is stored in another core’s cache, the only way to receive required information

is through the system bus.

In case of a processor where each core has a private L1 cache and shared between

cores of the same CPU L2 caches, there can be three main patterns of thread commu-

nication. Refer to Figure 3.1 for a diagram that outlines these patterns. It is assumed

that no thread scheduling takes place.

Figure 3.1: Communication between threads in a multi-core environment

The following list presents the taxonomy of inter-thread exchange of data that

defines three types of communication:

Type 1 The simplest case that is associated with the least amount of overhead caused

by moving data between threads (Thread 3 and Thread 4) is communication

between two threads that reside on the same CPU, same core. The blue line on

the figure represents this scenario.

Type 2 Communication takes place between two threads that are executed by the

same CPU, but they reside on di↵erent cores; this type of communication is more

17

3. TAXONOMY AND MODEL OF INTER-THREAD
COMMUNICATION

expensive1 computation-wise (compared to Type 1) because di↵erent L1 and L2

caches are utilised when the threads use shared data. The red line on the diagram

shows an example of communication of this type.

Type 3 The most complicated case involves all three levels of cache. In this case data

is shared between threads that reside on di↵erent chips. An inter-chip bus has to

be used. The green line points to an example of communication of this type

The cost of inter-thread communication depends on the nature of the task that

needs to be performed (i.e. amount of I/O, amount of data used etc.), the environment

(primarily the choice of the processor) and a number of other attributes of the system

used. Usage of a scheduler that is cache-aware may greatly improve the e�ciency of

cache in multi-core systems and hence the overall performance. One may find a few

schedulers that are aimed at multi-threaded programmes [28, 51, 52]. Two systems

that claim to support cache-aware scheduling are Parallels Depth First (PDF)[53] and

Work Stealing (WS)[54]. Both of them were built in 1990s, in the pre-multichip era.

3.2 Model of Inter-Thread Communication

A number of resources discuss existing models of the cache [42, 55, 56]. A model

suggested by the authors of [42] was thoughtfully tested by a number of benchmarks

and the findings presented in the paper were used as motivation for creation of the

proposed in this section model. However, the referred model does not take into account

exchange of data on the main memory level. Similarly, [56] discusses the L2 cache only.

Work published in [55] was conducted in the end of 1980s, and the proposed in that

paper model proves to be too abstract, when applied to current computer architectures.

A few papers discuss the implications of conducting simulations [57, 58, 59] rather

than describing the behaviour of cache by means of mathematical modelling. The

mathematical description of the inter-thread communication provides a much more

solid grounding for further research. Creation of such model is undertaken within the

scope of this study, because it allows to predict the impact of scheduling decisions for

any CPU that the model can be applied for.

1
expensive – takes a significant amount of time to execute.

18

3.2 Model of Inter-Thread Communication

The proposed model describes communication between two threads that reside on

a system that has three levels of cache. The Level 1 caches are private for each core,

the Level 2 caches are private for each chip. The Level 3 caches are private for each

chip, but, in case of most modern-day processors, they are connected by a bus, which,

e↵ectively, unites them and combines the caches into one shared across the whole

processor entity. Such model is later tested by performing experiments on the real

hardware.

The activity being analysed in this model is where the first thread Th1 writes data

into caches, making the thread the sending end, and the second thread Th2 reads data,

which makes it the receiving end. Time, which needs to be spent on writing data

to a bu↵er in one thread, and then reading it out of that bu↵er in another thread,

is modelled. The interaction between the size of the bu↵er and the cache size(s) is

modelled. This scenario is an example of a simplified version of a typical “client–server”

application. Such programmes can often be seen in the telecommunication industry,

where large quantities of data are exchanged between clients and servers. Analysis

of such simplified case can be a base for further work that involves more complicated

programmes.

There is one variable in the model: the size of data that is shared between two

threads n. The quantum of stored data is one cache line (typically 64 or 128 bytes).

Depending on the size of used data, information is stored in a cache (-s) of a particular

level; i.e. if data fits into Level 1 cache, it is stored there, if not, it is cached in the next

level of cache – Level 2 cache.

The latency of using shared between two threads data (Thread 1 writes data into

a cache or main memory and Thread 2 reads data from the cache or main memory)

dcomm can be described by an equation (3.1):

dcomm = dwrite + Control + dread (3.1)

, where the cost of writing data into the cache dwrite is described by equation (3.2):

dwrite =

8
>>>><

>>>>:

dWriteL1 = n/ns ⇤ latWriteL1 n lL1

dWriteL2 = n/cls ⇤ latWriteL2 + l1w lL1 < n lL2

dWriteL3 = n/cls ⇤ latWriteMem + l1w lL2 < n lL3

dWriteMem = n/cls ⇤ latWriteMem + l1w n > lL3

(3.2)

19

3. TAXONOMY AND MODEL OF INTER-THREAD
COMMUNICATION

, where lL1, lL2, lL3 indicate sizes of Level 1, Level 2, and Level 3 caches respectively.

ns points to the size of one word of data that is written in cache, e.g. 4 bytes for a case

of using long on most systems. As described in section 2.2, the minimum amount of

data that can be fetched from caches is a cache line; in this model, cls is the size of one

cache line. l1w indicates the cost of writing the amount of memory that can fit into

Level 1 cache. In most cases this number is small and can be neglected. The model

assumes that direct mapped caches are used.

l1w = (n/ns� n/cls) ⇤ latWriteL1 (3.3)

Figure 3.2 gives an example of writing and reading one cache line, when the access

is initiated from main memory. In this case the size of a cache line is 64 bytes and long

words (4 bytes each) are written/read. The first write/read is very expensive because

all levels of memory are used and its latency is equal to the latency of the level in

memory, from which the operation was initiated. All subsequent actions are performed

solemnly on the Level 1 cache and the latency of such operations equals to the latency

of Level 1 cache. l1w can be expressed by equation 3.3. The caches are assumed to

be fully associative for simplicity, i.e. n-associativity of cache is ignored. It is also

assumed that neither pipelining no simultaneous execution of multiple instructions are

implemented.

Figure 3.2: Writing and reading a cache line in a Write-back cache

Utilisation of threads implies that there will also be overhead caused by the control

20

3.2 Model of Inter-Thread Communication

element. In the situation of having two POSIX-threads1 working with shared data, the

overhead is caused by stopping the 1st thread, yielding the CPU, scheduling and starting

the 2nd thread that starts to use shared data that is implanted into the cache/main

memory by the 1st thread. This overhead does not depend on the variable, which is

the size of data shared between the threads. Such overhead Control is described in

equation (3.4). This equation also defined the non-deterministic part of the equation

I, which indicates the overhead caused by the unwanted events: Iint – interrupts, Ics

– context switches, Ipf maj – major page fault, and Ipf min – minor page faults. As

discussed in section 4.3.1, context switches and interrupts always occur together and

their impact can be united into a single parameter Iics.

Control = ControlexitTh1 + Controltt + ControlenterTh2 + I

I = Iint + Ics + Ipf maj + Ipf min

Iics = Iint + Ics

Control = ControlexitTh1 + Controltt + ControlenterTh2 + Iics + Ipf maj + Ipf min

(3.4)

, where ControlexitTh1 indicates the amount of time the Operating System needs

to spend to exit Thread 1, Controltt expresses the amount of time required to switch

between threads and ControlenterTh2 shows how much time the OS has to spend on

giving control to the 2nd thread that needs to copy data from the shared memory. The

amount of overhead represented by ControlexitTh1, Controltt, and ControlenterTh2 rep-

resents a determenistic parameter that can be measured once. The proposed model is

applicable to all three types of inter-thread communication as described in the taxon-

omy in section 3.1. Finally, the cost of reading data from the cache or main memory

dread is described by equation (3.5):

dread =

8
>>>><

>>>>:

dReadL1 = n/ns ⇤ latReadL1 n lL1

dReadL2 = n/cls ⇤ latReadL2 + l1r lL1 < n lL2

dReadL3 = n/cls ⇤ latReadL3 + l1r lL2 < n lL3

dReadMem = n/cls ⇤ latReadMem + l1r n > lL3

(3.5)

1
POSIX-threds is a POSIX standard for threads. This technology is utilised to control threads in

a multi-threaded environment in the project.

21

3. TAXONOMY AND MODEL OF INTER-THREAD
COMMUNICATION

, where, similarly to the equation 3.2, lL1, lL2, lL3 indicate the amounts of data that

can fit in Level 1, Level 2, and Level 3 caches respectively.

Latencies of writing data into di↵erent levels of cache latWriteL1, latWriteL2, latWriteL3

and main memory latWriteMem are constants. Similarly, latencies of reading data from

di↵erent levels of cache latReadL1, latReadL2, latReadL3 and main memory latReadMem

are also constants. l1r indicates the cost of reading the amount of memory that can fit

into Level 1 cache. This model assumes that a Write-back cache is used. In the scope

of this research we assume that:

latWriteL1 = latReadL1

latWriteL2 = latReadL2

latWriteL3 = latReadL3

latWriteMem = latReadMem

l1r = l1w

(3.6)

Finally, the latency of using data exchanged between two threads may be described

by the following equation 3.7:

dcomm =

8
>>>><

>>>>:

dWriteL1 = n/ns ⇤ latWriteL1 n lL1

dWriteL2 = n/cls ⇤ latWriteL2 + l1w lL1 < n lL2

dWriteL3 = n/cls ⇤ latWriteMem + l1w lL2 < n lL3

dWriteMem = n/cls ⇤ latWriteMem + l1w n > lL3

+ControlexitTh1 + Controltt + ControlenterTh2 + Iics + Ipf maj + Ipf min

+

8
>>>><

>>>>:

dReadL1 = n ⇤ latReadL1 n lL1

dReadL2 = n/cls ⇤ latReadL2 + l1r lL1 < n lL2

dReadL3 = n/cls ⇤ latReadMem + l1r lL2 < n lL3

dReadMem = n/cls ⇤ latReadMem + l1r n > lL3

(3.7)

The parameters in the model are determined through experimentation (as the CPU

specification does not include this level of detail). The cycle-level experiments are

described in section 4.2.1. Data received from the experiments help quantify the model.

Three application-level experiments were engineered to measure the impact of the cache

in two real-life settings and verify the proposed model. Also, an additional experiment

was developed; it measures how much time interrupts and minor page faults take, it is

22

3.2 Model of Inter-Thread Communication

aimed to receive values for Iics and Ipf min. Refer to section 4.2.2 for the description of

the experiments. Results from the application-level experiments are used to verify the

model and investigate the ways of improving its accuracy. Chapter 7 discusses findings

received after executing the experiments and their applicability to the model and this

study in general.

23

4

Experimental Environment and

Experiments

This chapter introduces the experimental environment and how the environment was

designed and developed to receive results, which do not include overhead from the

Operating System and support time measurements with nano-second accuracy. The

chapter also describes the experiments that are used in the practical part of this project.

The experiments were developed because described in section 2.3 benchmarking tools

cannot provide precise and trustworthy information to parametrise the model. Both

this chapter and chapter 5 contain a great number of details; it should allow a reader

to replicate the study, if required.

Figure 4.1 outlines the structure of the proposed solution. This part of the document

starts from describing the file structure, which lies in the base of all elements of the

solution. The experimental environment is used to set-up the laboratory setting that is

capable of monitoring unwanted events imposed by the OS and provide accurate time

measurements with nano-second level of accuracy. A number of cycle- and application-

level experiments are executed from the experimental environment. Gathered from

running experiments data is recorded into CSV files / outputted on the screen by the

experimental environment.

Refer to the flowchart 4.2, it outlines the actions that take place when experiments

are run. The sections of this chapter give a detailed description of all processes that

are present on the figure.

The rest of the chapter describes the proposed solution in details.

24

Figure 4.1: Overview of the solution

25

4. EXPERIMENTAL ENVIRONMENT AND EXPERIMENTS

Figure 4.2: A diagram showing the flow of the process of running an experiment

26

4.1 Organisation of Solution

4.1 Organisation of Solution

Even though the structure of the solution is a low-level detail, it is presented in the

beginning of the chapter since specific files are referenced throughout the chapter. The

C language was used because it has support of working with hardware and kernels of

Operating Systems (e.g. by means of the Assembly language), as well as the fact that

C does not impose high-level programming structures, such as tools that facilitate the

object oriented programming paradigm (like in C++). Additionally, the hardware that

was chosen for running experiments is capable of compiling and running programmes

written in C without any additional configuration.

All files with the solution described in this section may be found in a folder “src”1.

Additional testing programmes are located in other folders, which are referenced when

the programmes are discussed. The main files are listed below:

clock gettime mac.c The implementation of clock gettime(3) for Mac OS.2

clock gettime mac.h The header file for the implementation of clock gettime(3) for

Mac OS.3

conf.h The configuration file. A number of constants that alter behaviour of the

experimental environment are defined in the file.4

experiments.c The implementation of the experiments.5

experiments.h The header for the implementation of the experiments.6

file worker.c The implementation of a number of functions that support file I/O.7

file worker.h The header for the implementation of a number of functions that sup-

port file I/O.8

1
https://github.com/Hollgam/cache-mt/tree/master/src/

2
https://github.com/Hollgam/cache-mt/tree/master/src/clock_gettime_mac.c

3
https://github.com/Hollgam/cache-mt/tree/master/src/clock_gettime_mac.h

4
https://github.com/Hollgam/cache-mt/tree/master/src/conf.h

5
https://github.com/Hollgam/cache-mt/tree/master/src/experiments.c

6
https://github.com/Hollgam/cache-mt/tree/master/src/experiments.h

7
https://github.com/Hollgam/cache-mt/tree/master/src/file_worker.c

8
https://github.com/Hollgam/cache-mt/tree/master/src/file_worker.h

27

https://github.com/Hollgam/cache-mt/tree/master/src/
https://github.com/Hollgam/cache-mt/tree/master/src/clock_gettime_mac.c
https://github.com/Hollgam/cache-mt/tree/master/src/clock_gettime_mac.h
https://github.com/Hollgam/cache-mt/tree/master/src/conf.h
https://github.com/Hollgam/cache-mt/tree/master/src/experiments.c
https://github.com/Hollgam/cache-mt/tree/master/src/experiments.h
https://github.com/Hollgam/cache-mt/tree/master/src/file_worker.c
https://github.com/Hollgam/cache-mt/tree/master/src/file_worker.h

4. EXPERIMENTAL ENVIRONMENT AND EXPERIMENTS

hr timer.c The cross-platform high-resolution timer for performance measurements.1

hr timer.h The header for the cross-platform high-resolution timer for performance

measurements.2

makefile Makefile3 for the project.4

test env.c A number of functions that support the experimental environment.5

test env.h The header for the experimental environment.6

test.c The main entry point of the programme. It prepares the experimental environ-

ment and executes the experiments.7

test.h The header for the main entry point.8

Additional programmes written to test various aspects of the work of CPUs that are

mentioned throughout this chapter may be found in other directories: test clockgettime,

test pagefault fopen, test rdtsc, and test time interrupt.

4.2 Experiments

Two cycle- and three application-level experiments were designed to receive data on la-

tency of di↵erent levels of cache, provide a framework to verify the model, and estimate

an impact of scheduling on the speed of multi-threaded programmes. Di↵erent bu↵er

sizes (amount of exchange data) are used in all experiments; it allows to measure the im-

pact of di↵erent levels of memory on inter-thread communication. All experiments are

described in the files experiments.h9 and experiments.c10. The following experiments

were designed in the project (they are described in the rest of this section):

1
https://github.com/Hollgam/cache-mt/tree/master/src/hr_worker.c

2
https://github.com/Hollgam/cache-mt/tree/master/src/file_worker.h

3
Makefile is a description file used by the make utility that creates executable files based on the

source code and libraries.
4
https://github.com/Hollgam/cache-mt/tree/master/src/makefile

5
https://github.com/Hollgam/cache-mt/tree/master/src/test_env.c

6
https://github.com/Hollgam/cache-mt/tree/master/src/test_env.h

7
https://github.com/Hollgam/cache-mt/tree/master/src/test.c

8
https://github.com/Hollgam/cache-mt/tree/master/src/test.h

9
https://github.com/Hollgam/cache-mt/tree/master/src/experiments.h

10
https://github.com/Hollgam/cache-mt/tree/master/src/experiments.c

28

https://github.com/Hollgam/cache-mt/tree/master/src/hr_worker.c
https://github.com/Hollgam/cache-mt/tree/master/src/file_worker.h
https://github.com/Hollgam/cache-mt/tree/master/src/makefile
https://github.com/Hollgam/cache-mt/tree/master/src/test_env.c
https://github.com/Hollgam/cache-mt/tree/master/src/test_env.h
https://github.com/Hollgam/cache-mt/tree/master/src/test.c
https://github.com/Hollgam/cache-mt/tree/master/src/test.h
https://github.com/Hollgam/cache-mt/tree/master/src/experiments.h
https://github.com/Hollgam/cache-mt/tree/master/src/experiments.c

4.2 Experiments

Experiment 0 A base case scenario where memory is stored in CPU registers is dis-

cussed. Latency of register-memory is measured.

Experiment 1 Latency and throughput of all levels of cache is measured.

Experiment 2 Both the sending and the receiving threads are pinned to a single core

(with ID 0).

Experiment 3 The sending and the receiving threads are pinned to two di↵erent cores

on the same chip (with IDs 0 and 1).

Experiment 4 The sending and the receiving threads are pinned to cores on two

di↵erent chips (with IDs 0 and -1).

4.2.1 Cycle-Level Experiments

Two cycle-level experiments were designed to be executed within the scope of this

project. The benchmarking tools described in section 2.3 were not used because they

do not take timer interrupts and other events that take place in a real-world setting into

account. The experiments were created to receive values of latency and throughput of

di↵erent levels of memory to be applied to the model described earlier.

4.2.1.1 Experiment 0

Experiment 0 is used to measure latency of CPU registers. In Experiment 0 a variable

register long x is declared to be placed into one of the registers. A di↵erent variable

long y is created, but not as a register-variable. Then, a value of y is assigned to x.

The amount of time that these three operations take is measured. It is considered to

be latency of CPU registers. Refer to listing 4.1 for a source code of the experiment.

Listing 4.1: Experiment 0: measuring latency of registers

/⇤
⇤ EXPERIMENT 0
⇤
⇤ Measuring l a t ency o f r e g i s t e r s .
⇤/

void exper iment 0 () {
register long x = 10 ;
long y = 0 ;

29

4. EXPERIMENTAL ENVIRONMENT AND EXPERIMENTS

x = y ;
}

4.2.1.2 Experiment 1

Experiment 1 is utilised to measure latency of cache and main memory. It is a simple

write-read programme that writes data into a cache and reads it back. A source code

of Experiment 1 may be found in listing 4.2. An array long *testAr is created and

aligned. It is used to store data that is written and read. Then, in a for-loop n, all

elements are written to the array, and right after that they are read back. Measuring

the amount of time that these operations take allows to find the write-read cost of a

cache. All allocated memory is then freed and the function is terminated.

Listing 4.2: Experiment 1: measuring latency of cache

/⇤
⇤ EXPERIMENT 1
⇤
⇤ Measuring cyc l e� l e v e l l a t en cy .
⇤/

void exper iment 1 (int n) {
// Al igned array f o r manipu la t ing data
long ⇤ te s tAr = a l i g n l o n g a r r a y (s izeof (long) ⇤ n) ;
long testLong = 0 ; // 4 by t e s o f data
int i ;

// Write and read 1 by t e n t imes
for (i = 0 ; i < n ; i++) {

te s tAr [(int) n] = LONG TOADD; // Write 1 by t e
testLong += testAr [(int) n] ; // Read 1 by t e

}
f r e e (tes tAr) ;

}

These experiments require very high level of precision since they deal with cases that

can last for only a few nano-seconds. Special care was taken to prepare the experimental

environment, which is described in the sections of this chapter above.

30

4.2 Experiments

4.2.2 Application-Level Experiments

Similarly to the “Client – Server” experiment conducted in [2, p. 63], all application-

level experiments were modelled as client – server integer addition programmes. By per-

forming such simple arithmetic operation, data can be communicated between threads,

yet its implementation is not di�cult. Three applications for three di↵erent patterns

of inter-thread communication in the multi-core environment (as described in section

3.1) were developed.

4.2.2.1 Experiments 2 – 4

Source code of all of these three experiments is practically identical. These experiments

measure latency in three types of inter-thread communication, as described in section

3.1. A listing of one of the application-level experiments where two threads are assigned

to the same core (Experiment 2) may be found in appendix F. All experiments are

described by three functions: an entry function and two functions that are executed by

POSIX-threads. Refer to figure 4.3 for a visual description of the interaction between

threads in an application-level experiment, Experiment 3 is taken as an example. An

array testAr of type long and of size n is created as the first stage in the entry function

void experiment 2(int n); the entry functions for Experiment 3 and Experiment 4 are

called void experiment 3(int n) and void experiment 4(int n) respectively. As was

discussed in section 4.3.1, the arrays that are shared between threads are allocated

with cache line alignment. A mutex is then initialised. This synchronization primitive

is used to synchronise access to the shared array. A function pthread yield(3) is utilised

to force the writing thread to relinquish the CPU.

The first thread that plays a role of a writer is opened in the entry function, but,

before it can be created certain, information needs to be wrapped in a structure so that

it can be passed to a function that is to be executed from the new thread. Such “walk-

around” must be used because the pthread create()1 function that has to be called to

create a new POSIX-thread can only take a single argument that can be passed to a

function that is executed in the thread. Refer to a listing 4.3 for the definition of the

structure. It stores the following information: 1) the ID of an experiment; 2) the size

1
http://man7.org/linux/man-pages/man3/pthread_create.3.html

31

http://man7.org/linux/man-pages/man3/pthread_create.3.html

4. EXPERIMENTAL ENVIRONMENT AND EXPERIMENTS

Figure 4.3: A diagram showing the interactions between threads in Experiment 3

of data that is handled in the current iteration of the experiment; 3) a pointer to the

array that is shared between threads.

Listing 4.3: A structure used to pass multiple arguments to the pthread create() function

/⇤
⇤ S t ruc tu re used f o r a wrapper func t i on used in p t h r ead c r ea t e .
⇤/

struct argStructType {
int exper imentId ; // ID of an experiment .
int n ; // S i z e o f data handled in the experiment .
long ⇤ tes tAr ; // Pointer to a shared between

// threads s t r u c t u r e .
} ;

The structure is passed to the thread where it is unwrapped at the entry to the

function that is run in the thread void *e2 pthread main1(void * argStruct); functions

that are run from the writing threads in the Experiment 3 and the Experiment 4

are called void *e3 pthread main1(void * argStruct) and void *e4 pthread main1(void

* argStruct) respectively. The mutex is then locked.

The second thread is created from the function that is run in the first thread void

*e2 pthread main2(void * argStruct); functions that are run from the reading threads

32

4.2 Experiments

in the Experiment 3 and the Experiment 4 are called void *e3 pthread main2(void *

argStruct) and void *e4 pthread main2(void * argStruct) respectively. After that data

is written into the shared array (by the first thread), and the mutex is unlocked in the

first thread.

Similarly, the wrapped structure is passed to the second thread when it is created.

The structure is unwrapped at the entry to the thread function, the mutex is then

locked. Now when the mutex is locked and the first thread is prevented from accessing

the shared data, contents of the shared array are read by the “reader” (second) thread.

The mutex is then unlocked in the second thread. Finally, both threads are joined

by calling the pthread join() function for each thread. Then, memory is freed and the

mutex is destroyed.

4.2.3 Organisation of Experiments

The experiments are run with arrays up to 224 ⇤ 8 = 134217728 bytes (128 MB) in size.

Such upper bound was chosen because it is larger than the Level 3 cache size in the

Xeon E5-2695 v2, which is the size of the largest cache available across the systems

used for executing the experiments. This figure is important because once the bu↵er

contains more data that can fit into the largest cache, data is written into main memory,

and caches no longer have impact on the speed of execution. Running experiments that

share more data that can fit in the caches allows to measure latency of accessing main

memory as well.

Listing 4.4: Function for choosing the length of an experiment

long c a l c u l a t e n (long n) {
#ifde f MOREEXPERIMENTS

// Run a l o t o f exper iments
i f (n < 100) {

n ⇤= 2 . 0 ;
} else i f (n > 100 && n < 1000) {

n += 20 ;
} else i f (n > 1000 && n < 10000) {

n += 200 ;
} else i f (n > 10000 && n < 100000) {

n += 2000 ;
} else i f (n > 100000 && n < 1000000) {

n += 20000;
} else i f (n > 1000000 && n < 10000000) {

33

4. EXPERIMENTAL ENVIRONMENT AND EXPERIMENTS

n += 200000;
} else i f (n > 10000000 && n < 100000000) {

n += 2000000;
} else {

n ⇤= 2 . 0 ;
}
return n ;

#else
// Or j u s t mu l t i p l e a number o f b y t e s
// in the i t e r a t i o n by two .

return n ⇤ 2 . 0 ;
#endif
}

The value of the only parameter – the size of the array shared among threads – is

calculated in a function calculate n(long n) that may be found in the file test env.c1.

This function ensures that samples of latency are taken uniformly. Refer to listing

4.4 for a source code of that function. If a constant MORE EXPERIMENTS is not

defined, measurements are taken for the array of the size that is calculated as being a

power of 2 (return n * 2.0).

Listing 4.5: A function for assigning a thread to a particular processor core

// Pin thread to a p a r t i c u l a r core
int p i n t h r e ad t o c o r e (int core Id) {

int num cores = sys con f (SC NPROCESSORS ONLN) ;
i f (co re Id < 0 | | core Id >= num cores)

return EINVAL;

cpu s e t t cpuset ;
CPU ZERO(&cpuset) ;
CPU SET(coreId , &cpuset) ;

p thread t cu r r en t th r ead = p th r e a d s e l f () ;
return p t h r e a d s e t a f f i n i t y np (cur rent thread ,

s izeof (c pu s e t t) , &cpuset) ;
}

A function int pin thread to core(int coreId)2 for assigning threads to particular

processor cores was also designed and developed. Refer to listing 4.5 for a source code

1
https://github.com/Hollgam/cache-mt/tree/master/src/test_env.c

2
https://github.com/Hollgam/cache-mt/tree/master/src/experiments.c

34

https://github.com/Hollgam/cache-mt/tree/master/src/test_env.c
https://github.com/Hollgam/cache-mt/tree/master/src/experiments.c

4.3 Configuring Experimental Environment

of the function. It utilises standard POSIX functionality that allows to receive a number

of cores available in the system, such information is stored in a variable num cores. A

function pthread seta�nity np() is then used to assign a current thread to a core with

a given by a parameter coreId core.

4.3 Configuring Experimental Environment

The rest of this chapter discusses common issues that are related to all experiments

discussed in the previous section. A number of problems had to be faced while executing

experiments. Solutions to these problems are outlined.

This section describes the experimental environment and outlines main di�culties

that the author had to face to successfully run experiments and receive results that

meet the requirements on precision and accuracy. The experimental environment can

be configured by adjusting values in the file conf.h 1. A number of constants are

declared in that file. By adjusting C’s preprocessor macros that are defined in various

places throughout the solution, one may configure the behaviour of the experimental

environment.

All experiments are executed TIMES RUN EXPERIMENT times. Each run of

the experiment consists of a number of sub-experiments that are executions of the

experiment with specific values given to the variable – size of data shared between

threads, if any – that declares a number of times that each sub-experiment needs to

be run. It is is defined by TIMES RUN SUB EXPERIMENT. The values of these

parameters were chosen through experimentation. Both of these values may be found

in the conf.h file.

4.3.1 Avoiding Overhead from Operating System

Both servers used in the study (refer to section 5.1) work with Linux distributions.

At the time of designing experiments, the server powered by Intel Xeon E5-2695 v2

processors2 was running SUSE Linux Enterprise Server 113; the server based on Intel

1
https://github.com/Hollgam/cache-mt/tree/master/src/conf.h

2
The server is referred as Xeon E5-2695 v2 in this document, unless stated otherwise.

3
https://www.suse.com/products/server/

35

https://github.com/Hollgam/cache-mt/tree/master/src/conf.h
https://www.suse.com/products/server/

4. EXPERIMENTAL ENVIRONMENT AND EXPERIMENTS

Xeon 51301 was operated by Debian GNU/Linux 72. Both of these distributions are

identical in the areas that are relevant to this project, both of them are powered by

the Linux kernel of version 3 (refer to table 5.1).

Before the design stage an alternative Operating System was also considered: Back-

Track Linux3. This version of Linux focuses on security and network and its authors

claim that it is the “highest rated and acclaimed Linux security distribution to date”.

Usage of this version of Linux can potentially present an environment with less over-

head. The OS on the Xeon 5130 could be reinstalled; a number of tests with BackTrack

Linux were performed by the author on his laptop, but no considerable advantages

compared to Debian GNU/Linux 7 were found. The OS that powers Xeon E5-2695

v2 could not be altered, so a possibility of utilising a di↵erent Linux distribution for

running experiments on that machine could not be considered.

The experimental environment is capable of setting the higher than default priority

for the programme thread. It allows to eliminate overhead caused by the experiments

being rescheduled by the scheduler. This is achieved with the setpriority function4 that

sets the nice value5 [60] of the process. All experiments are assigned with higher than

default priority. Refer to 4.6 for the source code with the call of the function with

passing appropriate arguments.

Listing 4.6: Setting higher priority of the process

int s e t h i g h e s t p r o c e s s p r i o r i t y (void) {
s e t p r i o r i t y (PRIO PROCESS, 0 , �20);
return 1 ;

}

Then, a technique of warming up cache was utilised in the experimental environ-

ment. The “warm-up” is necessary to avoid receiving false data that is obscured by the

interference of cache, as was learnt in the previous project [2]. Without the warm-up,

incorrect time measurements would be received in the experiments, since caches would

be have to be invalidated before being loaded with appropriate data. A few published

1
The server is referred as the Xeon 5130 in this document, unless stated otherwise.

2
https://www.debian.org/releases/wheezy/

3
http://www.backtrack-linux.org/

4
http://linux.die.net/man/3/setpriority

5
A nice utility assigns a process with a particular priority, which gives the process either more or

less CPU-time, compared to other processes registered in the system.

36

https://www.debian.org/releases/wheezy/
http://www.backtrack-linux.org/
http://linux.die.net/man/3/setpriority

4.3 Configuring Experimental Environment

papers were investigated, for example [61], but it was not possible to find a su�cient

number of resources on the ways of performing cache warm-up “intelligently”. The

authors of [61] suggested using heuristics for the warm-up of caches in microprocessors.

The heuristics is received by analysing the number of instructions in each sample of

code. The proposed method for choosing heuristics is reasonable, but it was concluded

that implementation of such technique would not give any noticeable advantage for

running the relatively small-scale experiments designed within the scope of the project.

The “warm-up” is achieved by running one iteration of each experiment once before

actually conducting the experiments, similarly to what is described in a much older

publication [62].

Listing 4.7: Alignment of data

// Return a po in t e r to an a l i gn ed array o f l ong s
long ⇤ a l i g n l o n g a r r a y (int s i z e) {
#ifde f ALIGN DATA

int cacheLine = 64 ⇤ 2 ;
long x = mal loc (s i z e + cacheLine) ;
i f (x == NULL) { // Array f o r manipu la t ing data

p r i n t f (”Error with a l l o c a t i n g space .\n”) ;
e x i t (1) ;

}
return (unsigned long ⇤) ((unsigned long long)

(x + cacheLine) & 0xFFFFFFE0) ;
#else

return malloc (s i z e) ;
#endif
}

Then, all data that is shared among threads and is used in the inter-thread com-

munication is aligned on the initialisation stage. Alignment is done to prevent cache

misses, which a↵ect performance. Panda P.R. in his papers [63] and [64] together

with other researchers discuss the method of alignment, which involves the insertion of

“dummy” data into allocated for a certain variable space. In this project a more sim-

plified approach was taken, where a function receives a pointer to an array of type long

and simply aligns it by a number of bytes that correlate to the size of one cache line.

Refer to listing 4.7 for a snippet of C code that performs alignment of data on both the

Xeon 5130 and the Xeon E5-2695 v2s. A preprocessor directive #ifdef ALIGN DATA

37

4. EXPERIMENTAL ENVIRONMENT AND EXPERIMENTS

checks if a global variable ALIGN DATA is defined, which indicates that alignment of

data must be performed.

Finally, -O0 flag is used when experiments are compiled with the gcc compiler. It

ensures that the lowest level of compiler optimisation is used.

4.3.2 Measuring Interrupts and Minor and Major Page Faults

There are a number of sources of inaccuracy of time measurements. To eliminate

the overhead imposed by them, the occurrence of the following events is monitored

by the experimental environment: minor and major page faults and interrupts. The

occurrence of context switches is not traced because, as was learnt, they always occur

when interrupts take place. None of these events are desired as all of them take relatively

long time to execute and can potentially make low-level experiments invalid.

A page fault can occur when a CPU attempts to access a page that resides in

the virtual address space, but cannot be found in physical memory. Such events are

normally handled by the memory management unit (MMU) making the required page

accessible in physical memory. Attempts to access pages that do not exist are tolerated

as “illegal access errors” and may result in the termination of a programme. There are

two types of page faults: minor and major. Minor page faults occur when the page is

loaded into physical memory, but the MMU has not marked it as being in the physical

memory space. Major page faults happen when the CPU tries to access an address

in virtual memory that does not have a page in physical memory assigned to it. The

reference to a missing page causes the OS kernel to allocate a page and return back to

the MMU. Major page faults have extremely negative impact on the performance of

the system, they are much more expensive than minor page faults and they increase

latency of memory access dramatically. [65]

Another process that regularly takes place in modern-day computers is an interrupt.

It is a signal that is emitted when a certain event needs immediate attention and CPU-

time. Such high-priority events demand currently executed tasks to be interrupted and

scheduled for later execution. When such activity happens, a CPU saves its state and

executes an interrupt handler [66]. After the interrupt handler finishes its execution,

the CPU can continue with execution of the thread that had to be stopped. Interrupts

take noticeable amount of time to be finished and can obscure results of experiments

that require high precision. A number of di↵erent types of interrupts can occur in the

38

4.3 Configuring Experimental Environment

system. Time interrupts can be seen each time the internal clock reaches a certain

value.

Lastly, a context switch (also known as a task switch) is the switching of the central

processing unit from one thread to another. In other words, a context switch1 is a

process of the kernel suspending execution of one process and resuming execution of

another process that had previously been put on pause. Context switches as well as all

aforementioned processes a↵ect multi-threaded programmes [67].

An experiment is thought to be invalid if any page faults or interrupts (and conse-

quently context switches) take place during the run of the experiment. Time measure-

ments in such experiments cannot be accurate. One minor page fault per file that is

read before starting an experiment is allowed: such page faults rise because of opera-

tions that the OS performs when files are read with the fopen()2 function. No sources

that document such behaviour were found, hence it was proven experimentally with

a program test pagefault fopen3. Refer to appendix A for the source code of the pro-

gramme. The output of the programme run on the Xeon 5130 may be seen in a listing

4.8.

Listing 4.8: Results from the experiment that proves that one minor page fault is gener-

ated per file-read

1 s t time /proc / i n t e r r up t s : Before : 209 After : 220
2nd time /proc / i n t e r r up t s : Before : 222 After : 223
1 s t time /proc /iomem : Before : 224 After : 225
2nd time /proc /iomem : Before : 226 After : 227
/proc / i n t e r r up t s changed : Before : 241 After : 244

The programme test pagefault fopen reads files “/proc/interrupts” and “/proc/iomem”,

which are generated by the Linux kernel and are heavily used in this project. A number

of page faults generated across the system is read once before a file is read (written as

a number after “Before:” in the output) and straight after the file is closed (written

as a number after “After:” in the output). A thesis that page faults are generated

only after files are read for the first time was suggested. To check this assumption,

both files used in the experiments are read twice (results measured when the file is

read for the 1st time are marked with “1st time”, when the file file is opened for the

1
http://www.linfo.org/context_switch.html

2
http://man7.org/linux/man-pages/man3/fopen.3.html

3
https://github.com/Hollgam/cache-mt/blob/master/test_pagefault_fopen/pagefaults_

fopen.c

39

http://www.linfo.org/context_switch.html
http://man7.org/linux/man-pages/man3/fopen.3.html
https://github.com/Hollgam/cache-mt/blob/master/test_pagefault_fopen/pagefaults_fopen.c
https://github.com/Hollgam/cache-mt/blob/master/test_pagefault_fopen/pagefaults_fopen.c

4. EXPERIMENTAL ENVIRONMENT AND EXPERIMENTS

2nd time in the same session – “2nd time”). The experiment showed that it is not a

case. Additionally, a di↵erent scenario was tested: when files are changed by the OS

between taking measurements of generated page faults. The results from testing this

scenario are presented in the last line of the output: three page faults are generated

for the file “/proc/interrupts”; however, this figure is not constant for di↵erent files.

A decision was made to disregard results from running experiments where more page

faults are generated than a number of files read for measuring data before the start of

the experiment.

A number of interrupts that occur during the execution of an experiment is de-

rived by subtracting a sum of all interrupts registered in the system before running

the experiment from a sum of all interrupts that can be measured after the experi-

ment has finished. A number of interrupts can be obtained by reading a system file

“/proc/interrupts” that is generated dynamically on request by the kernel of the OS.

A similar logic is applied to obtaining numbers of page faults (both minor and

major) that occur during the execution of experiments: first, one measures a number of

page faults that occurred while running an experiment before the execution of the test,

then after the experiment has finished. Then, a number of page faults generated before

running the experiment is subtracted from a figure that is read after the experiment is

no longer running. Such information is generated for each process that is run by Linux

individually and may be found in a file “/proc/PID/stat”, where PID indicates the ID

of a process.

The files “/proc/interrupts” and “/proc/PID/stat” need to be opened for reading

information about the numbers of interrupts and page faults recorded prior to running

an experiment. The content of these two files is stored in variables of type char * and

it is read after finishing the experiment. It is done in this way to avoid overhead caused

by the analysis of the content of the files for fetching figures of detected interrupts

and page faults. Furthermore, before all experiments are run, the content of the files

is stored into two “extra” char * variables each time before reading data from them.

Such operation is maintained to avoid possible compiler optimisation that may generate

additional page faults and prevent receiving accurate results.

Listing 4.9: Measuring time after timer tick or after recording a timer interrupt

#i f START AFTER == TIMER TICK
// S ta r t a f t e r the t imer t i c k s .

40

4.4 Timing

struct t imespec temp time1 , s t a r t ;

g e t t ime ns (&temp time1) ;
g e t t ime ns (& s t a r t) ;

while (s t a r t . t v s e c == temp time1 . t v s e c &&
temp time1 . tv n s e c == s t a r t . t v n s e c) {

ge t t ime ns (& s t a r t) ;
}

#e l i f START AFTER == TIME INTERRUPT
// S ta r t a f t e r the time i n t e r r u p t
unsigned long long i n t e r r up t s 1 = s e a r c h i n f i l e (

”/proc / i n t e r r up t s ” , ”LOC: ” , 1) ;
unsigned long long i n t e r r up t s 2 = s e a r c h i n f i l e (

”/proc / i n t e r r up t s ” , ”LOC: ” , 1) ;

while (i n t e r r up t s 1 == in t e r r up t s 2) {
i n t e r r up t s 2 = s e a r c h i n f i l e (

”/proc / i n t e r r up t s ” , ”LOC: ” , 1) ;
}
// Ca l cu l a t e the s t a r t time
struct t imespec s t a r t ;
g e t t ime ns (& s t a r t) ;

#endif

To further eliminate a possibility of the Operating System altering the timing re-

sults, a number of other precautions were taken. All experiments may be started after

a timer tick or after a timer interrupt is recorded in the system. The listing 4.9 shows a

piece of code in the experimental environment that is responsible for taking a timestamp

before running an experiment.

4.4 Timing

4.4.1 Measuring Time at Nano-Second Accuracy

One of the most challenging aspects of designing the experimental environment for

running the experiments that are described in this document was finding a way to

measure execution times with enough precision, at a nano-second level. Time can be

measured in either nano-seconds or clock cycles1. A number of options were found and

1
Clock cycle is the amount of time between two adjacent pulses of a processor oscillator.

41

4. EXPERIMENTAL ENVIRONMENT AND EXPERIMENTS

evaluated. This section describes two approaches that were considered.

4.4.1.1 Using clock gettime(3)

The first tool that was evaluated for measuring time was the clock gettime(3)1 function

that is provided in most Linux kernels. It is a monotonic function. It is said to be

capable of providing measurements of time with nano-second accuracy. The figures of

recorded seconds and nano-seconds are stored separately in two 32-bit counters, hence

a “wrap-around” may happen only after many years of the execution time.

The documentation says that CLOCK MONOTONIC provides “Clock that cannot

be set and represents monotonic time since some unspecified starting point”. In other

words, it represents the absolute amount of time elapsed since a certain fixed point

in the past. It is not a↵ected by the system’s clock. CLOCK REALTIME was also

experimented with, but it proved to be less reliable. The reading generated by this

clock can be a↵ected by discontinuous jumps in the system time (e.g. the clock is

adjusted manually).

The documentation2 associated with this function states that it provides highly-

accurate results with nano-second precision. A function get res(3) was used to find

the precision of clock gettime(3) and, indeed, in cases of both machines utilised in the

study clock gettime(3) does support nano-second precision.

No tools are o↵ered to test the accuracy of this function. A custom programme to

check the accuracy of clock gettime(3) was developed. The application test clockgettime3

was written to learn whether the amount of overhead of running this function is con-

stant, i.e. if it is capable of outputting the same amount of nano-seconds when the same

experiment is run multiple times in the same environment setting. Refer to appendix

B for the source code of the programme. This programme calls clock gettime(3) 1024

times and records what is returned by the function in each case in an array. Then, it

outputs di↵erences between the ith and the (i-1)th calls. Refer to 4.10 for an excerpt of

the output generated by this programme.

Listing 4.10: An excerpt from running the test clockgettime programme on the Xeon

5130

1
http://linux.die.net/man/3/clock_gettime

2
http://linux.die.net/man/3/clock_gettime

3
https://github.com/Hollgam/cache-mt/blob/master/test_clockgettime/clock-gettime_

test.c

42

http://linux.die.net/man/3/clock_gettime
http://linux.die.net/man/3/clock_gettime
https://github.com/Hollgam/cache-mt/blob/master/test_clockgettime/clock-gettime_test.c
https://github.com/Hollgam/cache-mt/blob/master/test_clockgettime/clock-gettime_test.c

4.4 Timing

c l o ck g e t t ime () ==
90 85 81 81 81 81 82 84 81 81 81 82 81 84 81 81 82 81 81 84 81
82 81 81 81 84 82 81 81 81 81 85 81 81 81 81 82 84 81 81 81 82
81 84 81 81 82 81 81 84 81 82 81 81 81 84 82 81 81 81 81 85 81
81 81 81 82 84 81 81 81 82 81 84 81 81 82 81 81 84 81 82 81 81
81 85 81 81 81 81 82 84 81 81 81 82 81 84 81 81 82 81 81 84 81
82 81 81 81 84 82 81 81 81 81 85 81 81 81 81 82 84 81 81 81 82
81 84 81 81 82 81 81 84 81 82 81 81 81 84 82 81 81 81 81 (. . .)

As may be noticed, unfortunately, clock gettime(3) did not output the same result

each time it was called in the testing application. It may be explained by the fact that

di↵erent underlying instructions may take di↵erent amounts of clock-cycles in modern-

day CPUs [68]. Hence this function cannot be fully trusted for timing experiments that

demand high precision. Further, this function uses the RDTSC high-frequency timer

in its core, so a more direct approach to use that function straight away was considered

as an alternative. The overhead of running clock gettime(3) is also quite large and is

equal to 81 – 90 nano-seconds, which is a big disadvantage of this method.

4.4.1.2 Using RDTSC/RDTSCP

Due to instability of clock gettime(3) and a relatively large amount of overhead that is

associated with calling that function, the Read time-stamp counter (RDTSC)1 instruc-

tion was chosen as an alternative way to time the experiments. It is an instruction

that on x86 and x86-64 platforms can access the Time Stamp Counter (TSC) 64-bit

register. As with clock gettime(3), the issue of the number reported by RDTSC “wrap-

ping around” is close to being non-existent. The RDTSC instruction always returns

an increased number until it wraps around. However, in case of, for example, a 2 GHz

processor, such behaviour can be seen only after about three centuries.

Listing 4.11: The wrapper function for calling RDTSC with Assembly language

/⇤
⇤ Use RDTSC to measure time at nanosecond
⇤ accuracy (i f i t i s not d i s a b l e d)
⇤ CPUID == 1 � use CPUID;
⇤ CPUID == 0 � do not use CPUID.

⇤/
unsigned long long rd t s c (int CPUID) {

1
http://www.mcs.anl.gov/~kazutomo/rdtsc.html

43

http://www.mcs.anl.gov/~kazutomo/rdtsc.html

4. EXPERIMENTAL ENVIRONMENT AND EXPERIMENTS

unsigned long a , b ;
unsigned long long temp ;
i f (CPUID)

asm v o l a t i l e (”CPUID\ nrdtsc ” : ”=a” (a) ,
”=d” (b) : : ”memory” , ”%ebx” , ”%ecx”) ;

else
asm v o l a t i l e (” rd t s c ” : ”=a” (a) ,

”=d” (b) : : ”memory” , ”%ebx” , ”%ecx”) ;
temp = b ;
temp = (temp << 32) | a ;
return temp ;

}

RDTSC is an Assembly command that loads the current value of the processor’s

time-stamp counter into the EDX:EAX registers [69]. A wrapper function that calls

a piece of inline Assembly code was written. Refer to 4.11 for a listing with a source

code of the function. This function has a single parameter int CPUID, which is a

flag that indicates whether CPUID instruction should be called before invoking the

RDTSC operation. This instruction is called before RDTSC because it prevents out-

of-order execution on modern CPUs (a situation when instructions are executed in a

di↵erent than was programmed order). Invocation of the CPUID command serializes

the instruction queue.

The author of [70] states that a combination of CPUID and RDTSC can provide

constant performance, i.e. the overhead associated with invoking these commands is

constant. A function void test rdtsc(void)1 was built to verify this thesis. Refer to

appendix C for a source code of the function. Similarly to the test that was performed

to verify the accuracy of clock gettime(3), this program calls RDTSC 1024 times. Refer

to figure 4.12 for an excerpt from the output of this application when it was run on

the Xeon 5130. It outputs what is received from the instruction: large numbers (e.g.

21210592467695670), which represent the amount of ellapsed time. The numbers in

square brackets indicate the di↵erences with what was returned from the previous calls

of the RDTSC instruction (e.g. [336]). Despite what is claimed in [70], this excerpt

clearly shows that RDTSC is not capable of providing constant performance on the

Xeon 5130, the test was also executed on the Xeon E5-2695 v2, but the results were

largely the same: the overhead was not constant. It may be a case because of the

1
https://github.com/Hollgam/cache-mt/blob/master/test/src/hr_timer.c

44

https://github.com/Hollgam/cache-mt/blob/master/test/src/hr_timer.c

4.4 Timing

nature of underlying Assembly-commands that take di↵erent numbers of clock-cycles

to execute on modern CPUs. Any other more reliable sources of information on the

nature of RDTSC and its performance could not be found.

Listing 4.12: An excerpt from running the test rdtsc() function on the Xeon 5130

21210592467695670 [3 3 6]
21210592467695994 [3 2 4]
21210592467696318 [3 2 4]
21210592467696642 [3 2 4]
21210592467696972 [3 3 0]
21210592467697296 [3 2 4]
21210592467697626 [3 3 0]
21210592467697950 [3 2 4]
21210592467698274 [3 2 4]
21210592467698604 [3 3 0]
21210592467698928 [3 2 4]
21210592467699252 [3 2 4]
21210592467699594 [3 2 4]
21210592467699918 [3 2 4]
21210592467700242 [3 2 4]
21210592467700566 [3 2 4]
21210592467700890 [3 2 4]
21210592467701220 [3 3 0]
(. . .)

The aforementioned test showed that receiving accurate timing information with

assistance of RDTSC is a complicated undertaking on its own. In addition to the prob-

lem of out-of-order execution of instructions on modern-day CPUs (like those that are

used in the study), the clock speed also varies, which leads to the alteration of timing

results. In older multi-core systems, the rate returned by RDTSC could change di↵er-

ently on di↵erent execution units, as they would adjust their clock speeds according to

the load.

Another possibility was suggested in one of the white paper from Intel on this

topic [71]: the RDTSCP instruction. The main di↵erence between RDTSCP and

the standard RDTSC instructions is that RDTSCP works as a serializing instruction,

i.e. the CPU is prevented from reordering instructions around the call to RDTSCP.

Unfortunately, RDTSCP is available only on new processors, and a number of tests

showed that it could not be run in the experimental environment designed for this

project.

45

4. EXPERIMENTAL ENVIRONMENT AND EXPERIMENTS

4.5 Support for Mac OS

Because a machine powered by Mac OS X could be easily accessed, this Unix-based OS

was also selected as a platform for running the experiments. Most functionality that is

supported by Linux is also available in Mac OS. This assumption was not valid in case

of the clock gettime(3) function. A custom-built timer that imitates the behaviour of

clock gettime(3) was designed and developed in the early stage of this project to extend

support of Mac OS. Its implementation may be found in the file clock gettime mac.c1.

It was speculated that the author’s MacBook Air laptop powered by an Intel i7

processor could also be used for running experiments. Then at a much later stage

of the project the fact that Mac OS does not support assigning threads to particular

cores was discovered. The initial vision of the experimental environment assumed that

it would be cross-platform and could be used for running experiments on both Linux-

based systems and on Mac OS X. After it was learnt that such vital for the success

of the project functionality cannot be achieved by using the standard tools o↵ered on

Mac OS, a decision to abandon the cross-platform support was taken. As a result, the

proposed system is only partially cross-platform.

4.6 Measuring Duration of Interrupts and Minor Page

Faults

It is important to know the duration of one time interrupt and a minor page fault,

since these events have a big a↵ect on performance of a system that is engaged in inter-

thread communication. At first an attempt to retrieve information about the values

of duration of page faults, context switches, and interrupts was undertaken. No such

data was found for both CPUs used in the experiments.

A programme for testing the duration of an interrupt test time int pf 2 was written.

Refer to appendix E for a listing of the source code of the main function that handles

the experiment. Most supplementary functions that handle measuring time and getting

information on the numbers of recorded interrupts and page faults are described in this

chapter. This application waits until an interrupt is detected and measures a di↵erence

between timestamps taken before and after occurrence of the interrupt. Such operation

1
https://github.com/Hollgam/cache-mt/tree/master/src/clock_gettime_mac.c

2
https://github.com/Hollgam/cache-mt/tree/master/test_time_int_pf

46

https://github.com/Hollgam/cache-mt/tree/master/src/clock_gettime_mac.c
https://github.com/Hollgam/cache-mt/tree/master/test_time_int_pf

4.7 Dependability

is performed 10 times. Similar actions are taken to record the duration of a minor page

fault. Then, the average duration of one interrupt is reported.

4.7 Dependability

This section discusses the aspect of dependability of the proposed solution. This thesis

focuses on the impact of cache on data-intensive multi-threaded application. Pro-

grammes of this type often have high requirements for security and protection of data:

separation of bandwidth in telecommunication systems, accessing data in distributed

databases, etc. Speed is an important factor for achieving stable performance of such

systems, and the impact of the cache needs to be predictable and quantifiable.

The outlined in the section experiments run directly on the hardware. Execution

times are measured by extracting information straight from CPU registers. Therefore,

measured data is dependable, provided that the used hardware does not malfunction.

Boolean logic is used to test modern-days microprocessors and the probability of using

a faulty processor is very small, as the fault tolerance of CPUs is extremely high. Two

processors were used to run the experiments, one of which powers a supercomputer in

a respected research institute, so the chance of operating a faulty processor becomes

even lower.

All experiments were run ten times and the final results are generated from calcu-

lating the average values from all runs of the experiments. Moreover, special care was

taken to avoid interference from the OS by detecting interrupts and page faults, warm-

ing up caches, and starting each experiment after a timer tick / interrupt is recorded.

47

5

Conducting Experiments

This chapter gives an outline of the process of conducting cycle- and application-level

experiments that are described in the previous chapter. It provides a detailed descrip-

tion of what needs to be done to run the described experiments on the Xeon 5130 and

Xeon E5-2695 v2 processors. If a reader wishes to replicate the study, the content of

this chapter will give a detailed description on how to do that. It starts from giving a

description of the hardware that was used in the project. It also lists main constraints

that had to be faced while running the experiments.

5.1 Hardware

The faculty of Computer Science in the National University of Ireland, Maynooth pro-

vided access to a machine powered by one Intel Xeon 5130 dual-core processor. Rights

to SSH into the computer and use it for this research were also given. Additionally, the

Ireland’s High-Performance Computing Centre (ICHEC)1 o↵ered to create an account

on their fionn3 server. That server has 320 nodes (7680 cores; 20 TiB RAM) and each

node contains 24 (2x12) Ivy Bridge CPU cores that are powered by Intel Xeon E5-2695

v2 CPUs. Fundamentally, the processors utilised in the machines are similar, but they

exhibit di↵erent levels of support to varies technologies. For example, the Xeon E5-

2695 v2 supports the RDTSCP instruction, and the Xeon 5130 does not. Moreover,

Intel Xeon 5130 is 7 years older than Intel Xeon E5-2695 v2 and they have a number

1
https://www.ichec.ie/

48

https://www.ichec.ie/

5.1 Hardware

Table 5.1: Description of the processors used in the study

Intel Xeon 5130 (NUIM) Intel Xeon E5-2695 v2 (ICHEC)

Server IBM System x3550 -[797841Y]- Fionn1

Launch year 2006 2013

Lithography 65 nm 22 nm

Number of cores 4 24

Clock speed 2 GHz 2.4 GHz

L1 cache size 32 KB 32 KB

L2 cache size 4 MB 256 KB

L3 cache size None 30 MB

Cache line size 64 B 64 B

Linux version 3.2.0-4-rt-amd64 3.0.74-0.6.6-default

of vital di↵erences. Such di↵erences are beneficial for the analysis of results obtained

in the project. A table 5.1 outlines main characteristics of both machines.

No CPU-specific specification for both processors used in the study (e.g. cache la-

tency times) is available from Intel. The publicly-available software developer manual

(especially chapter 11 in that document) was used for reference [1]. Through experi-

mentation and referring to a resource that discusses CPUs from the Intel Xeon 5600

processor family with a similar to what is used in the study architecture [72], layout

diagrams were produced for both the Xeon 5130 and the Xeon E5-2695 v2. The figure

3.1 outlines the design of the Intel Xeon 5130 processor. This is a multi-chip processor

that has two CPUs. All cores have private Level 1 caches, all chips have private Level 2

caches. This processor does not have a shared Level 3 cache. Two chips are connected

by a QPI (QuickPath Interconnect) point-to-point processor interconnect bus [73].

The diagram 5.2 represents all main components of the Intel Xeon E5-2695 v2 CPU.

This CPU has 24 cores, each core has private L1 and L2 caches, each of two dies has

a rather big 30 MB L3 cache. The cores of this processor are also connected by a QPI

bus.

In both cases the write-through (WT) cache is considered. Obtaining the exact

figures for latency and throughput of di↵erent caches that are used in these processors,

that can be supported by a published resource, proved to be impossible. The only

o�cial document from Intel [74] that could be found reports latency for the processor

49

5. CONDUCTING EXPERIMENTS

Figure 5.1: Diagram of the layout of Xeon 5130

Core i7 and the processor family Xeon 5500. The Xeon 5500 CPU is relatively similar to

the Xeon 5130, yet it is three years newer and it works on much higher frequencies and

instead of two cores it includes up to four hyper-threaded cores [75]. The cache itself

is fundamentally di↵erent, as processors of that type have Intel Smart Cache-enabled

caches [76].

Figure 5.2: Diagram of the layout of Xeon E5-2695 v2

The machine powered by Xeon 5130 consists of a single node, but the ICHEC’s

server is a workstation that consists of a number of units of computation. To be

50

5.2 Constraints

able to run the designed experiments, all tests had to be run on a single node. The

experiments are relatively small, so any noticeable advantages could not be achieved

by running experiments on multiple nodes. Both the Xeon 5130 and the Xeon E5-2695

v2 support the Intel Hyper-Threading Technology (Intel HT Technology) that allows

an execution core to function as two logical processors. This technology was disabled

on the Xeon 5130 to improve accuracy of achieved results. Disabling this feature could

not be requested on the Xeon E5-2695 v2, although it is speculated that is is disabled

by default.

5.2 Constraints

The designed experiments are constrained by a number of factors. Accuracy of results

depends on isolation of processes/threads that belong to the run experiment and ability

to terminate as many unnecessary processes as possible. Experiments are run from a

Linux terminal, which allows to eliminate overhead caused by a GUI and other support-

ing system tasks, but the commands are executed with SSH that imposes additional

overhead. The experiments are executed on hardware that was provided by the hosting

university, access to more sophisticated and advanced machines could not be granted

due to financial and bureaucratic reasons. All of these constraints were considered

during the stage of designing the experimental environment and the experiments.

5.3 Experiments

A series of experiments were designed in the scope of the project. They are described

in section 4.2. This section outlines how they can be run in the developed experimental

environment and how results can be collected.

5.3.1 Running Experiments on Servers

All experiments were run from the terminal window on Mac OS X Mavericks. Both

machines could be accessed by using the SSH protocol. Refer to figure 5.3 for an image

of the Terminal window with typed in commands that are required to SSH into the

Xeon 5130, enter the directory with the source code of the experimental environment

and the experiments, compile the code and run it. One may observe a make command

51

5. CONDUCTING EXPERIMENTS

used to run the experiments. A makefile was created to optimise the process of running

required experiments. Refer to appendix G for a source code of the file. This makefile

can be used on both Linux-based Operating Systems and on Mac OS.

Figure 5.3: Commands required to SSH into the Xeon 5130 and run the experiments

In case of the Xeon E5-2695 v2, since that machine has multiple nodes, the experi-

ments had to be scheduled to be run on a single node. Refer to the Listing 5.1 for the

exact command used to schedule a job. This command was derived after reading docu-

mentation available at [77]. The qsub command is utilised to explicitly send a job to a

given queue. The argument -A nuim01 defines the account string associated with the

job. Then, the argument -l nodes=1:ppn=24 specifies the resources that are required

by the job, in this case one node and 24 units of computation associated with the node

are asked. The walltime=0:29:00 mentiones the maximum amount of time that the

job can be run for, in this case it says that the job can be run for the maximum of 29

minutes. Lastly, the argument -I means that the new session needs to be interactive

(with access to issuing new commands via the command prompt).

Listing 5.1: Command to schedule a job on one node in the Xeon E5-2695 v2

qsub �A nuim01 � l nodes=1:ppn=24 wal l t ime =0:29:00 �I

52

5.3 Experiments

Files with source code can be copied onto the servers and back by the secure copy

command scp. Measured data can then be analysed on the local machine.

5.3.2 Execution of Experiments

When the experimental environment is compiled, the experiments are ready to be run.

All experiments could be executing by running the compiled experimental environment

and passing a single argument: a ID of an experiment. For example, a command ./test 2

will run the Experiment 2. When experiments are executed, di↵erent information may

be outputted. A level of details in the information shown to a user may be configured by

defining variables DEBUG and DETAILED DEBUG (by default defined in the conf.h1

file). If a variable SHOW RESULTS is defined, the summary of results from running

the experiments is also outputted onto the screen.

To continue, the experimental environment could not be prepared to support com-

pletely free from the impact of the Operating System experiments. It was decided to

produce two CSV files for each experiment. One file with filtered data and another

one with unfiltered data. Files are named as “CPU TYPE-EXPERIMENT-RUN.csv”,

where CPU indicates a type of CPU that an experiment was run on (e.g. “xeon”),

TYPE shows the type of data stored in the file (can be either “clean” for filtered data

or “dirty” for unfiltered data), EXPERIMENT gives the ID of the experiment, and

RUN shows a run of the experiment (if an experiment is run more than once, individ-

ual CSV files are generated for each run). All files are placed in a results folder. They

present quantitative information gathered before and after running experiments and

mention numbers of any interrupts and minor and major page faults detected while

executing the experiments. Files with filtered data contain timing results only from

running those experiments that were not interrupted by interrupts or page faults, i.e.

if such unwanted processes were detected during execution of all runs of an experiment,

its duration is noted as “0”.

Refer to table 5.2 for a sample of a file that contains filtered data for an experiment

that was run for a selection of data exchanged between two threads, starting from

0 bytes (for calculating overhead imposed by the OS) and finishing with 128000064

bytes of data exchanged between two threads (shown in a column N). Each test in the

1
https://github.com/Hollgam/Impact-of-cache-on-multi-threaded-programmes/blob/

master/test/src/conf.h

53

5. CONDUCTING EXPERIMENTS

Table 5.2: A sample of a CSV file with filtered data

N Time TimeMin 1.INT 1.PFMIN 1.PFMAJ 2.INT ... 10.INT 10.PFMIN 10.PFMAJ

0 581742 581742 0 6 0 0 ... 0 2 0

8 591849 581742 0 0 0 0 ... 0 2 0

16 583742 581742 0 0 0 0 ... 0 2 0

...

128000064 0 581742 38 31253 0 38 ... 37 31253 0

experiment is run ten times. The duration presented in the second column Time is

an average of duration of each of ten tests. If reported in the file data is filtered, only

those tests that qualify for being “uninterrupted” are taken into account. Information

about recorded interrupts, minor page faults, and major page faults is recorded for

each sub-experiment (run with a specific value given to the parameter – the amount

of exchanged data) of the experiment in columns (N.INT, N.PFMIN, and N.PFMAJ

respectively, where N indicates an ID of the test). It could be observed that tests are

a↵ected from overhead of the OS. If one looked at the last row in the sample, it is

apparent that tests with a large amount of data exchanged between threads (in this

case 128 MB) do indeed su↵er from large numbers of interrupts and minor page faults.

5.3.3 Cycle-Level Experiments. Experiments 0 and 1

Experiment 0 and Experiment 1 were executed to provide cycle-level measurements.

The RDTSC instruction was used to measure time because, as was shown in 4.4.1, it

is more reliable than clock gettime(3). However, received results are unrealistic and

unsatisfactory. It may be speculated that due to the thread scheduling performed

by the Operating System, the RDTSC instruction is executed out of order, before

entering the loop where data is written and read (refer to listings 4.1 and 4.2). Usage

of clock gettime(3) resulted in the same behaviour.

Almost no di↵erences in data marked as filtered and unfiltered could be found, all

measurements were obscured by the overhead caused by the OS. Hence it was accepted

that no accurate data can be collected by running the designed cycle-level experiments.

A decision was made to use one of the benchmarks described in section 2.3. After

evaluating all tools listed in that section and their applicability to measuring latency

in the given laboratory environment, lmbench [78] was chosen as the most suitable

suite. Running experiments with this benchmark is a complicated undertaking. The

54

5.3 Experiments

benchmark has not been updated since the end of 1990’s and little documentation is

available. It is an open-source product that used to be supported by Intel, but the

source code is di�cult to interpret.

One of the benchmarks available in the lmbench suite lat mem rd1 was utilised as a

tool for measuring latency of memory and cache [79]. The instructions that were given

in [79] did not work on the servers used for running experiments as no output could be

gathered due to unknown reason. An attempt was made to run the full benchmark on

the Xeon 5130. It tests all aspects of the system. The problem with the tool is that it

asks a number of questions about hardware and some of them could not be answered

with full certainty, since information that would allow to provide answers could not

be accessed. A number of educated guesses were taken and a summary of results was

received.

Working with the tool on the Xeon E5-2695 v2 was much more complicated. Because

of the set-up used in the Xeon E5-2695 v2, it is not possible to run interactive sessions

for more than 29 minutes. As a results, no summary of results could be received, as

it is outputted on the screen. A alternative was found: a bash script was written that

allows to redirect output into a textual file and send a summary via email. Refer to the

Appendix D for the source code of the script. A large number of attempts to configure it

and make the benchmark run successfully had to be taken. Because of di↵erent reasons

the job would be terminated before it can finish its execution. Refer to listing 5.2 for an

example of an error message that would be returned after the termination of the script,

in this case the job could not be finished because it timed out. Due to an unknown

problem, a few times the job also terminated from occurrence of a segmentation fault.

In an attempt to overflow the allowed hard disk space, it would cause a core dump.

Examination of the source code of the benchmark did not lead into finding the reason

for such problem.

Listing 5.2: The error message caused by termination of lmbench on the Xeon E5-2695

v2

PBS Job Id : 174345. s e r v i c e 1 . cb3 . i ch e c . i e
Job Name : lmbench
Exec host : r1 i7n3/0+r1 i7n3/1+r1 i7n3/2+r1 i7n3/3+r1 i7n3/4+r1 i7n3
/5+r1 i7n3/6+r1 i7n3/7+r1 i7n3/8+r1 i7n3/9+r1 i7n3/10+r1 i7n3/11+ r 1 i
7n3/12+r1 i7n3/13+r1 i7n3/14+r1 i7n3/15+r1 i7n3/16+r1 i7n3/17+ r1 i7n

1
http://www.bitmover.com/lmbench/lat_mem_rd.8.html

55

http://www.bitmover.com/lmbench/lat_mem_rd.8.html

5. CONDUCTING EXPERIMENTS

3/18+ r1 i7n3/19+r1 i7n3/20+r1 i7n3/21+r1 i7n3/22+r1 i7n3 /23
Aborted by PBS Server
Job exceeded i t s wal l t ime l im i t . Job was aborted
See Administrator for help
Ex i t s t a t u s=�11
r e s ou r c e s u s ed . cput =04:59:34
r e s ou r c e s u s ed .mem=46238200kb
r e s ou r c e s u s ed .vmem=46363608kb
r e s ou r c e s u s ed . wal l t ime =05:00:36

However, certain data could be measured. Lmbench runs tests on memory by

varying its stride. Examining the source code revealed that the benchmark controls two

nested for-loops. The outer loop changes the stride size, the inner loop varies the array

size. For each array size, the benchmark creates a ring of pointers that point forward

one stride. Nevertheless, information about memory latency for di↵erent values of the

stride parameter could not be extracted due to time limitations and lack of support

from creators of lmbench. Much later, close to the end of the project, an undocumented

and unlisted script cache was found in the distribution of lmbench. That application

was then used to receive information about latency of cache and main memory.

5.3.4 Application-Level Experiments. Experiments 2 – 4

Running application-level experiments was less complicated and more straight-forward

than execution of the cycle-level experiments. For measuring duration of the application-

level experiments clock gettime(3) was used because it outputs information about the

system-wide clock, and not the data that is dependant on CPU cores. Even though it

is less stable than the RDTSC instruction (which is core-dependant), the accuracy of

the tool used for timing is not crucial on the application level. All experiments also

produced both filtered and unfiltered data.

56

6

Results

This chapter introduces results that were measured from all five programmes, both

cycle- and application-level experiments. All reported results are based on ten runs

for all bu↵er sizes. There are multiple figures in the chapter, some of them cannot be

rendered on the pages where they are referenced due to their large sizes.

6.1 Cycle-Level Experiments

6.1.1 Experiment 0

As identified in section 4.3, it was learnt through running experiments that a number of

page faults cannot be avoided for even the shortest experiments. Gathering results that

are not a↵ected by the processes that take place in the OS proved to be impossible in

the given environment. The act of reading the interrupts count generates page faults.

The base Experiment 0 showed that on average accessing data from a CPU register

takes 349 clock-cycles.

6.1.2 Experiment 1

Refer to figures 6.1 and 6.2 for the graphs where unfiltered and filtered (respectively)

data measured by running Experiment 1 on the Xeon 5130 is plotted. Filtered data

indicates results that are not a↵ected by overhead of the OS; unfiltered data reports

measurements as they are seen in the environment, including overhead. On these graphs

the x-axes represent the numbers of bytes transferred using the array testAr. Data is

written/read in a form of long words, which are 8 bytes each, on both systems used in

57

6. RESULTS

the project. The value is defined by the argument n that is passed to the experiment

function. The y-axes plot how much time (measured in clock-cycles) it takes to write n

bytes into memory and subsequently read them from memory. Detailed filtered results

of first three runs of all iterations of the experiment with an indication of the numbers

of interrupts and minor page faults that were recorded while running the experiment

in this setting may be found in appendix J.

Figure 6.1: Xeon 5130: data copying times (filtered data, Experiment 1)

Figures 6.3 and 6.4 are similar to graphs 6.1 and 6.2. They also plot filtered and

unfiltered data (respectively) measured from running Experiment 1 on the Xeon 5130,

but they focus on the results of running the experiment with 8 <= n <= 400064. The

relative parts of the graphs, which are “zoomed in” are outlined by red rectangles on

the figure 6.1 and 6.2.

Refer to figures 6.5 and 6.6 for the graphs where unfiltered and filtered (respectively)

data measured by running Experiment 1 on the Xeon E5-2695 v2 is plotted. As in the

case of graphs showing results of running this experiment on a di↵erent machine, in

these graphs the x-axes represent numbers of bytes written into the array testAr. The

value is defined by the argument n that is passed to the experiment function. The

y-axes plot how much time (measured in clock-cycles) it takes to write n bytes into

58

6.1 Cycle-Level Experiments

Figure 6.2: Xeon 5130: data copying times (unfiltered data, Experiment 1)

memory and subsequently read them from memory. Again, detailed filtered results of

first three runs of all iterations of the experiment with an indication of the numbers of

interrupts and minor page faults that were recorded while running the experiment in

this setting may be found in appendix K.

Data that was measured on the Xeon E5-2695 v2 was especially “noisy”. It may

be caused by the fact that, compared to the Xeon 5130, it is a much more complicated

machine where many more processes take place. For n >= 33600064, the amount of

interrupts and minor page faults generated in the system was so large (at least 4 minor

page faults in each run) that all runs of the experiment were seen as “overly-noisy”

data and could not filtered, i.e. all of them are marked as having t = 0, where t is

59

6. RESULTS

Figure 6.3: Xeon 5130: data copying times, where 8 <= n <= 400064 (filtered data,

Experiment 1)

execution time.

Figures 6.7 and 6.8 are similar to graphs 6.5 and 6.6. They plot filtered and unfil-

tered data (respectively) measured from running Experiment 1 on the Xeon E5-2695

v2, but they focus on the results of running the experiment with 8 <= n <= 400064.

The relative parts of the graphs, which are “zoomed in” are outlined by red rectangles

on the figure 6.5 and 6.6.

A couple of “big spikes” and a number of “smaller spikes” may be seen on all graphs

described in this section 6.1, these abnormalities may be explained by the occurrence of

interrupts and page faults that could not be filtered out, i.e. they were not only caused

by the only unavoidable process that could be proven as such that generated minor

page faults opening files and thus were caused by other processes run by the OS. On a

smaller scale, where a small amount of data is shared between threads (< 1000 bytes),

such behaviour may be explained by the fact that data is fetched from cache in pieces

of information that are dividable by the size of a cache line. Also, one may argue that

because it was not clear if hyper-threading is disabled on the Xeon E5-2695 v2, it may

have had an impact as well. The experiments were run multiple times, but each time

60

6.1 Cycle-Level Experiments

Figure 6.4: Xeon 5130: data copying times, where 8 <= n <= 400064 (unfiltered data,

Experiment 1)

Figure 6.5: Xeon E5-2695 v2: data copying times (filtered data, Experiment 1)

61

6. RESULTS

Figure 6.6: Xeon E5-2695 v2: data copying times (unfiltered data, Experiment 1)

such abnormalities could not be isolated out.

In the end, the testing environment could not be configured to remove all overhead

caused by the Operating System and all other processes that are executed when cycle-

level experiments are run. Information on latency of cache and main memory was

measured with lmbench, as described in the following section.

6.1.3 Measuring Latency of Cache with lmbench

The lmbench tool reports that the Xeon 5130 machine has 0.5 ns timer accuracy and

the Xeon E5-2695 v2 has 0.25 ns timer accuracy. Together with the chief technician of

the faculty the author examined the source code of lmbench, which allowed to evaluate

62

6.1 Cycle-Level Experiments

Figure 6.7: Xeon E5-2695 v2: data copying times, where 8 <= n <= 400064 (filtered

data, Experiment 1)

Figure 6.8: Xeon E5-2695 v2: data copying times, where 8 <= n <= 400064 (unfiltered

data, Experiment 1)

63

6. RESULTS

methods that are used in the benchmark. This evaluation revealed that it was not

possible to configure the way the programme chooses its stride for “jumping” between

data samples. The stride value is important as it allows to configure the size of the

bu↵er that is used in the benchmark; a correct value of this parameter will make sure

that no levels of memory can be “jumped over”.

Figure 6.9 shows results of running lat mem rd on the Xeon 5130. The x-axis

represents the amount of data that is written into memory, the y-axis shows how

many nano-seconds writing that data into memory takes. This plot shows how latency

increases when the amount of data written into memory approaches the size of Level 2

cache, when data has to be written into main memory (more data is exchanged between

threads that can fit into cache), the graph starts to flatten out.

Figure 6.9: Xeon 5130: latency of cache, measured with lmbench

Figure 6.10 shows results of running lat mem rd on the Xeon E5-2695 v2. Similar to

the figure 6.9, the x-axis represents the amount of data that is written into memory, the

y-axis shows how many nano-seconds writing that data into memory takes. Similar to

figure 6.9, one can see a “jump” when the amount of data exchanged between threads

approaches the size of Level 3 cache, then it gradually flattens out, as data is written

into main memory at that stage.

As was described in section 5.3.3, lmbench was di�cult to operate. Mixed results

were received. However, when the ./cache application was discovered, it became possi-

ble to verify assumptions made by running the lat mem rd benchmark. Refer to table

64

6.2 Application-Level Experiments. Experiments 2 – 4

Figure 6.10: Xeon E5-2695 v2: latency of cache, measured with lmbench

Table 6.1: Latency of cache and main memory as reported by lmbench

L1 cache L2 cache L3 cache Main memory

Xeon 5130 1.5 7.0 None 100.0

Xeon E5-2695 v2 1.25 3.75 15.5 60.0

6.1 for results received from executing the ./cache programme. Close examination of

the figures 6.9 and 6.10 and data presented in Appendix L shows that both benchmarks

indicate the same values of latency of cache and memory. One may notice “jumps” when

the sizes of levels of cache are reached on the graphs.

Results achieved by executing cycle-level experiments allowed to derive values of

latency in two distinctly-di↵erent environments that are used in chapter 7 to discuss

the model presented in chapter 3.

6.2 Application-Level Experiments. Experiments 2 – 4

Figures 6.11 and 6.12 show unfiltered data measured through running three application-

level experiments on the Xeon 5130 and the Xeon E5-2695 v2. In both cases, the x-axis

represents the amount of data that is exchanged between threads, the y-axis shows the

throughput (n/t, where n indicated the amount of data exchanged between threads

and t represents the amount of time spent of exchanging the data).

65

6. RESULTS

Figure 6.11: Xeon 5130: throughput of copying data in inter-thread communication

(Experiments 2-4)

Both graphs exhibit decrease of throughput when the amount of shared between

threads data exceeds 33600064 bytes (32.0435 MB). The fact that such behaviour was

observed and on both systems with di↵erent architectures was not anticipated. The

graph 6.12 also shows “waves” after reaching the 32.0435 MB mark. It is expected

that all data larger than the size of Level 3 cache (30 MB) should be placed in the

main memory, provided that it is smaller than the size of main memory. Therefore, no

fluctuations could be expected.

As with results achieved by running the cycle-level experiments, detailed unfiltered

results of first three runs of all iterations of the experiments with an indication of

the numbers of interrupts and minor page faults that were recorded while running the

experiments may be found in the following appendices:

66

6.2 Application-Level Experiments. Experiments 2 – 4

Figure 6.12: Xeon E5-2695 v2: throughput of copying data in inter-thread communica-

tion (Experiments 2-4)

• Experiment 2 executed on the Xeon 5130: appendix M;

• Experiment 2 executed on the Xeon E5-2695 v2: appendix N;

• Experiment 3 executed on the Xeon 5130: appendix O;

• Experiment 3 executed on the Xeon E5-2695 v2: appendix P;

• Experiment 4 executed on the Xeon 5130: appendix Q;

• Experiment 4 executed on the Xeon E5-2695 v2: appendix R.

Similar to the cycle-level experiments, running the application-level experiments

within the experimental environment built for this project could not be configured in a

way that would allow to receive accurate and fully-filtered data. Nevertheless, due to the

67

6. RESULTS

Table 6.2: Overhead of inter-thread communication

Experiment 2 Experiment 3 Experiment 4

Xeon 5130 (overhead) 291408 297691 699229

Xeon 5130 (SD) 6320 5095 11694

Xeon E5-2695 v2 (overhead) 413963 415428 1073144

Xeon E5-2695 v2 (SD) 10130 12584 37449

nature of the application-level experiments that were run in the scope of this research,

timing results that together with duration of the actual experiments also incorporate

overhead caused by the operating system, may also be seen as satisfactory. More

specifically, page faults, interrupts and other unwanted processes take considerably less

time than the actual tests. Filtered data may be ignored as it was impossible to find a

way to control the overhead imposed by the OS.

Finally, the overhead of the Operating System was measured for all three cases of

inter-thread communication (described in Section 3.1). Such measurement was done

by executing experiments with no data exchanged between two threads, i.e. only over-

head of creating threads, creating a mutex, joining threads, and freeing memory was

recorded. Each experiment was performed 1000 times and standard deviation (SD) was

also calculated. Table 6.2 gives a summary of the amount of overhead and its stan-

dard deviation (in nano-seconds) of performing the aforementioned operations. The

standard deviation in all cases is not large: 1 – 4%.

6.3 Measuring Duration of Interrupts and Minor Page

Faults

Section 3.2 outlines the equations associated with the model. The duration of interrupts

and minor page faults is measured because such data is needed to parametrise the

model. Measured values are utilised to define Iics and Ipf min. Refer to appendix

H for the output of the programme test time int pf for the Xeon 5130 (measured in

nano-seconds). “Num 1” should be ignored, it is used to avoid compiler optimisation.

Appendix I presents output of the application test time int pf executed on the Xeon

E5-2695 v2. As in the previous case, “Num 1” should be ignored, it is used to avoid

compiler optimisation. This test reported that an interrupt takes more than twice more

68

6.3 Measuring Duration of Interrupts and Minor Page Faults

Table 6.3: Average duration of interrupts and minor page faults

Interrupt Minor page fault

Xeon 5130 (duration) 153694 42666

Xeon 5130 (SD) 175825 2471

Xeon E5-2695 v2 (duration) 322826 21733

Xeon E5-2695 v2 (SD) 17043 3162

time on this processor than on the Xeon 5130: 322826 ns (standard deviation: 17043

ns). Page faults are two times faster if compared to what is observed on the Xeon 5130:

21733 ns (standard deviation: 3162 ns). The results are presented in table 6.3.

It may be observed that on average one interrupt takes 153694 ns (standard devi-

ation: 175825 ns) and one minor page fault takes 42666 ns (standard deviation: 2471

ns). These figures represent unacceptable amounts of time in the case of cycle-level

experiments.

69

7

Evaluation of Results

In this chapter the evaluation is performed in three steps: 1) data measured by ex-

ecuting cycle- and application-level experiments is described visually and the plotted

graphs are discussed; 2) the model is quantified and updated with values applicable to

both processors used in the study; 3) the predicted behaviour of the model is compared

to what was measured in a real-life setting.

7.1 Deriving Parameters in the Model

In all of the experiments the results included page faults and interrupt events, which

obscured the underlying performance data, as discussed in section 6.1. In figures 6.4

and 6.8, one would expect to have “jumps” where written/read data hits the sizes of

levels of cache found in the used hardware, but no such events were registered. Instead,

abnormalities in other places where they were not expected could be observed, as de-

scribed in section 6.1. Cache/main memory latency measurements from lmbench suite

were used instead. Such results may be used to quantify the model that is described in

chapter 3.

7.1.1 Deriving Latency of Cache and Main Memory

Because write-back caches are used, latency of reading data is equal to latency of

writing data, as described in equation 3.6. The equations 7.1 and 7.2 assign measured

values of latency to corresponding parameters of the final equations. Values of latency

are taken from table 6.1. Values are measured in nano-seconds. Cache lines in both

70

7.1 Deriving Parameters in the Model

processors are 64 B in size. The equation 7.1 describes latency of accessing cache and

main memory in the Xeon 5130. The lines in equation 7.1 represent:

1. Applying a measured with lmbench value of L1 cache latency for the Xeon 5130

to the parameters that represent latency of writing and reading data from/to L1

cache.

2. Applying a measured with lmbench value of L2 cache latency for the Xeon 5130

to the parameters that represent latency of writing and reading data from/to L2

cache.

3. Applying a measured with lmbench value of latency of main memory for the Xeon

5130 to the parameters that represent latency of writing and reading data from/to

main memory.

4. Applying measured values of latency for the Xeon 5130 into the cost of writing

the amount of memory that can fit into Level 1 cache.

In this equation latWriteL1 Xeon5130 and latReadL1 Xeon5130 are values of latency

or writing and reading data from Level 1 cache respectively; latWriteL2 Xeon5130 and

latReadL2 Xeon5130 - Level 2 cache; latWriteMem Xeon5130 = latReadMem Xeon5130 - main

memory. l1wXeon5130 and l1rXeon5130 indicate latency of writing and reading data that

can fit into L1 cache respectively. The size of long (quantum of data exchanged) is 8

bytes on a 64-bit Linux system.

1. latWriteL1 Xeon5130 = latReadL1 Xeon5130 = 1.5

2. latWriteL2 Xeon5130 = latReadL2 Xeon5130 = 7

3. latWriteMem Xeon5130 = latReadMem Xeon5130 = 100

4. l1wXeon5130 = l1rXeon5130 = (n/8� n/64) ⇤ 1.5

(7.1)

The lines in equation 7.2 represent:

1. Applying a measured with lmbench value of L1 cache latency for the Xeon E5-

2695 v2 to the parameters that represent latency of writing and reading data

from/to L1 cache.

71

7. EVALUATION OF RESULTS

2. Applying a measured with lmbench value of L2 cache latency for the Xeon E5-

2695 v2 to the parameters that represent latency of writing and reading data

from/to L2 cache.

3. Applying a measured with lmbench value of L3 cache latency for the Xeon E5-

2695 v2 to the parameters that represent latency of writing and reading data

from/to L3 cache.

4. Applying a measured with lmbench value of latency of main memory for the Xeon

E5-2695 v2 to the parameters that represent latency of writing and reading data

from/to main memory.

5. Applying measured values of latency for the Xeon E5-2695 v2 into the cost of

writing the amount of memory that can fit into Level 1 cache.

Names of the parameters in equation 7.2 follow the same convention as in equa-

tion 7.1. However, in case of equation 7.2, because the Xeon E5-2695 v2 also has

Level 3 cache, latency of writing and reading data from that level of cache is noted

as latWriteL3 XeonE5 and latReadL3 XeonE5 for latency of writing and reading data from

Level 3 cache respectively.

1. latWriteL1 XeonE5 = latReadL1 XeonE5 = 1.25

2. latWriteL2 XeonE5 = latReadL2 XeonE5 = 3.75

3. latWriteL3 XeonE5 = latReadL3 XeonE5 = 15.5

4. latWriteMem XeonE5 = latReadMem XeonE5 = 60

5. l1wXeonE5 = l1rXeonE5 = (n/8� n/64) ⇤ 1.25

(7.2)

7.1.2 Applying Sizes of Cache and Memory to the Model

The model contains parameters that indicate sizes of di↵erent levels of memory. The

lines in equation 7.3 indicate:

1. Size of L1 cache in the Xeon 5130.

2. Size of L2 cache in the Xeon 5130.

72

7.1 Deriving Parameters in the Model

These values are taken from the table 5.1, the sizes are indicated in bytes there.

This data is assigned to values lL1 Xeon5130 and lL2 Xeon5130, which indicate sizes of

Level 1 and Level 2 caches in the Xeon 5130 respectively.

1. lL1 Xeon5130 = 32768

2. lL2 Xeon5130 = 4194304
(7.3)

The lines in equation 7.4 outline:

1. Size of L1 cache in the Xeon E5-2695 v2.

2. Size of L2 cache in the Xeon E5-2695 v2.

3. Size of L3 cache in the Xeon E5-2695 v2.

lL1 XeonE5, lL2 XeonE5, and lL3 XeonE5 indicate sizes of Level 1, Level2, and Level 3

caches in the Xeon E5-2695 v2.

1. lL1 XeonE5 = 32768

2. lL2 XeonE5 = 262144

3. lL3 XeonE5 = 30720000

(7.4)

7.1.3 Deriving Amount of Overhead from the OS

The amount of overhead from the OS depends on the kind of inter-thread communica-

tion that takes place. Data is taken from table 6.2. The lines in equations 7.5, 7.7, 7.9,

7.11 represent:

1. Overhead from the OS for Type 1 inter-thread communication on the Xeon 5130.

2. Overhead from the OS for Type 2 inter-thread communication on the Xeon 5130.

3. Overhead from the OS for Type 3 inter-thread communication on the Xeon 5130.

Control1 Xeon5130 and Control1 XeonE5 indicate how many nano-seconds need to

be spent on supplementary processes that take place in Type 1 communication, mea-

sured in Experiment 2. Then, Control2 Xeon5130 and Control2 XeonE5 show the over-

head from the OS in case of Type 2 communication, it was recorded in Experiment

73

7. EVALUATION OF RESULTS

3. Lastly, Control3 Xeon5130 and Control3 XeonE5 outline the amount of overhead gen-

erated by the OS for Type 3 communication, this data was measured by conducting

Experiment 4. Each of these parameters represents a sum of overhead caused by exiting

the writing thread, transitioning to the reading thread, entering the reading thread,

and interference of the OS (e.g. ControlexitTh1 1 Xeon5130 + Controltt 1 Xeon5130 +

ControlenterTh2 1 Xeon5130+I1 Xeon5130). These figures were measured by performing ex-

periments with no data exchanged between threads. Ipf min1 Xeon5130, Ipf min2 Xeon5130,

and Ipf min3 Xeon5130 indicate overhead caused by the occurrence of minor page faults.

Ipf maj1 Xeon5130, Ipf maj2 Xeon5130, and Ipf maj3 Xeon5130 point to the impact of major

page faults. Equations 7.5 and 7.6 show the non-deterministic part of the overhead

from the OS, for both processors.

1. Control1 Xeon5130 = ControlexitTh1 1 Xeon5130 + Controltt 1 Xeon5130

+ControlenterTh2 1 Xeon5130 + Ipf min1 Xeon5130 + Ipf maj1 Xeon5130 = 291408

2. Control2 Xeon5130 = ControlexitTh1 2 Xeon5130 + Controltt 2 Xeon5130

+ControlenterTh2 2 Xeon5130 + Ipf min2 Xeon5130 + Ipf maj2 Xeon5130 = 297691

3. Control3 Xeon5130 = ControlexitTh1 3 Xeon5130 + Controltt 3 Xeon5130

+ControlenterTh2 3 Xeon5130 + Ipf min3 Xeon5130 + Ipf maj3 Xeon5130 = 699229

(7.5)

The lines in equation 7.6, 7.8, 7.10, 7.12 represent:

1. Overhead from the OS for Type 1 inter-thread communication on the Xeon E5-

2695 v2.

2. Overhead from the OS for Type 2 inter-thread communication on the Xeon E5-

2695 v2.

3. Overhead from the OS for Type 3 inter-thread communication on the Xeon E5-

2695 v2.

A similar naming convention is used in the description of overhead for the Xeon

E5-2695 v2. Two minor page faults occurred when this data was collected for all three

types of inter-thread communication (due to opening files, as discussed in section 4.3.1).

No major page faults, and no interrupts/context switches were detected when this data

74

7.1 Deriving Parameters in the Model

was measured. Moreover, analysis of results showed that the occurrence of minor and

major page faults has stable nature and they can be seen as deterministic data.

1. Control2 XeonE5 = ControlexitTh1 1 XeonE5 + Controltt 1 XeonE5

+ControlenterTh2 1 XeonE5 + Ipf min1 XeonE5 + Ipf maj1 XeonE5 = 413963

2. Control3 XeonE5 = ControlexitTh1 2 XeonE5 + Controltt 2 XeonE5

+ControlenterTh2 2 XeonE5 + Ipf min2 XeonE5 + Ipf maj2 XeonE5 = 415428

3. Control3 XeonE5 = ControlexitTh1 3 XeonE5 + Controltt 3 XeonE5

+ControlenterTh2 3 XeonE5 + Ipf min3 XeonE5 + Ipf maj3 XeonE5 = 1073144

(7.6)

These are the average readings of overhead. Closer look at results reported in section

6.2 shows that a number of page faults increases dramatically when memory is written

into main memory (refer to appendices M, N, O, P, Q, and R). More specifically, in case

of the Xeon 5130, instead of two minor page faults per sub-experiment, on average of one

page fault occurs per 4094 B of data exchanged via main memory, for all three types of

inter-thread communication. Therefore, additional pfXeon5130⇤n/4094�(pfXeon5130⇤2)

need to be added to the total amount of overhead, where pfXeon5130 indicates the

duration of one page fault. Duration of two page faults needs to be subtracted, since

this information is already taken into account in equation 7.5.

Similarly, more interrupts and context switches are generated when main memory

is used: on average one interrupt/context switch is registered for each 49727 B of data

exchanged. The model can be refined to cater for this behaviour recorded in a real-life

setting. Equation 7.7 shows a refined vision of the amount of overhead from the OS

75

7. EVALUATION OF RESULTS

expected on Xeon 5130.

1. Control1 Xeon5130 =

8
><

>:

291408 0 n lL2 Xeon5130

291408 + pfXeon5130 ⇤ n/4094
�(pfXeon5130 ⇤ 2) + intXeon5130 ⇤ n/49727 n > lL2 Xeon5130

2. Control2 Xeon5130 =

8
><

>:

297691 0 n lL2 Xeon5130

297691 + pfXeon5130 ⇤ n/4094
�(pfXeon5130 ⇤ 2) + intXeon5130 ⇤ n/49727 n > lL2 Xeon5130

3. Control3 Xeon5130 =

8
><

>:

699229 0 n lL2 Xeon5130

699229 + pfXeon5130 ⇤ n/4094
�(pfXeon5130 ⇤ 2) + intXeon5130 ⇤ n/49727 n > lL2 Xeon5130

(7.7)

On the Xeon E5-2695 v2, a number of interrupts generated when data is written

into main memory is less predictable. On average one page fault per 103107 bytes

and one interrupt per 15400020 bytes of data written into main memory occur on that

server. Equation 7.8 outlines a refined vision of the amount of overhead from the OS

expected on Xeon E5-2695 v2. Hence, in case of the Xeon E5-2695 v2, additional

pfXeonE5 ⇤ n/103107� (pfXeonE5 ⇤ 2) must be added to the total amount of overhead,

where pfXeonE5 indicates the duration of one minor page fault on that system. Duration

of two page faults needs to be subtracted, it has already been taken into account in

equation 7.6.

1. Control1 XeonE5 =

8
><

>:

413963 0 n lL2 XeonE5

413963 + pfXeonE5 ⇤ n/103107
�(pfXeonE5 ⇤ 2) + intXeonE5 ⇤ n/15400020 n > lL2 XeonE5

2. Control2 XeonE5 =

8
><

>:

415428 0 n lL2 XeonE5

415428 + pfXeonE5 ⇤ n/103107
�(pfXeonE5 ⇤ 2) + intXeonE5 ⇤ n/15400020 n > lL2 XeonE5

3. Control3 XeonE5 =

8
><

>:

1073144 0 n lL2 XeonE5

699229 + pfXeonE5 ⇤ n/103107
�(pfXeonE5 ⇤ 2) + intXeonE5 ⇤ n/15400020 n > lL2 XeonE5

(7.8)

Section 6.3 shows results of the experiment that measures the duration of interrupts

and page faults on both CPUs. Page faults take di↵erent lengths of time. One minor

76

7.1 Deriving Parameters in the Model

page fault on average takes pfXeon5130 = 42666 on the Xeon 5130 and pfXeonE5 = 21733

on the Xeon E5-2695 v2; the standard division is 2471.3 and 3162.3 respectively. This

value is rather large, but it is negligible in a real-world environment.

The duration of interrupts cannot be seen as a constant as well, as was reported

in section 6.3. One interrupt on average takes intXeon5130 = 153694 on the Xeon

5130 and intXeonE5 = 322826n the Xeon E5-2695 v2; the standard division is 175825.8

and 17043.3 respectively. These numbers also incorporate overhead caused by context

switches. This cost is noticeable, but it can be disregarded in a real-world environment.

These values are incorporated into equations 7.9 and 7.10.

1. Control1 Xeon5130 =

8
><

>:

291408 0 n lL2 Xeon5130

291408 + 42666 ⇤ n/4094
�(42666 ⇤ 2) + 153694 ⇤ n/49727 n > lL2 Xeon5130

2. Control2 Xeon5130 =

8
><

>:

297691 0 n lL2 Xeon5130

297691 + 42666 ⇤ n/4094
�(42666 ⇤ 2) + 153694 ⇤ n/49727 n > lL2 Xeon5130

3. Control3 Xeon5130 =

8
><

>:

699229 0 n lL2 Xeon5130

699229 + 42666 ⇤ n/4094
�(42666 ⇤ 2) + 153694 ⇤ n/49727 n > lL2 Xeon5130

(7.9)

1. Control1 XeonE5 =

8
><

>:

413963 0 n lL2 XeonE5

413963 + 21733 ⇤ n/103107
�(21733 ⇤ 2) + 322826 ⇤ n/15400020 n > lL2 XeonE5

2. Control2 XeonE5 =

8
><

>:

415428 0 n lL2 XeonE5

415428 + 21733 ⇤ n/103107
�(21733 ⇤ 2) + 322826 ⇤ n/15400020 n > lL2 XeonE5

3. Control3 XeonE5 =

8
><

>:

1073144 0 n lL2 XeonE5

699229 + 21733 ⇤ n/103107
�(21733 ⇤ 2) + 322826 ⇤ n/15400020 n > lL2 XeonE5

(7.10)

77

7. EVALUATION OF RESULTS

These equations can be simplified. Also, lL2 Xeon5130, and lL3 XeonE5 are given.

Equations 7.11 and 7.12 show the final estimation of the overhead imposed by the OS

Control1 Xeon5130 =

(
291408 0 n 4194304

206076 + 13.5124 ⇤ n n > 4194304

Control2 Xeon5130 =

(
297691 0 n 4194304

212359 + 13.5124 ⇤ n n > 4194304

Control3 Xeon5130 =

(
699229 0 n 4194304

613897 + 13.5124 ⇤ n n > 4194304

(7.11)

Control1 XeonE5 =

(
413963 0 n 30720000

370497 + 0.2309 ⇤ n n > 30720000

Control2 XeonE5 =

(
415428 0 n 30720000

371962 + 0.2309 ⇤ n n > 30720000

Control3 XeonE5 =

(
1073144 0 n 30720000

655763 + 0.2309 ⇤ n n > 30720000

(7.12)

One may also notice, that in all cases where caches are used, the first sub-experiment

is an outlier: the amounts of generated interrupts and page faults are much higher than

what is observed in consequent sub-experiments (refer to appendices M, N, O, P, Q,

and R). To simplify, since ten sub-experiments are conducted for each experiments, it

can be neglected. Additionally, when data is written into cache, the occurrence of one

interrupt can be seen in some sub-experiments, but not always. Such non-deterministic

behaviour could not be explained, and it is ignored for simplicity.

7.1.4 Quantified Model

Equations 7.13 and 7.14 describe the total costs dcomm Xeon5130 and dcomm XeonE5 of

communication between two threads that takes place on the Xeon 5130 and the Xeon

E5-2695 v2s respectively. These equations take all three kinds of inter-thread commu-

nication into account. They are outlined in the taxonomy in section 3.1. A parameter

78

7.1 Deriving Parameters in the Model

t indicates a type of inter-thread communication described.

dcomm Xeon5130 =

8
><

>:

n/8 ⇤ latWriteL1 Xeon5130 n lL1 Xeon5130

n ⇤ latWriteL2 Xeon5130 lL1 Xeon5130 < n lL2 Xeon5130

n ⇤ latWriteMem Xeon5130 n > lL2 Xeon5130

+

8
><

>:

Control1 Xeon5130 t = 1

Control2 Xeon5130 t = 2

Control3 Xeon5130 t = 3

+

8
><

>:

n ⇤ latReadL1 Xeon5130 n lL1 Xeon5130

n ⇤ latReadL2 Xeon5130 lL1 Xeon5130 < n lL2 Xeon5130

n ⇤ latReadMem Xeon5130 n > lL2 Xeon5130

(7.13)

dcomm XeonE5 =

8
>>>><

>>>>:

n/8 ⇤ latWriteL1 XeonE5 n lL1 XeonE5

n ⇤ latWriteL2 XeonE5 lL1 XeonE5 < n lL2 XeonE5

n ⇤ latWriteL3 XeonE5 lL2 XeonE5 < n lL3 XeonE5

n ⇤ latWriteMem XeonE5 n > lL3 XeonE5

+

8
><

>:

Control1 XeonE5 t = 1

Control2 XeonE5 t = 2

Control3 XeonE5 t = 3

+

8
>>>><

>>>>:

n ⇤ latReadL1 XeonE5 n lL1 XeonE5

n ⇤ latReadL2 XeonE5 lL1 XeonE5 < n lL2 XeonE5

n ⇤ latReadL3 XeonE5 lL2 XeonE5 < n lL3 XeonE5

n ⇤ latReadMem XeonE5 n > lL3 XeonE5

(7.14)

Finally, by using the equations 7.1, 7.2, 7.3, 7.4, 7.11, and 7.12, a number of pa-

rameters in the equations 7.13 and 7.14 can be replaced by numeric values. After

replacement, it becomes possible to derive two final equations 7.15 and 7.16 that de-

scribe data-sharing in inter-thread communication in two machines powered by the

Intel Xeon 5130 and the Intel Xeon E5-2695 v2 processors. Words of type long are

used in the experiments, so ns is equal to 8 (on both systems). dcomm Xeon5130 and

79

7. EVALUATION OF RESULTS

dcomm XeonE5 are measures in nano-seconds.

dcomm Xeon5130 =

8
><

>:

n/8 ⇤ 1.5 n 32768

n/64 ⇤ 7 + (n/8� n/64) ⇤ 1.5 32768 < n 4194304

n/64 ⇤ 100 + (n/8� n/64) ⇤ 1.5 n > 4194304

+

8
>>>>>>>>><

>>>>>>>>>:

(
291408 0 n 4194304

206076 + 13.5124 ⇤ n n > 4194304
t = 1

(
297691 0 n 4194304

212359 + 13.5124 ⇤ n n > 4194304
t = 2

(
699229 0 n 4194304

613897 + 13.5124 ⇤ n n > 4194304
t = 3

+

8
><

>:

n ⇤ 1.5 n 32768

n/64 ⇤ 7 + (n/8� n/64) ⇤ 1.5 32768 < n 4194304

n/64 ⇤ 100 + (n/8� n/64) ⇤ 1.5 n > 4194304

(7.15)

dcomm XeonE5 =

8
>>>><

>>>>:

n/8 ⇤ 1.25 n 32768

n/64 ⇤ 3.75 + (n/8� n/64) ⇤ 1.25 32768 < n 262144

n/64 ⇤ 15.5 + (n/8� n/64) ⇤ 1.25 262144 < n 30720000

n/64 ⇤ 60 + (n/8� n/64) ⇤ 1.25 n > 30720000

+

8
>>>>>>>>><

>>>>>>>>>:

(
413963 0 n 30720000

370497 + 0.2309 ⇤ n n > 30720000
t = 1

(
415428 0 n 30720000

371962 + 0.2108 ⇤ n n > 30720000
t = 2

(
1073144 0 n 30720000

655763 + 0.2108 ⇤ n n > 30720000
t = 3

+

8
>>>><

>>>>:

n ⇤ 1.25 n 32768

n/64 ⇤ 3.75 + (n/8� n/64) ⇤ 1.25 32768 < n 262144

n/64 ⇤ 15.5 + (n/8� n/64) ⇤ 1.25 262144 < n 30720000

n/64 ⇤ 60 + (n/8� n/64) ⇤ 1.25 n > 30720000

(7.16)

Moreover, equations 7.15 and 7.16 can be visualised on a 2D surface. Figures 7.1

and 7.2 plot the functions described by these two equations. It should be noted that

blue and green lines that indicate communication of Type 1 and Type 2 respectively

are co-aligned on the graph. The di↵erent in overhead caused by the OS in these two

cases proved to be insignificant and it has no measurable impact. Figure 7.1 shows the

80

7.1 Deriving Parameters in the Model

delay of dcomm Xeon5130 against bu↵er size. Throughput (n/dcomm Xeon5130) is plotted

to promote understanding of results. Note that the throughput increases with the size

of the bu↵er, until it reaches a maximum value, which is determined by the access time

to main memory. The slope of the curve changes as the bu↵er size reaches the L1 and

L2 cache sizes of 32768 B and 4194304 B respectively.

Figure 7.1: Xeon 5130: prediction of throughput of copying data in inter-thread commu-

nication

Similarly, figure 7.2 renders throughput n/dcomm XeonE5. The throughput increases

with the size of the bu↵er, until it reaches a maximum value, which is determined by the

access time to main memory. The slope of the curve changes as the bu↵er size reaches

the L1, L2, and L3 cache sizes of 32768 B, 262144 B and 32000064 B respectively.

This model may be applied to inter-thread communication of any type in any multi-

core system with similar to discussed in this project architecture with multiple levels

81

7. EVALUATION OF RESULTS

Figure 7.2: Xeon E5-2695 v2: prediction of throughput of copying data in inter-thread

communication

of cache. The equations 7.15 and 7.16 and figures 7.1 and 7.2 presented in this section

discuss the applicability of the model to two specific architectures: the Xeon 5130 and

the Xeon E5-2695 v2. The next session discusses data that was measured by running

the application-level experiments (described in section 4.2.2) and compares achieved

results with the predictions made by quantifying the model.

7.2 Evaluation of the Model

Data measured through performing Experiment 2, Experiment 3, and Experiment 4

is used to verify the model’s predictions of the impact of the cache on inter-thread

communication. These experiments outline behaviour of the cache in a real-life setting.

As discussed in section 6.2, certain unexpected behaviour was observed when the

82

7.2 Evaluation of the Model

amount of shared data exceeded 32.0435 MB while executing experiments on both the

Xeon 5130 and the Xeon E5-2695 v2. The maximum value on the x-axis in the graph

7.1 is 4.75 MB and in case of the graph 7.2 it is 31.5MB. Nevertheless, as could be

observed by examining the equations 7.15 and 7.16, the function dcomm Xeon5130 has a

linear nature for all values of n where n > 4194304 (4194304 bytes is the size of the

L2 caches). Similarly, the function dcomm XeonE5 also has a linear nature for all values

of n where n > 30720000 (30720000 bytes is the size of the L3 cache), and all lines on

both graphs flatten out after n reaches the size of the last level of cache.

To answer the RQ4 : cross-examining the graphs 6.11 and 6.12 that show throughput

for both machines and the figure 7.1 and 7.2 that plot the equations of the model, shows

that the developed model is capable of giving an accurate description of the impact of

cache on data-sharing in inter-thread communication. Such model may be used in a

cache-aware scheduler. However, there are a number of noticeable di↵erences between

the predictions of the model and the real-life results.

7.2.1 Accuracy of the Model

Figures from lmbench incorporate overhead caused by events like interrupts and and

page faults. Hence values for latency measured from that benchmarking suite are always

higher than (or equal to) the actual readings that can be observed in a laboratory setting

where no overhead can be seen. This thesis focuses on the impact of the cache on inter-

thread communication in multi-threaded applications that may be seen in the industry.

One cannot totally isolate a multi-threaded programme and remove all overhead from

the OS. Therefore, results from running experiments in a not fully-isolated environment

are of high value.

The main di↵erence is in the magnitude of throughput. For example, the model

shows that exchanging 1280064 bytes of data (1.22 MB) between two threads that

reside on di↵erent cores of the same chip in the Xeon 5130 should take 1477750 ns,

which implies that the value of throughput in this situation should be 0.87. Measuring

this situation in the laboratory setting showed that such exchange takes 892488 ns,

which is about 40% times faster than the predicted value, and the reported value of

throughput is 1.45.

The model proved to be overly-pessimistic. It could be caused by the inability of

the laboratory setting to isolate the experiments from the overhead from the OS. Such

83

7. EVALUATION OF RESULTS

advanced technologies as Intel’s Advanced Smart Cache may also a↵ect the results

(discussed in section 7.3), but modelling their behaviour is not in the scope of this

research. Also, the values of latency that were measured by using lmbench cannot

be fully trusted. The tool does not eliminate overhead caused by occurrence of such

events as interrupts and page faults. Additionally, this study focuses on the average

values of timing measurements. All experiments exhibited extremely large amounts of

overhead during their execution, especially during first runs. An attempt to predict the

amount of time taken by such events was undertaken, but, the high values of standard

deviation reported for both interrupts/context switches and page faults (refer to section

6.3) indicate that modelling behaviour of such events is overly-complicated and that

it could not be performed in the given laboratory environment. A large decrease of

throughput, when data that is shared between two threads exceeds the size of the last

level of cache, was observed on both the Xeon 5130 and the Xeon E5-2695 v2. It is

an expected result since latency of writing and reading data to/from main memory is

much larger than may be observed when caches are used.

The proposed model has a linear or close to linear format for all levels of memory

discussed. The plots of data that were achieved by running the experiments have

more unpredictable and much more complicated nature, especially in case of the Xeon

E5-2695 v2.

7.2.2 Implications for Scheduling

To address the research questions RQ1 and RQ2, the model was able to predict that

allocating threads to di↵erent cores of the same chip does not yield any noticeable

benefits in the writer/reader scenario outlined in the project. The measured result

showed that throughput, which can be achieved by scheduling a thread on a di↵erent

core of the same die, is almost fully identical to what may be measured by pinning

both the writing and the reading threads on the same core that has a private Level

1 cache. Similarly, on both graphs 6.11 and 6.12, the lines that represent throughput

of communication between threads that are executed by di↵erent chips are distinctly

“under” the lines that show throughput achieved during communication of Type 1 and

Type 2 nature.

Performance of all three types of scheduling (Type 1: both threads are placed on

the same core; Type 2: threads are put on di↵erent cores on the same chip; Type

84

7.2 Evaluation of the Model

3: threads are scheduled on di↵erent chips), as measured in the experiments, can be

compared visually. Graphs 7.3 and 7.4 shows the impact of placement of threads for

all three cases on both machines. The blue line (Type 1) serves as a base case. Other

two lines (green for Type 2 and yellow for Type 3) show the impact relative to the

base case, i.e. the di↵erences in latency of scheduling two threads. If the di↵erence is

negative, one may conclude that the base case (Type 1) scheduling algorithms has an

advantage, it is faster. Both plots feature the moving average trending lines to support

understanding of the relations.

Figure 7.3: Performance of three ways of scheduling threads, Xeon 5130

Figure 7.3 shows that the impact of scheduling threads that are engaged in active

exchange of data on di↵erent cores of the same chip is small (di↵erence: 7.9 µs or 5%);

in case of placing threads on di↵erence dies, the overhead is large (di↵erence: 1.3 ms or

37%). Both of these values were measured for the bu↵er size that is equal to the size of

L2 cache in the CPU. There is no significant di↵erence between scheduling threads on

85

7. EVALUATION OF RESULTS

the same core and on di↵erent cores inside of one chip when less than 30 MB of data

is exchanged between threads. When this threshold is reached, placing the receiving

thread on a di↵erent core results in the increase of the speed of the programme by

close. Scheduling the receiving thread on a di↵erent core in the same chip for more

than around 70 MB of data exchanged between threads leads to the decreased speed

of execution.

Figure 7.4 shows that the same conclusion may be derived: the impact of placing

threads on di↵erent cores of the same chip in the described scenario is small (di↵erence:

8.9 µs or 1%) and scheduling threads on di↵erent chips if costly (di↵erence: 1.6 ms or

15%). Both of these values were measured for the bu↵er size that is equal to the size

of L3 cache in the CPU. Both graphs exhibit positive and negative impact for Type 2

and Type 3 scheduling algorithms: it may be explained by the interference of the OS.

A few outliers that are seen on the graphs are also caused by the interference of the

Operating System. Examining the figures shows that scheduling both the sending and

the receiving threads on di↵erent chips has a large impact on the speed of execution.

The model gives similar predictions.

It implies that executing threads that share a large amount of data on di↵erent

processor chips results in decreased performance, and decreases speed of execution.

Therefore, RQ may be answered: yes, in a situation where a “sending” and a “receiving”

threads exchange data, a scheduler should take where a receiving thread is scheduled

into account.

Cache does have a large impact on the speed of programmes that have threads

that are executed by di↵erent units of computation (cores or processor chips). To

answer the research question RQ3, the results received in this study may be used to

provide a grounding for creation of a cache-aware scheduler that by using a theoretical

model, such as the one proposed in the study, will be able to increase the speed of

execution of multi-threaded programmes that have threads that are engaged in inter-

thread communication. However, the proposed model needs to be fine-tuned and such

aspects of cache as associativeness, di↵erences in latency of reading and writing data

and pipelining must be incorporated into the equations. There are a number of possible

e↵ects that the model does not cater for.

86

7.3 Possible E↵ects not Included in the Model

Figure 7.4: Performance of three ways of scheduling threads, Xeon E5-2695 v2

7.3 Possible E↵ects not Included in the Model

The model focuses on Write-back caches (described in section 2.2). In a Write-through

cache, data is mostly read from main memory. A reader in the sender-reader scenario

discussed in the thesis would be almost guaranteed to read information, that is ex-

changed between threads, from main memory, and not from caches. The cache size

becomes irrelevant to the speed of a programme.

One technique that is employed in many modern-day computers is data prefetching

(described in section 2.2). It is not clear if such technology was enabled on the servers

used in the study. Table 7.1 shows what the fetch cycle would look like on the Xeon

5130 (with an assumption that the read instructions are pipelined from the i-cache1,

and the biggest load comes from d-cache2 reads) if the data cache prefetching is active.

1
Instruction cache.

2
Data cache.

87

7. EVALUATION OF RESULTS

Optimum pipleining is assumed.

Table 7.1: Fetch cycle with active data prefetching on Xeon 5130

Time Activity

0 CPU read. Cache miss. Start cache line fetch from Level 2 (2 cache lines)

7.0 First cache line fetch complete. Read complete (8 bytes)

Next read instruction starts execution

8.5 Read complete (8 bytes)

10.0 Read complete (8 bytes)

11.5 Read complete (8 bytes). Cache miss on next read

13.0 Second cache line complete. Read complete (8 bytes)

Next read instruction starts execution

14.0 Read complete (8 B)

16.0 Read complete (8 bytes)

17.5 Read complete (8 bytes)

Table 7.2 shows a fetch cycle for a single cache line. Again, optimum pipleining is

assumed.

This means that reading 64 bytes (1 cache line) will take 18.5 ns as opposed to 23.0

ns. Hence model can be closer to the real-world results, it is less “pessimistic”. In this

case the reported by the model latency is 10 - 20% smaller than what is measured in

the experiments.

Modern Intel processors also utilise the Advanced Smart Cache technology [80].

This feature allows high bandwidth applications to borrow bandwidth of Level 1 to

Level 2 cache from another core with a shared L2 cache. The hardware asks to allocate

the full L2 or L3 cache to the application, if the other unit of computation is idle. It

enables to reduce the cache miss ratio. Intel reports that it allows to achieve a constant

rate of 2 clock-cycles per operation on one cache line [81]. In reality, is is not always a

case because of other processes that take place in the system. Table 7.3 shows what a

fetch cycle would look like in this case (optimum pipelining is assumed).

Then, instruction pipelining (instruction parallelism), where multiple instructions

can be executed at the same time, may influence the behaviour of the model. Because

optimum pipelining is assumed in the model, instruction pipelining is unlikely to be a

factor in the performance of the model. Parallel instruction execution does not allow

88

7.3 Possible E↵ects not Included in the Model

Table 7.2: Single line fetch with no active data prefetching on Xeon 5130

Time Activity

0 CPU read. Cache miss. Start cache line fetch from Level 2 (1 cache line)

7.0 Cache line fetch complete. Read complete (8 bytes)

Next read instruction starts execution

8.5 Read complete (8 bytes)

10.0 Read complete (8 bytes)

11.5 Read complete (8 bytes). Cache miss on next read

18.5 Cache line fetch complete. Read complete (8 bytes)

Next read instruction starts execution

20.0 Read complete (8 bytes)

21.5 Read complete (8 bytes)

23.0 read complete (8 bytes). Cache miss

faster throughput that is supported by the cache; it is not a significant factor for the

accuracy of the model. The cache bus may also be an additional factor.

89

7. EVALUATION OF RESULTS

Table 7.3: Fetch cycle when Advanced Smart Cache is enabled on Xeon 5130

Time Activity

0 CPU read. Cache miss. Start cache line fetch from Level 2 (fetching 2 cache

lines at once using the other core’s bandwidth)

7.0 Fetch of both cache lines completes. Read complete (8 bytes)

Next read instruction starts execution

8.5 Read complete (8 bytes)

10.0 Read complete (8 bytes)

11.5 Read complete (8 bytes)

18.5 Read complete (8 bytes)

20.0 Read complete (8 bytes)

21.5 Read complete (8 bytes)

23.0 Read complete (8 bytes)

7.4 Survey of Similar Results

A number of similar to was is described in the thesis experiments are reported in an

article [82]. It investigates the latency of cache on a Nehelam architecture1. The finding

reported in the article cannot be used to compare what is descried in this thesis since the

Woodcrest2 and Ivy Bridge3 architectures are utilised in the experimental environment.

Authors of [83] also discuss results of a number of benchmarks that evaluate speed of

multi-threaded programmes. They focus on the changes in the architecture of CPUs

that are caused by increasing clock speed and usage of multiple cores. Both shared and

independent cache systems are evaluated. It was reported that the locality of data in

independent cache systems has to be ensured by operations that can cost as many as

5000 clock cycles each. It is a very large overhead for such operation.

Data that is reported from the experiments has a dependency on the figures of cache

latency measured with lmbench. As described in section 6.1.3, such numbers could not

be fully trusted, due to the closed nature and the age of the benchmark. A report of

similar measurements performed with this tool may be found in [84]. The paper reports

memory-load latency for the Intel Core 2 Duo E6400 processor. Despite the di↵erence

1
A 45–nm architecture that was used by Intel during 2008 – 2011.

2
A 65–nm architecture that was used by Intel during 2006 – 2008.

3
A 22–nm architecture that is currently used by Intel.

90

7.4 Survey of Similar Results

in the architectures, the curves of graphs reported in the publication can be related to

the findings in this project. The findings are similar to what is reported in this thesis.

Modelling behaviour of cache is a di�cult undertaking [85, 86]. The paper [86]

discusses that automatic hardware mechanisms (such as prefetchers and cache coherence

protocols) improve performance, but they also make modelling of the impact of the

cache more di�cult. Many sources provide rules for compiler optimization through

analysing data locality by means of computing stack distances1 [87, 88], such analysis

is easier to conduct, since behaviour of the aforementioned optimisation techniques can

be ignored, but it yields limited conclusions.

1
Stack distance – a depth of a stack, that a reference needs to be extracted from.

91

8

Conclusions and Future Work

This project evaluated the impact of cache on inter-thread communication in multi-

threaded environments. Then, it assessed whether a scheduler needs to take such impact

into account, when receiving threads are scheduled. This study involved creation of a

model that describes inter-thread communication. Additionally, a taxonomy of such

communication in multi-core systems was developed. Five experiments were designed

to provide information necessary to quantify and verify the model. Two workstations

that are powered by multi-chip processors Intel Xeon 5130 and Intel Xeon E5-2695

v2 were chosen for executing the experiments. The processors have di↵erent memory

hierarchies, which allowed to receive results that permitted to test the validity of the

model in di↵erent environments.

A scenario described in the thesis, where a “sending” thread (producer) writes data

and a “receiving” thread (consumer) reads data is possible in a real-life setting. The

findings show that in such situation scheduling the receiving thread on a separate chip

decreases the speed of execution of a multi-threaded programme (by up to 37% on Xeon

5130 and by up to 15% on Xeon E5-2695 v2). Scheduling both threads on di↵erent cores

of the same chip does not give any noticeable advantages, i.e. the execution time is close

to the base-case scenario where both threads are run on a single core (5% di↵erence

on Xeon 5130 and 1% di↵erence on Xeon E5-2695 v2). Therefore, the fundamental

conclusion may be defined as: in “sender” - “receiver” programmes, a scheduler needs

to take where a receiving thread is scheduled into account.

For both the Xeon 5130 and the Xeon E5-2695 v2, the model was able to describe

throughput of inter-thread communication. The model is capable of outlining patterns

92

8.1 Limitations

of latency and throughput for all three types of communication as described in the

taxonomy: 1) where two threads that have been scheduled to the same core exchange

data; 2) when two threads that reside on two cores on the same die communicate with

each other; 3) where two threads that have been put on two di↵erent chips exchange

data.

The proposed model predicts close to linear nature for all levels of memory that it

describes. Conducting experiments showed that in reality inter-thread communication

is much more complicated and requires further modelling and analysis. Modelling

cache behaviour is di�cult [86]. Due to unavailability of detailed documentation of the

underlying systems in modern-day processors, the performance model needs to abstract

multiple aspects of the work of modern-day CPUs. Very little work on modelling of

cache behaviour is done in the scientific community. Most only discuss simulations and

provide no background analysis [57, 58, 59]. This thesis shows how di�cult it is to

model such behaviour.

Data measured in the experiments can be considered dependable due to its nature,

the experiments were run directly on the hardware. Because of the time limitation, for-

mal methods could not be used to verify dependability of the experimental environment

and achieved results.

8.1 Limitations

The accuracy of measured data can be improved, if the experiments were run as real-

time process, which would have involved recompiling the Linux kernel in the given

setting. The laboratory set-up used for conducting the experiments did not permit

to do that easily. Also, it is believed that utilisation of the parallelised version of

the RDTSC instruction – RDTSCP – or deterministic performance counters [89] will

improve accuracy of measuring time. It will increase the level of dependability of

achieved results, and it may permit usage of results that were measured in Experiment

1 (the overhead from the OS could not be eliminated, and the results were too “noisy”

to be used). The accuracy and precision of results could be improved if direct access

to the servers was granted.

This work discusses write-back caches. The reported results and predictions of the

model will not hold for write-through caches (another commonly-used cache architec-

93

8. CONCLUSIONS AND FUTURE WORK

ture), since the underlying behaviour of such caches is fundamentally di↵erent. When

a write-through cache is used, data is written to caches and main memory, as opposed

to just caches; it is not discussed in the model.

Further, the proposed model ignores the aspect of cache associativity. It describes

behaviour of only direct mapped caches. Adding support for fully associative and n-

way set associative caches will improve the applicability of the model and the accuracy

of scheduling decisions made based on its predictions.

8.2 Future Work

The key aim of any future work should focus on performing a similar study in a more

complicated environment. This project focused on the case where a receiving threads

runs immediately after a sending thread. The model may be used as a base for devel-

opment of a more complete mathematical description of the processes that take place

when multiple threads exchange information in a multi-core environment. Future work

needs to extend reported results by performing experiments with thousands or mil-

lions of receiving and sending threads. A scenario that may commonly be seen in the

Openet’s area of expertise: solutions for analytics of telecommunications systems. The

model also needs to be refined to provide more precise predictions that yield more ac-

curate scheduling decisions. The refinement may include support for a larger number

of memory hierarchies, prefetching, instruction parallelism, as well as other advanced

techniques employed in modern-day processors. Such refinement will allow to create a

more general model that will be applicable to a larger range of hardware.

Further work may also involve testing the model with other scenarios of inter-

thread communication and finishing the cross-platform support of the experimental

environment (receiving data on di↵erent systems will be beneficial for development of

a scheduler that can be run on di↵erent platforms). Additionally, the described experi-

ments can be run in set ups that have distinctly di↵erent, to what is used in the study,

hardware. One may decide to choose processors from other than Intel manufactures

(e.g. AMD), since they often organise computer memory di↵erently.

Then, to improve dependability of the system and data that is measured in the

experiments, a number of tools that are used in the industry and research may be used

94

8.2 Future Work

[90]. In particular, VeriFast1 may be utilised in the project, as it is currently one of

the front-runners in the industry [91] that has support for semi-automatic verification

of software written in C. It will allow to prove that the code behind the experimental

environment and the experiments is reliable and bug-free, which in turn will increase

the dependability of received results.

The author plans to continue work on this project, fine-tune the proposed model

by performing the described experiments in other settings and develop a cache-aware

scheduler that could be deployed to Linux-based systems. Such further work will allow

to measure the applicability of such scheduler and see whether the results correlate to

what is reported in the thesis.

1
http://people.cs.kuleuven.be/~bart.jacobs/verifast/

95

http://people.cs.kuleuven.be/~bart.jacobs/verifast/

References

[1] Intel. Intel 64 and IA-32 Architectures Software

Developer s Manual. Volume 3A:(February), 2014.

vii, 9, 10, 11, 12, 49

[2] Pavlo Bazilinskyy. Multi-core Insense. PhD thesis, Uni-

versity of St Andrews, 2013. 1, 13, 31, 36

[3] Wolfgang Gruener. Intel Has 5 nm Processors in

Sight, 2012. 1

[4] H. Iwai. Roadmap for 22nm and beyond (Invited

Paper). Microelectronic Engineering, 86(7-9):1520–

1528, July 2009. 1

[5] G.E. Moore. Cramming More Components Onto In-

tegrated Circuits. Proceedings of the IEEE, 86, 1998.

1

[6] Laszlo B Kish. End of Moore’s law: thermal (noise)

death of integration in micro and nano electronics.

Physics Letters A, 305(3-4):144–149, December 2002. 1

[7] Mark Lundstrom. Moore’s law forever? SCIENCE-

NEW YORK THEN WASHINGTON-, pages 210–212,

2003. 1

[8] J.L. Henning. SPEC CPU2000: measuring CPU

performance in the New Millennium. Computer,

33, 2000. 2

[9] Kishore Kumar Pusukuri. A ADAPT: A Framework

for Coscheduling Multithreaded Programs. 2013.

2

[10] Silas Boyd-Wickizer, Robert Morris, and M. Frans

Kaashoek. Reinventing Scheduling for Multicore

Systems, 2009. 2

[11] Simon Peter, Adrian Schüpbach, Paul Barham, Andrew

Baumann, Rebecca Isaacs, Tim Harris, and Timothy

Roscoe. Design principles for end-to-end multicore

schedulers. page 10, June 2010. 2

[12] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and

F. Baez. Reducing power in high-performance mi-

croprocessors. Proceedings 1998 Design and Automation

Conference. 35th DAC. (Cat. No.98CH36175), 1998. 2

[13] Yuan Lin. Multithreaded Programming. Chal-

lenges, current practice, and languages/tools sup-

port. In Hot Chips: A Symposium on High Performance

Chips, 2006. 2

[14] John Ousterhout. Why threads are a bad idea (for

most purposes). In Presentation given at the 1996

Usenix Annual Technical Conference, 5. San Diego, CA,

USA, 1996. 2

[15] Free Online Dictionary. Definition of processor chip

by the Free Online Dictionary, Thesaurus and En-

cyclopedia., 2014. 3

[16] Darryl Gove. Multicore Application Programming: For

Windows, Linux, and Oracle Solaris. Addison-Wesley

Professional, 2010. 6, 7

[17] John L Hennessy and David A Patterson. Computer Archi-

tecture A Quantitative Approach 4th Edition, 28. 2006.

6, 9, 10

[18] Bryan Schauer. Multicore processors–A necessity.

ProQuest Discovery Guides1–14, 2008. 6, 7

[19] Intel. Intel Introduces The Pentium 4 Processor

(press release), 2000. 6

[20] Patrick Schmid. NetBurst Architecture: Now 31

Pipeline Stages - Intel’s New Weapon: Pentium

4 Prescott, 2004. 6

[21] David W. Wall. Limits of instruction-level paral-

lelism, 1991. 7

[22] M.P. Jagtap. Era of Multi-Core Processors. DRDO

Science Spectrum, 2:87–94, 2009. 7, 8, 10

[23] AMD. Multi-core processors - the next evolution

in computing, 2005. 7

[24] P. Gepner and M.F. Kowalik. Multi-Core Processors:

New Way to Achieve High System Performance.

International Symposium on Parallel Computing in Elec-

trical Engineering (PARELEC’06), 2006. 7

[25] Jeremy W. Langston and Xubin He. Multi-core Proces-

sors and Caching - A Survey, 2007. 8

[26] Ching-Long Su and Alvin M. Despain. Cache design

trade-o↵s for power and performance optimiza-

tion. In Proceedings of the 1995 international symposium

on Low power design - ISLPED ’95, pages 63–68, New

York, New York, USA, April 1995. ACM Press. 8

[27] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau.

Operating Systems: Three Easy Pieces, 2014. 9

[28] Shimin Chen, Todd C. Mowry, Chris Wilkerson, Phillip B.

Gibbons, Michael Kozuch, Vasileios Liaskovitis, Anastas-

sia Ailamaki, Guy E. Blelloch, Babak Falsafi, Limor Fix,

and Nikos Hardavellas. Scheduling threads for con-

structive cache sharing on CMPs. In Proceedings of

the nineteenth annual ACM symposium on Parallel algo-

rithms and architectures - SPAA ’07, page 105, New York,

New York, USA, June 2007. ACM Press. 10, 13, 14, 18

[29] Daniel Molka, Daniel Hackenberg, Robert Schone, and

Matthias S. Muller. Memory Performance and

Cache Coherency E↵ects on an Intel Nehalem

Multiprocessor System. 2009 18th International Con-

ference on Parallel Architectures and Compilation Tech-

niques, pages 261–270, September 2009. 10

96

http://www.tomshardware.com/news/intel-cpu-processor-5nm,17578.html
http://www.tomshardware.com/news/intel-cpu-processor-5nm,17578.html
http://www.sciencedirect.com/science/article/pii/S0167931709002950
http://www.sciencedirect.com/science/article/pii/S0167931709002950
http://www.sciencedirect.com/science/article/pii/S0375960102013658
http://www.sciencedirect.com/science/article/pii/S0375960102013658
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.366.5818
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.366.5818
https://www.usenix.org/legacy/event/hotos09/tech/full_papers/boyd-wickizer/boyd-wickizer.pdf?origin=publication_detail
https://www.usenix.org/legacy/event/hotos09/tech/full_papers/boyd-wickizer/boyd-wickizer.pdf?origin=publication_detail
http://dl.acm.org/citation.cfm?id=1863086.1863096
http://dl.acm.org/citation.cfm?id=1863086.1863096
http://www.hotchips.org/wp-content/uploads/hc_archives/hc18/1_Sun/HC18.T1P1.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc18/1_Sun/HC18.T1P1.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc18/1_Sun/HC18.T1P1.pdf
http://www.thefreedictionary.com/processor+chip
http://www.thefreedictionary.com/processor+chip
http://www.thefreedictionary.com/processor+chip
http://www.amazon.com/Computer-Architecture-Quantitative-Approach-4th/dp/0123704901
http://www.amazon.com/Computer-Architecture-Quantitative-Approach-4th/dp/0123704901
http://web.archive.org/web/20070403032914/http://www.intel.com/pressroom/archive/releases/dp112000.htm
http://web.archive.org/web/20070403032914/http://www.intel.com/pressroom/archive/releases/dp112000.htm
http://www.tomshardware.com/reviews/intel,751-5.html
http://www.tomshardware.com/reviews/intel,751-5.html
http://www.tomshardware.com/reviews/intel,751-5.html
http://www.drdo.gov.in/drdo/pub/dss/2009/main/16-ANURAG.pdf
http://static.highspeedbackbone.net/pdf/AMD_Athlon_Multi-Core_Processor_Article.pdf
http://static.highspeedbackbone.net/pdf/AMD_Athlon_Multi-Core_Processor_Article.pdf
http://blogs.cae.tntech.edu/jwlangston21/files/2008/08/multi-core-processors-and-caching-a-survey-ieee-format.pdf
http://blogs.cae.tntech.edu/jwlangston21/files/2008/08/multi-core-processors-and-caching-a-survey-ieee-format.pdf
http://dl.acm.org/citation.cfm?id=224081.224093
http://dl.acm.org/citation.cfm?id=224081.224093
http://dl.acm.org/citation.cfm?id=224081.224093
http://pages.cs.wisc.edu/~remzi/OSTEP/vm-tlbs.pdf
http://dl.acm.org/citation.cfm?id=1248377.1248396
http://dl.acm.org/citation.cfm?id=1248377.1248396
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5260544
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5260544
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5260544

REFERENCES

[30] Shi-Wu Lo, Kam-Yiu Lam, Wen-Yan Huang, and Sheng-Feng

Qiu. An e↵ective cache scheduling scheme for im-

proving the performance in multi-threaded pro-

cessors. Journal of Systems Architecture, 59(4-5):271–

278, April 2013. 10

[31] Eddy Z. Zhang, Yunlian Jiang, and Xipeng Shen. Does

cache sharing on modern CMP matter to the

performance of contemporary multithreaded pro-

grams?, 2010. 10

[32] Mahesh Neupane. Cache Coherence, 2004. 10

[33] Igor Ostrovsky. Gallery of Processor Cache E↵ects,

2010. 10

[34] J. Torrellas, A. Tucker, and A. Gupta. Evaluating

the Performance of Cache-A�nity Scheduling in

Shared-Memory Multiprocessors. Journal of Paral-

lel and Distributed Computing, 24(2):139–151, February

1995. 12

[35] M.S. Squillante and E.D. Lazowska. Using processor-

cache a�nity information in shared-memory mul-

tiprocessor scheduling. IEEE Transactions on Parallel

and Distributed Systems, 4(2):131–143, 1993. 12

[36] Raj Vaswani and John Zahorjan. The implications of

cache a�nity on processor scheduling for mul-

tiprogrammed, shared memory multiprocessors.

ACM SIGOPS Operating Systems Review, 25(5):26–40,

October 1991. 12

[37] Vahid Kazempour, Alexandra Fedorova, and Pouya

Alagheband. Performance implications of cache

a�nity on multicore processors. . . . Par 2008Parallel

Processing, 2008. 12

[38] Sally a. McKee. Reflections on the memory wall. In

Proceedings of the first conference on computing frontiers

on Computing frontiers - CF’04, page 162, 2004. 13

[39] Talat Altaf Hasina Khatoon Shahid Hafeez Mirza. Ex-

ploiting the Role of Hardware Prefetchers in Mul-

ticore Processors. International Journal of Advanced

Computer Science and Applications(IJACSA), 4, 2013. 13

[40] Intel. What you Need to Know about Prefetching

(press release), 20. 13

[41] Peter J. Denning. The locality principle, 2005. 13

[42] Trishul Chilimbi Chen Ding. A composable model

for analyzing locality of multi-threaded programs.

2009. 13, 18

[43] Scott Schneider, Christos D. Antonopoulos, and Dim-

itrios S. Nikolopoulos. Scalable locality-conscious

multithreaded memory allocation. In Proceedings

of the 2006 international symposium on Memory manage-

ment - ISMM ’06, page 84, New York, New York, USA,

June 2006. ACM Press. 13

[44] Stephen A Ward and Robert H Halstead. Computation

structures. MIT press, 1990. 13

[45] Josep Torrellas, Andrew Tucker, and Anoop Gupta.

Evaluating the performance of cache-a�nity

scheduling in shared-memory multiproces-

sors. Journal of Parallel and Distributed Computing,

24(2):139–151, 1995. 13

[46] Antonia Zhai Vineeth Mekkat, Anup Holey, Pen-Chung

Yew. Managing Shared Last-Level Cache in a Het-

erogeneous Multicore Processor. In PACT 2013,

2013. 13, 14

[47] Daniel Bovet and Marco Cesati. Understanding The Linux

Kernel. Oreilly & Associates Inc, 2005. 14

[48] Josh Aas. Understanding the Linux 2.6.8.1 CPU

Scheduler, 2005. 14

[49] IBM. Under the Hood: Of POWER7 Processor

Caches, 2010. 17

[50] Pat Conway, Nathan Kalyanasundharam, Gregg Donley,

Kevin Lepak, and Bill Hughes. Cache Hierarchy and

Memory Subsystem of the AMD Opteron Proces-

sor. Intelligent Systems, 1(March/April):17 – 29, 2011.

17

[51] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov,

Alexandra Fedorova, and Manuel Prieto. Survey of

scheduling techniques for addressing shared re-

sources in multicore processors. ACM Computing

Surveys, 45(1):1–28, November 2012. 18

[52] Vasileios Liaskovitis, Todd C. Mowry, Chris Wilkerson,

Shimin Chen, Phillip B. Gibbons, Anastassia Ailamaki,

Guy E. Blelloch, Babak Falsafi, Limor Fix, Nikos Har-

davellas, and Michael Kozuch. Parallel depth first vs.

work stealing schedulers on CMP architectures.

In Proceedings of the eighteenth annual ACM symposium

on Parallelism in algorithms and architectures - SPAA ’06,

page 330, 2006. 18

[53] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias.

Provably e�cient scheduling for languages with

fine-grained parallelism, 1999. 18

[54] R.D. Blumofe and C.E. Leiserson. Scheduling multi-

threaded computations by work stealing. Proceed-

ings 35th Annual Symposium on Foundations of Computer

Science, 1994. 18

[55] A. Agarwal, J. Hennessy, and M. Horowitz. An analyti-

cal cache model. ACM Transactions on Computer Sys-

tems, 7(2):184–215, May 1989. 18

[56] Fengguang Song Fengguang Song, S. Moore, and J. Don-

garra. L2 Cache Modeling for Scientific Applica-

tions on Chip Multi-Processors. 2007 International

Conference on Parallel Processing (ICPP 2007), 2007. 18

[57] Philip Heidelberger and Harold S. Stone. Parallel

trace-driven cache simulation by time partition-

ing. pages 734–737, December 1990. 18, 93

[58] James Archibald and Jean-Loup Baer. Cache coherence

protocols: evaluation using a multiprocessor sim-

ulation model. ACM Transactions on Computer Sys-

tems, 4(4):273–298, September 1986. 18, 93

[59] Qin Zhao, David Koh, Syed Raza, Derek Bruening, Weng-

Fai Wong, and Saman Amarasinghe. Dynamic cache

contention detection in multi-threaded applica-

tions, 2011. 18, 93

[60] Shelley Powers, Jerry Peek, Tim O’Reilly, and Mike

Loukides. Unix Power Tools, Third Edition. O’Reilly Me-

dia, Inc., 3rd edition, October 2002. 36

97

http://www.sciencedirect.com/science/article/pii/S1383762112001051
http://www.sciencedirect.com/science/article/pii/S1383762112001051
http://www.sciencedirect.com/science/article/pii/S1383762112001051
http://cse.csusb.edu/schubert/tutorials/csci610/w04/MN_Cache_Coherence.pdf
http://igoro.com/archive/gallery-of-processor-cache-effects/
http://www.sciencedirect.com/science/article/pii/S0743731585710143
http://www.sciencedirect.com/science/article/pii/S0743731585710143
http://www.sciencedirect.com/science/article/pii/S0743731585710143
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=207589
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=207589
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=207589
http://dl.acm.org/citation.cfm?id=121133.121140
http://dl.acm.org/citation.cfm?id=121133.121140
http://dl.acm.org/citation.cfm?id=121133.121140
http://link.springer.com/chapter/10.1007/978-3-540-85451-7_17
http://link.springer.com/chapter/10.1007/978-3-540-85451-7_17
http://portal.acm.org/citation.cfm?doid=977091.977115
http://ijacsa.thesai.org/
http://ijacsa.thesai.org/
http://ijacsa.thesai.org/
https://software.intel.com/en-us/blogs/2009/08/24/what-you-need-to-know-about-prefetching?language=es
https://software.intel.com/en-us/blogs/2009/08/24/what-you-need-to-know-about-prefetching?language=es
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.187.7582
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.187.7582
http://dl.acm.org/citation.cfm?id=1133956.1133968
http://dl.acm.org/citation.cfm?id=1133956.1133968
http://www-users.cs.umn.edu/~mekkat/pact2013-mekkat.pdf
http://www-users.cs.umn.edu/~mekkat/pact2013-mekkat.pdf
http://joshaas.net/linux/linux_cpu_scheduler.pdf
http://joshaas.net/linux/linux_cpu_scheduler.pdf
http://www-03.ibm.com/systems/resources/systems_power_software_i_perfmgmt_underthehood.pdf
http://www-03.ibm.com/systems/resources/systems_power_software_i_perfmgmt_underthehood.pdf
http://portal.nersc.gov/project/training/files/XE6-feb-2011/Architecture/Opteron-Memory-Cache.pdf
http://portal.nersc.gov/project/training/files/XE6-feb-2011/Architecture/Opteron-Memory-Cache.pdf
http://portal.nersc.gov/project/training/files/XE6-feb-2011/Architecture/Opteron-Memory-Cache.pdf
http://dl.acm.org/citation.cfm?id=2379776.2379780
http://dl.acm.org/citation.cfm?id=2379776.2379780
http://dl.acm.org/citation.cfm?id=2379776.2379780
http://dl.acm.org/citation.cfm?id=1148109.1148167
http://dl.acm.org/citation.cfm?id=1148109.1148167
http://dl.acm.org/citation.cfm?id=63404.63407
http://dl.acm.org/citation.cfm?id=63404.63407
http://dl.acm.org/citation.cfm?id=328885.329238
http://dl.acm.org/citation.cfm?id=328885.329238
http://dl.acm.org/citation.cfm?id=328885.329238
http://dl.acm.org/citation.cfm?id=6513.6514
http://dl.acm.org/citation.cfm?id=6513.6514
http://dl.acm.org/citation.cfm?id=6513.6514
http://www.worldcat.org/isbn/0596003307

REFERENCES

[61] Y. Luo, L.K. John, and L. Eeckhout. Self-monitored

adaptive cache warm-up for microprocessor sim-

ulation. 16th Symposium on Computer Architecture and

High Performance Computing, 2004. 37

[62] D. Muntz and P. Honeyman. Multi-level Caching in

Distributed File Systems, 1991. 37

[63] P.R. Panda, H. Nakamura, N.D. Dutt, and A. Nicolau.

Augmenting loop tiling with data alignment for

improved cache performance. IEEE Transactions on

Computers, 48(2):142–149, 1999. 37

[64] P. Ranjan Panda, H. Nakamura, N.D. Dutt, and A. Nico-

lau. A data alignment technique for improving

cache performance. In Proceedings International Con-

ference on Computer Design VLSI in Computers and Pro-

cessors, pages 587–592. IEEE Comput. Soc, 1997. 37

[65] P V S RAO. Computer system architecture. PHI Learning

Pvt. Ltd., 2008. 38

[66] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminat-

ing receive livelock in an interrupt-driven kernel.

ACM Transactions on Computer Systems, 15(3):217–252,

August 1997. 38

[67] Anant Agarwal. Performance tradeo↵s in multi-

threaded processors. Parallel and Distributed Systems,

IEEE Transactions on, 3(5):525–539, 1992. 39

[68] Torbjorn Granlund. Instruction latencies and

throughput for AMD and Intel x86 processors,

2012. 43

[69] Faydoc. RDTSC - Read Time-Stamp Counter, 2014.

44

[70] Peter Kankowski. Performance measurements with

RDTSC, 2012. 44

[71] Gabriele Paolini. Code Execution Times: IA-32/IA-

64 Instruction Set Architecture, 2010. 45

[72] Ganesh Balakrishnan, Ralph M. Begun, and Bejoy Kochu-

parambil. Understanding Intel Xeon 5600 Series

Memory Performance and Optimization in IBM

System x and BladeCenter Platforms, 2010. 49

[73] Intel. An Introduction to the Intel QuickPath In-

terconnect (press release), 2009. 49

[74] David Levinthal. Performance Analysis Guide for

Intel Core i7 Processor and Intel Xeon 5500 pro-

cessors, 2009. 49

[75] Intel. ARK — Intel Xeon Processor L5530 (8M

Cache, 2.40 GHz, 5.86 GT/s Intel QPI), 2009. 50

[76] Intel. Software Techniques for Shared-Cache

Multi-Core Systems (press release), 2012. 50

[77] ICHEC. Fionn and Stoney Documentation, 2014. 52

[78] Larry McVoy. LMbench - Tools for Performance

Analysis, 2012. 54

[79] Joshua Ruggiero. Measuring Cache and Memory La-

tency and CPU to Memory Bandwidth, 2008. 55

[80] Jack Doweck. Inside Intel Core Microarchitecture

and Smart Memory Access. 2006. 88

[81] Jack Doweck. Inside Intel Core Microarchitecture,

2006. 88

[82] Daniel Molka, Daniel Hackenberg, Robert Schone, and

Matthias S. Muller. Memory performance and cache

coherency e↵ects on an intel nehalem multipro-

cessor system. In Parallel Architectures and Compila-

tion Techniques - Conference Proceedings, PACT, pages

261–270, 2009. 90

[83] Chona Guiang Kent Milfeld, Kazushige Goto, Avi

Purkayastha and Karl Schulz. E↵ective Use of Multi-

Core Commodity Systems in HPC, 2007. 90

[84] Tribuvan Kumar Prakash. Performance Analysis of In-

tel Core 2 Duo Processor. PhD thesis, Louisiana State

University, 2007. 90

[85] Xiaowei Shen. Design and Verification of Adaptive Cache

Coherence Protocols. PhD thesis, Massachusetts Institute

of Technology, 2000. 91

[86] Bertrand Putigny, Brice Goglin, and Denis Barthou.

A Benchmark-based Performance Model for

Memory-bound HPC Applications. In International

Conference on High Performance Computing & Simula-

tion, 2014. 91, 93

[87] X. Vera. E�cient and accurate analytical model-

ing of whole-program data cache behavior. IEEE

Transactions on Computers, 53(5):547–566 3, May 2004.

91

[88] Calin Cacaval and David A. Padua. Estimating cache

misses and locality using stack distances. In Pro-

ceedings of the 17th annual international conference on Su-

percomputing - ICS ’03, page 150, New York, New York,

USA, June 2003. ACM Press. 91

[89] Vincent M. Weaver, Dan Terpstra, and Shirley Moore.

Non-determinism and overcount on modern hard-

ware performance counter implementations. In

2013 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), pages 215–

224. IEEE, April 2013. 93

[90] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and

John Fitzgerald. Formal methods: Practice and ex-

perience. ACM Computing Surveys, 41:1—-36, 2009.

95

[91] Pieter Philippaerts, Jan Tobias Mühlberg, Willem Pen-

ninckx, Jan Smans, Bart Jacobs, and Frank Piessens. Soft-

ware verification with VeriFast: Industrial case

studies. In Science of Computer Programming, 2013. 95

98

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.2975&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.2975&rep=rep1&type=pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=752655
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=752655
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=628925
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=628925
http://dl.acm.org/citation.cfm?id=263326.263335
http://dl.acm.org/citation.cfm?id=263326.263335
https://gmplib.org/~tege/x86-timing.pdf
https://gmplib.org/~tege/x86-timing.pdf
http://faydoc.tripod.com/cpu/rdtsc.htm
http://www.strchr.com/performance_measurements_with_rdtsc
http://www.strchr.com/performance_measurements_with_rdtsc
http://www.intel.com/content/www/us/en/intelligent-systems/embedded-systems-training/ia-32-ia-64-benchmark-code-execution-paper.html
http://www.intel.com/content/www/us/en/intelligent-systems/embedded-systems-training/ia-32-ia-64-benchmark-code-execution-paper.html
http://public.dhe.ibm.com/common/ssi/ecm/en/xsw03075usen/XSW03075USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/en/xsw03075usen/XSW03075USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/en/xsw03075usen/XSW03075USEN.PDF
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://ark.intel.com/products/41755/Intel-Xeon-Processor-L5530-8M-Cache-2_40-GHz-5_86-GTs-Intel-QPI
http://ark.intel.com/products/41755/Intel-Xeon-Processor-L5530-8M-Cache-2_40-GHz-5_86-GTs-Intel-QPI
https://software.intel.com/en-us/articles/software-techniques-for-shared-cache-multi-core-systems/?wapkw=smart+cache
https://software.intel.com/en-us/articles/software-techniques-for-shared-cache-multi-core-systems/?wapkw=smart+cache
https://www.ichec.ie/support/documentation/
http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/
http://www.intel.la/content/dam/www/public/us/en/documents/white-papers/ia-cache-latency-bandwidth-paper.pdf
http://www.intel.la/content/dam/www/public/us/en/documents/white-papers/ia-cache-latency-bandwidth-paper.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc18/3_Tues/HC18.S9/HC18.S9T4.pdf
http://www.linuxclustersinstitute.org/conferences/archive/2007/PDF/milfeld_24433.pdf
http://www.linuxclustersinstitute.org/conferences/archive/2007/PDF/milfeld_24433.pdf
http://www.bioperf.org/Pra07.pdf
http://www.bioperf.org/Pra07.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-471/memo471.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-471/memo471.pdf
http://hal.archives-ouvertes.fr/docs/00/98/55/98/PDF/benchmark_based_memory_model.pdf
http://hal.archives-ouvertes.fr/docs/00/98/55/98/PDF/benchmark_based_memory_model.pdf
http://www.computer.org/csdl/trans/tc/2004/05/t0547.html
http://www.computer.org/csdl/trans/tc/2004/05/t0547.html
http://dl.acm.org/citation.cfm?id=782814.782836
http://dl.acm.org/citation.cfm?id=782814.782836
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6557172
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6557172
http://epubs.cclrc.ac.uk/work-details?w=50220
http://epubs.cclrc.ac.uk/work-details?w=50220

Appendices

99

Appendix A

Source code of pagefaults fopen.c

#include <s t d i o . h>
#include <s t d l i b . h>
#include <uni s td . h>
#include <s t r i n g . h>

unsigned long long g e t p a g e f a u l t (int cho i c e) ;
char ⇤ f i l e t o s t r i n g (char ⇤ f) ;

struct p r o c s t a t s {
int pid ; // %d
char comm[2 5 6] ; // %s
char s t a t e ; // %c
int ppid ; // %d
int pgrp ; // %d
int s e s s i o n ; // %d
int t t y n r ; // %d
int tpg id ; // %d
unsigned long f l a g s ; // %lu
unsigned long long min f l t ; // %lu
unsigned long long cm in f l t ; // %lu
unsigned long long maj f l t ; // %lu
unsigned long long cma j f l t ; // %lu
unsigned long utime ; // %lu
unsigned long st ime ; // %lu
long cutime ; // %l d
long cst ime ; // %l d
long p r i o r i t y ; // %l d
long n i c e ; // %l d
long num threads ; // %l d

100

long i t r e a l v a l u e ; // %l d
unsigned long s t a r t t ime ; // %lu
unsigned long v s i z e ; // %lu
long r s s ; // %l d
unsigned long r l im ; // %lu
unsigned long s t a r t c ode ; // %lu
unsigned long endcode ; // %lu
unsigned long s t a r t s t a c k ; // %lu
unsigned long kstkesp ; // %lu
unsigned long ks tke ip ; // %lu
unsigned long s i g n a l ; // %lu
unsigned long blocked ; // %lu
unsigned long s i g i g n o r e ; // %lu
unsigned long s i g c a t ch ; // %lu
unsigned long wchan ; // %lu
unsigned long nswap ; // %lu
unsigned long cnswap ; // %lu
int e x i t s i g n a l ; // %d
int proc e s s o r ; // %d
unsigned long r t p r i o r i t y ; // %lu
unsigned long po l i c y ; // %lu
unsigned long long d e l a y a c c t b l k i o t i c k s ; // %l l u

} ;

int main (int argc , const char ⇤⇤ argv) {
unsigned long long pageFaultsB = ge t p a g e f a u l t (1) ;

// Read f i l e
FILE ⇤ fp ;

// Open f i l e .
i f ((fp = fopen (”/proc / i n t e r r up t s ” , ” r ”)) == NULL) {

return (�1);
}

//Close the f i l e i f s t i l l open .
i f (fp) {

f c l o s e (fp) ;
}
// Finished read ing f i l e

unsigned long long pageFaultsA = ge t p a g e f a u l t (1) ;

101

A. SOURCE CODE OF PAGEFAULTS FOPEN.C

p r i n t f (”1 s t time /proc / i n t e r r up t s : Before : %l l u After :
%l l u \n” , pageFaultsB , pageFaultsA) ;

pageFaultsB = ge t p a g e f a u l t (1) ;

// Open f i l e .
i f ((fp = fopen (”/proc / i n t e r r up t s ” , ” r ”)) == NULL) {

return (�1);
}

//Close the f i l e i f s t i l l open .
i f (fp) {

f c l o s e (fp) ;
}
// Finished read ing f i l e

pageFaultsA = ge t p a g e f a u l t (1) ;

p r i n t f (”2nd time /proc / i n t e r r up t s : Before : %l l u After :
%l l u \n” , pageFaultsB , pageFaultsA) ;

pageFaultsB = ge t p a g e f a u l t (1) ;

// Open f i l e .
i f ((fp = fopen (”/proc /iomem” , ” r ”)) == NULL) {

return (�1);
}

//Close the f i l e i f s t i l l open .
i f (fp) {

f c l o s e (fp) ;
}
// Finished read ing f i l e

pageFaultsA = ge t p a g e f a u l t (1) ;

p r i n t f (”1 s t time /proc /iomem : Before : %l l u After :
%l l u \n” , pageFaultsB , pageFaultsA) ;

pageFaultsB = ge t p a g e f a u l t (1) ;

// Open f i l e .
i f ((fp = fopen (”/proc /iomem” , ” r ”)) == NULL) {

102

return (�1);
}

//Close the f i l e i f s t i l l open .
i f (fp) {

f c l o s e (fp) ;
}
// Finished read ing f i l e

pageFaultsA = ge t p a g e f a u l t (1) ;

p r i n t f (”2nd time /proc /iomem : Before : %l l u After :
%l l u \n” , pageFaultsB , pageFaultsA) ;

char ⇤ s t r 1 = f i l e t o s t r i n g (”/proc / i n t e r r up t s ”) ;
char ⇤ s t r 2 ;

while (strcmp (st r1 , s t r 2) != 0) {
pageFaultsB = ge t p a g e f a u l t (1) ;
s t r 2 = f i l e t o s t r i n g (”/proc / i n t e r r up t s ”) ;
pageFaultsA = ge t p a g e f a u l t (1) ;

}

p r i n t f (”/proc / i n t e r r up t s changed : Before : %l l u After :
%l l u \n” , pageFaultsB , pageFaultsA) ;

}

int r e ad s t a t (char ⇤ f i l ename , int pid , struct p r o c s t a t s ⇤ s) {
#ifndef APPLE

const char ⇤ format =
”%d %s %c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu

%ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu
%lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %d %d %lu
%lu %l l u ” ;

FILE ⇤ fp ;

fp = fopen (f i l ename , ” r ”) ;
i f (fp) {

i f (42
== f s c a n f (fp , format , &s�>pid , s�>comm, &s�>s ta te ,

&s�>ppid , &s�>pgrp , &s�>s e s s i on , &s�>t ty nr ,
&s�>tpgid , &s�>f l a g s , &s�>minf l t , &s�>cmin f l t ,

103

A. SOURCE CODE OF PAGEFAULTS FOPEN.C

&s�>maj f l t , &s�>cmaj f l t , &s�>utime , &s�>stime ,
&s�>cutime , &s�>cst ime , &s�>p r i o r i t y , &s�>nice ,
&s�>num threads , &s�>i t r e a l v a l u e ,
&s�>s ta r t t ime , &s�>vs i z e , &s�>r s s , &s�>r l im ,
&s�>s ta r t code , &s�>endcode , &s�>s t a r t s t a ck ,
&s�>kstkesp , &s�>kstke ip , &s�>s i gna l , &s�>blocked ,
&s�>s i g i gno r e , &s�>s i g ca t ch , &s�>wchan , &s�>nswap ,
&s�>cnswap , &s�>e x i t s i g n a l , &s�>proces sor ,
&s�>r t p r i o r i t y , &s�>po l i cy ,
&s�>d e l a y a c c t b l k i o t i c k s)) {

i f (fp) {
f c l o s e (fp) ;

}
return 1 ;

} else {
i f (fp) {

f c l o s e (fp) ;
}
return 0 ;

}
} else {

return 0 ;
}

#else
return �1;

#endif
}

// 1 � minor , 2 � major
unsigned long long g e t p a g e f a u l t (int cho i c e) {
#ifndef APPLE

struct p r o c s t a t s s tatsData ;
int s e l f = getp id () ; // Process ID

char buf [2 5 6] ;
s p r i n t f (buf , ”/proc/%d/ s t a t ” , s e l f) ;

// Read data from the s t a t s f i l e
r e ad s t a t (buf , s e l f , &statsData) ;

i f (cho i c e == 1) {
return s tatsData . m in f l t ;

// re turn s ta tsData�>cm in f l t) ;

104

} else i f (cho i c e == 2) {
return s tatsData . ma j f l t ;

// re turn s ta tsData�>cma j f l t ;
}

#else
return �1;

#endif
}

// For s t o r i n g con ten t s o f the f i l e .
stat ic char r e s u l t [8] [8 ⇤ 1024] ;
// Counter o f how many f i l e s have been s t o r ed in r e s u l t .
stat ic int cy c l e = 0 ;

char ⇤ f i l e t o s t r i n g (char ⇤ f) {
FILE ⇤ fp ;
char temp [5 1 2] ;

c y c l e++;
i f (c y c l e == 8)

cy c l e = 0 ;

// Open f i l e .
i f ((fp = fopen (f , ” r ”)) == NULL) {

return (char ⇤) (�1);
}

// I n i t i a l i s e the r e s u l t
r e s u l t [c y c l e] [0] = 0 ;

// Search f o r s t r and e x t r a c t numeric .
while (f g e t s (temp , 512 , fp) != NULL) {

s t r c a t (r e s u l t [c y c l e] , temp) ;
}

// Check i f t h e r e i s a memory l e a k .
i f (s t r l e n (r e s u l t [c y c l e]) > 8 ⇤ 1024) {

p r i n t f (”Memory e r r o r � s t r l e n (r e s u l t)==%lu ,
f i l e s i z e==%d\n” , s t r l e n (r e s u l t [c y c l e]) ,
8 ⇤ 1024) ;

i f (fp) {

105

A. SOURCE CODE OF PAGEFAULTS FOPEN.C

f c l o s e (fp) ;
}
e x i t (1) ;

}

//Close the f i l e i f s t i l l open .
i f (fp) {

f c l o s e (fp) ;
}

return &r e s u l t [c y c l e] [0] ;
}

106

Appendix B

Source code of

clock-gettime test.c

#include <s t d i o . h>
#include <s t d l i b . h>
#include <uni s td . h>
#include <s i g n a l . h>
#include <i n t t ype s . h>
#include <cpuid . h>
#include <sys / p r c t l . h>
#include <l i nux / p r c t l . h>
#include <time . h>

// Get the proces s ’ a b i l i t y to use the
// timestamp counter i n s t r u c t i o n
#ifndef PR GET TSC
#define PR GET TSC 25
#define PR SET TSC 26
// Allow the use o f the timestamp counter
define PR TSC ENABLE 1
// Throw a SIGSEGV ins t ead o f read ing the TSC
define PR TSC SIGSEGV 2
#endif

#define LOOPS 1024

const char ⇤ tsc names [] = { [0] = ” [not s e t] ” ,
[PR TSC ENABLE] = ”PR TSC ENABLE” ,
[PR TSC SIGSEGV] = ”PR TSC SIGSEGV” , } ;

107

B. SOURCE CODE OF CLOCK-GETTIME TEST.C

void s i g s e gv cb (int s i g) {
int t s c v a l = 0 ;

p r i n t f (” [SIG SEGV]\n”) ;
p r i n t f (” p r c t l (PR GET TSC, &t s c v a l) ; ”) ;
f f l u s h (stdout) ;

i f (p r c t l (PR GET TSC, &t s c v a l) == �1)
pe r ro r (” p r c t l ”) ;

p r i n t f (” t s c v a l == %s \n” , tsc names [t s c v a l]) ;
p r i n t f (” p r c t l (PR SET TSC , PR TSC ENABLE)\n”) ;
f f l u s h (stdout) ;
i f (p r c t l (PR SET TSC , PR TSC ENABLE) == �1)

pe r ro r (” p r c t l ”) ;

p r i n t f (” c l o ck g e t t ime () == ”) ;
}

int main (int argc , char ⇤⇤ argv) {
int t s c v a l = 0 ;
struct t imespec r1 , r2 , r3 , r4 , temp ;
struct t imespec r s [LOOPS] ;
int i , j ;

// Make sure t he r e i s no I /O pending from
// t h i s proces s

s l e e p (1) ;
ge t t ime (&r1) ;
ge t t ime (&r2) ;
ge t t ime (&r3) ;
ge t t ime (&r4) ;
// This (might) ensure t ha t we have a f u l l
// time quantum to execu te in � as we ge t

// re�schedu l ed a f t e r the s l e e p
us l e ep (1 0) ;
// the next few i n s t r u c t i o n s ge t pre�l oaded
// in t o i�cache
get t ime (&r1) ;
ge t t ime (&r2) ;
ge t t ime (&r3) ;
ge t t ime (&r4) ;

108

p r i n t f (”%l l u %l l u %l l u %l l u \n” , (unsigned long long)
r1 . tv nsec , (unsigned long long) r2 . tv nsec ,
(unsigned long long) r3 . tv nsec ,
(unsigned long long) r4 . t v n s e c) ;

p r i n t f (”%l l u %l l u %l l u \n” , (unsigned long long)
(r2 . t v n s e c � r1 . t v n s e c) , (unsigned long long)
(r3 . t v n s e c � r2 . t v n s e c) , (unsigned long long)
(r4 . t v n s e c � r3 . t v n s e c)) ;

p r i n t f (” c l o ck g e t t ime () == ”) ;
f f l u s h (stdout) ;

// Make sure t he r e i s no I /O pending from t h i s proces s
s l e e p (1) ;
// Use 2 l oops to pre load the i�cache and makes sure
// the r e w i l l be no page f a u l t s on the rs array
for (j = 0 ; j < 2 ; j++) {

for (i = 0 ; i < LOOPS; i++) {
get t ime (&r s [i]) ;

}
}
for (i = 1 ; i < LOOPS; i++)

p r i n t f (”%l l u ” , (unsigned long long)
r s [i] . t v n s e c � r s [i � 1] . t v n s e c) ;

p r i n t f (”\n”) ;
f f l u s h (stdout) ;
e x i t (EXIT SUCCESS) ;

}

// Get time in nano�seconds
int get t ime (struct t imespec ⇤ t imeStruct) {

i f (c l o ck g e t t ime (CLOCKMONOTONIC, t imeStruct) == �1) {
per ro r (” c l o ck g e t r e s ”) ;
return 0 ;

}
return 1 ;

}

109

Appendix C

Source code of the function void

test rdtsc(void)

// Test r d t s c
void t e s t r d t s c (void) {

// With CPUID
p r i n t f (”TEST OF RDTSC with CPUID\n”) ;

unsigned long long t [3 2] , prev ;
int i ;
for (i = 0 ; i < 32 ; i++)

t [i] = r d t s c o l d (1) ;

prev = t [0] ;
for (i = 1 ; i < 32 ; i++) {

p r i n t f (”%l l u [% l l u]\n” , t [i] , t [i] � prev) ;
prev = t [i] ;

}

p r i n t f (”Total=%l l u \n” , t [32 � 1] � t [0]) ;

// Without CPUID
p r i n t f (”\nTEST OF RDTSC without CPUID\n”) ;

for (i = 0 ; i < 32 ; i++)
t [i] = r d t s c o l d (0) ;

prev = t [0] ;
for (i = 1 ; i < 32 ; i++) {

110

p r i n t f (”%l l u [% l l u]\n” , t [i] , t [i] � prev) ;
prev = t [i] ;

}

p r i n t f (”Total=%l l u \n” , t [32 � 1] � t [0]) ;
}

111

Appendix D

Bash code for running lmbench

on the Xeon E5-2695 v2

#!/ bin / bash
#PBS � l nodes=1:ppn=24
#PBS � l wa l l t ime =5:00:00
#PBS �N lmbench
#PBS �A nuim01
#PBS �r n
#PBS �j oe
#PBS �m bea
#PBS �M pav lo . ba z i l i n s kyy@gmai l . com

cd $PBS O WORKDIR
OS=x86 64�l inux�gnu
CONFIG=CONFIG. r1 i1n5
RESULTS=r e s u l t s /$OS
BASE=../$RESULTS/ ‘uname �n ‘
EXT=0

i f [! �f ” . . / bin /$OS/$CONFIG”]
then echo ”No con f i g f i l e ?”

exit 1
f i
. . . / bin /$OS/$CONFIG

i f [! �d . . / $RESULTS]
then mkdir �p . . / $RESULTS
f i

112

RESULTS=$BASE.$EXT
while [�f $RESULTS]
do EXT=‘expr $EXT + 1 ‘

RESULTS=$BASE.$EXT
done

cd . . / bin /$OS
PATH=.: ${PATH} ; export PATH
export SYNCMAX
export OUTPUT
lmbench $CONFIG 2> . ./ ${RESULTS}

i f [X$MAIL = Xyes]
then echo Mail ing r e s u l t s

(echo ���� $RESULTS ���
cat . . / $RESULTS) | mail pavlo . baz i l inskyy@gmai l . com

f i
exit 0

113

Appendix E

Source code of the main function

of void test time int pf.c

int main (int argc , const char ⇤⇤ argv) {
int k ;
long sum ;
struct t imespec s ta r t , stop ;
int run = 10 ;

// Record t imes o f exper iments in the run .
unsigned long long ⇤ time = mal loc (s izeof (

unsigned long long) ⇤ run) ;
i f (time == NULL) {

p r i n t f (”Error with a l l o c a t i n g space f o r the array \n”) ;
e x i t (1) ;

}

// Caculate the average durat ion o f an i n t e r r u p t
p r i n t f (”INTERRUPTS\n\ntime ,num\n”) ;
int i = 0 ;
for (i = 0 ; i < run ; ++i) {

unsigned long long i n t e r r up t sBe f o r e ;
unsigned long long i n t e r r up t sA f t e r ;

// Warmup
i n t e r r up t sA f t e r = s e a r c h i n f i l e (

”/proc / i n t e r r up t s ” , ”LOC: ” , 1) ;
i n t e r r up t sBe f o r e = in t e r r up t sA f t e r ;

114

while (i n t e r r up t sBe f o r e == in t e r r up t sA f t e r)
i n t e r r up t sBe f o r e = s e a r c h i n f i l e (”

/proc / i n t e r r up t s ” , ”LOC: ” , 1) ;

// Create i n t e r r u p t s
do {

// Record time be f o r e caus ing the i n t e r r u p t
ge t t ime ns (& s t a r t) ;
i n t e r r up t sA f t e r = s e a r c h i n f i l e (

”/proc / i n t e r r up t s ” , ”LOC: ” , 1) ;
} while (i n t e r r up t sA f t e r � i n t e r r up t sBe f o r e != 1) ;

// Record time a f t e r caus ing the i n t e r r u p t
ge t t ime ns (&stop) ;

// How many i n t e r r u p t s occurred
int numInterrupts = i n t e r r up t sA f t e r �

i n t e r r up t sBe f o r e ;

// Record time wi th i n t e r r u p t s
unsigned long long t imeWithInterupts =

c a l c u l a t e t ime n s (s ta r t , stop) ;

p r i n t f (”%d,% l l u \n” , t imeWithInterupts , numInterrupts) ;
// Record time d i f f e r e n c e over a number o f i n t e r r u p t s
time [i] = timeWithInterupts / numInterrupts ;

}
p r i n t f (”1 i n t e r r up t takes (average from %d runs) :

%l l u \n” , run , average t ime (time , run)) ;

// Caculate the average durat ion o f a page f a u l t
p r i n t f (”\nPAGE FAULTS\n\ntime ,num\n”) ;
for (i = 0 ; i < run ; ++i) {

unsigned long long pfBe fo re ;
unsigned long long p fAf t e r ;

// Warmup
struct p r o c s t a t s s t a t f i l e =

g e t p a g e f a u l t f i l e () ;
p fA f t e r = g e t p a g e f a u l t (s t a t f i l e , 1) ;
p fBe fo re = pfAf t e r ;

while (p fBe fo re == pfAf t e r) {

115

E. SOURCE CODE OF THE MAIN FUNCTION OF VOID

TEST TIME INT PF.C

s t a t f i l e = g e t p a g e f a u l t f i l e () ;
p fBe fo re = g e t p a g e f a u l t (s t a t f i l e , 1) ;

}

// Record time be f o r e caus ing a page f a u l t
ge t t ime ns (& s t a r t) ;

// Create page f a u l t s
do {

s t a t f i l e = g e t p a g e f a u l t f i l e () ;
p fA f t e r= g e t p a g e f a u l t (s t a t f i l e , 1) ;

}while (p fA f t e r � pfBe fo re == 0) ;

// Record time a f t e r caus ing a page f a u l t
ge t t ime ns (&stop) ;

// How many minor page f a u l t s occurred
int numPf = pfAf t e r � pfBe fo re ;
// Record time wi th page f a u l t s
unsigned long long timeWithPf =

ca l c u l a t e t ime n s (s ta r t , s top) ;

// Record time d i f f e r e n c e over a number o f page f a u l t s
p r i n t f (”%d,% l l u \n” , timeWithPf , numPf) ;
time [i] = timeWithPf / numPf ;

}
p r i n t f (”1 i n t e r r up t takes (average from %d runs) :

%l l u \n” , run , average t ime (time , run)) ;

f r e e (time) ;
return sum ;

}
}

116

Appendix F

Source code of the experiment

with threads residing on the

same core

/⇤
⇤ EXPERIMENT 2
⇤
⇤/

void exper iment 2 (int n) {
// Al igned array f o r manipu la t ing data
long ⇤ tes tAr = a l i g n l o n g a r r a y (s izeof (long) ⇤ n) ;

// Wrap in format ion t ha t has to be passed to a pthread
struct argStructType ⇤ argSt ruc t = mal loc (s izeof (

struct argStructType)) ;
argStruct�>exper imentId = 2 ;
argStruct�>n = n ;
argStruct�>te s tAr = testAr ;

p thread mutex in i t (&mut , NULL) ; // I n i t i a l i s e the mutex .

// Create p threads
rc = pthr ead c r ea t e (&thread1 , NULL, e2 pthread main1 ,

(void ⇤) a rgSt ruc t) ;
i f (rc) {

p r i n t f (”ERROR; return code from pthr ead c r ea t e ()
i s %d\n” , rc) ;

e x i t (�1);

117

F. SOURCE CODE OF THE EXPERIMENT WITH THREADS
RESIDING ON THE SAME CORE

}

// Join threads
pth r ead j o i n (thread1 , NULL) ;
p th r ead j o i n (thread2 , NULL) ;

// Fin i sh
f r e e (tes tAr) ;
// Free memory a l l o c a t e d f o r gener i c argument s t r u c t
f r e e (a rgSt ruc t) ;
pthread mutex destroy(&mut) ;

}

// Sender . This thread sends data
void ⇤ e2 pthread main1 (void ⇤ argSt ruc t) {

// Pin to the f i r s t core o f the f i r s t CPU.
p i n t h r e ad t o c o r e (0) ;

// Unpack arguments
struct argStructType ⇤ args =

(struct argStructType ⇤) a rgSt ruc t ;

// Lock mutex .
pthread mutex lock(&mut) ;

// Create the 2nd thread
rc = pthr ead c r ea t e (&thread2 , NULL, e2 pthread main2 ,

(void ⇤) a rgSt ruc t) ;
i f (rc) {

p r i n t f (”ERROR; return code from pthr ead c r ea t e ()
i s %d\n” , rc) ;

e x i t (�1);
}

// Work wi th shared data
int i = 0 ;
for (i = 0 ; i < args�>n ; ++i) {

args�>te s tAr [i] = 3 l ;
}

pthread mutex unlock(&mut) ; // Lock mutex .

return ((void ⇤) 1) ;

118

}

// Receiver . This thread r e c e i v e s data
void ⇤ e2 pthread main2 (void ⇤ argSt ruc t) {

// Pin to the f i r s t core o f the f i r s t CPU.
p i n t h r e ad t o c o r e (0) ;

// Unpack arguments
struct argStructType ⇤ args =

(struct argStructType ⇤) a rgSt ruc t ;

// Lock mutex .
pthread mutex lock(&mut) ;

// Work wi th shared data
int i = 0 ;
long temp ; // For assignment o f va l u e s .
for (i = 0 ; i < args�>n ; ++i) {

temp = args�>tes tAr [i] ;
}

// Lock mutex .
pthread mutex unlock(&mut) ;

return ((void ⇤) 1) ;
}

119

Appendix G

Makefile used to run experiments

CC =gcc
IFLAGS =�I
WFLAG1 = �Wall
WFLAG2 = �Werror
WFLAG3 = �Wextra
WFLAGS = $ (WFLAG1)
OFLAGS = �g �O0
DFLAGS = # �Doptions
UFLAGS = # Set on make command l i n e on ly
CFLAGS = $ (SFLAGS) $ (DFLAGS) $ (IFLAGS) $ (OFLAGS) $ (WFLAGS) $ (UFLAGS)
LIBS =
DEPS =test . h hr t imer . h f i l e w o r k e r . h conf . h exper iments . h t e s t env . h
OBJ =test . o hr t imer . o f i l e w o r k e r . o exper iments . o t e s t env . o

UNAME S := $ (s h e l l uname �s)
i f e q ($ (UNAME S) , Linux)

LIBS += � l r t �l p thread �lm
end i f
i f e q ($ (UNAME S) , Darwin)

DEPS += clock get t ime mac . h
OBJ += clock get t ime mac . o

end i f

%.o : %.c $ (DEPS)
$ (CC) �c �g �o $@ $< $ (CFLAGS) $ (LIBS)

test : $ (OBJ)
$ (CC) �o $@ $ˆ $ (LIBS)

120

.PHONY: c l ean

c l ean :
rm �f ⇤ . o ⇤˜

121

Appendix H

Average duration of interrupts

and minor page faults, Xeon 5130

INTERRUPTS
time ,num
84547 ,1
154798 ,1
84397 ,1
84743 ,1
84797 ,1
96676 ,1
101176 ,1
650527 ,1
95336 ,1
99946 ,1
1 i n t e r r up t takes (average from 10 runs) : 153694

PAGE FAULTS
time ,num
42207 ,1
41603 ,1
41320 ,1
47684 ,1
41624 ,1
41336 ,1
41315 ,1
46944 ,1
41336 ,1
41293 ,1

122

1 page f a u l t takes (average from 10 runs) : 42666

123

Appendix I

Average duration of interrupts

and minor page faults, Xeon

E5-2695 v2

INTERRUPTS
time ,num
315246 ,1
332646 ,1
313228 ,1
314809 ,1
319510 ,1
314532 ,1
315445 ,1
318588 ,1
368649 ,1
315614 ,1
1 i n t e r r up t takes (average from 10 runs) : 322826
PAGE FAULTS
time ,num
19733 ,1
26440 ,1
19987 ,1
23632 ,1
18098 ,1
23189 ,1
18420 ,1
18427 ,1
25780 ,1

124

23624 ,1
1 page f a u l t takes (average from 10 runs) : 21733

125

Appendix J

Results of Experiment 1, filtered

data, Xeon 5130

Information on the numbers of interrupts and minor page faults for first three runs of

each iteration of the experiment is given. Selected rows were removed. The original file

that contains information on all 10 runs of each of 235 sub-experiments of each iteration

of the experiment and presents data on the numbers of recorded major page faults, may

be found at: https://github.com/Hollgam/cache-mt/tree/master/results/nuim_

clean-1-0.csv.

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
8 1088 0 6 0 2 0 2
16 1056 0 2 0 2 0 2
32 1041 0 2 0 2 0 2
64 1045 0 2 0 2 0 2
128 1023 0 2 0 2 0 2
256 996 0 2 0 2 0 2
512 1003 0 2 0 2 0 2
1024 1104 0 2 0 2 0 2
1184 1079 0 2 0 2 0 2
1344 1086 0 2 0 2 0 2
1504 1082 0 2 0 2 0 2
1664 1093 0 2 0 2 0 2
1824 1086 0 2 0 2 0 2
1984 1080 0 2 0 2 0 2
2144 1095 0 2 0 2 0 2
3104 1077 0 2 0 2 0 2
4224 1111 0 2 0 2 0 2

126

https://github.com/Hollgam/cache-mt/tree/master/results/nuim_clean-1-0.csv
https://github.com/Hollgam/cache-mt/tree/master/results/nuim_clean-1-0.csv

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
5664 1076 0 2 0 2 0 2
7104 1131 0 2 0 2 0 2
9664 1174 0 2 0 2 0 2
16064 1191 0 2 0 2 0 2
22464 1167 0 2 0 2 0 2
30464 1179 0 2 0 2 0 2
32064 1138 0 2 0 2 0 2
33664 1122 0 2 0 2 0 2
44864 1166 0 2 0 2 0 2
59264 1133 0 2 0 2 0 2
70464 1113 0 2 0 2 0 2
112064 1119 0 2 0 2 0 2
144064 2258 0 3 0 2 0 2
176064 1143 0 2 0 2 0 2
208064 1192 0 2 0 2 0 2
240064 1138 0 2 0 2 0 2
256064 1220 0 2 0 2 0 2
272064 1123 0 2 0 2 0 2
288064 2140 0 3 0 2 0 2
384064 1152 0 2 0 2 0 2
448064 1197 0 2 0 2 0 2
512064 1148 0 2 0 2 0 2
704064 1161 0 2 0 2 0 2
1120064 2169 0 3 0 2 0 2
1600064 2382 0 3 0 2 0 2
2080064 2491 0 3 0 2 0 2
2720064 2242 0 3 0 2 0 2
3520064 2188 0 3 0 2 0 2
3840064 2141 0 3 0 2 0 2
4000064 2154 0 3 0 2 0 2
4160064 2780 0 3 0 2 0 2
4320064 2085 0 3 0 2 0 2
4480064 2176 0 3 0 2 0 2
4640064 2070 0 3 0 2 0 2
5280064 2132 0 3 0 2 0 2
7200064 2095 0 3 0 2 0 2
8000064 2107 0 3 0 2 0 2
11200064 2493 0 3 0 2 0 2
16000064 2443 0 3 0 2 0 2
22400064 2495 0 3 0 2 0 2
28800064 2155 0 3 0 2 0 2
30400064 2450 0 3 0 2 0 2

127

J. RESULTS OF EXPERIMENT 1, FILTERED DATA, XEON 5130

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
32000064 2471 0 3 0 2 0 2
40000064 32292 0 3 0 3 0 3
51200064 31479 0 3 0 3 0 3
60800064 32334 0 3 0 3 0 3
73600064 32801 0 3 0 3 0 3
80000064 33042 0 3 0 3 0 3
128000064 33696 0 3 0 3 0 3

128

Appendix K

Results of Experiment 1, filtered

data, Xeon E5-2695 v2

Information on the numbers of interrupts and minor page faults for first three runs of

each iteration of the experiment is given. Selected rows were removed. The original file

that contains information on all 10 runs of each of 235 sub-experiments of each iteration

of the experiment and presents data on the numbers of recorded major page faults,

may be found at: https://github.com/Hollgam/cache-mt/tree/master/results/

ichec_clean-1-0.csv.

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
8 975 0 4 1 2 1 2
16 964 1 2 0 2 0 2
32 1018 0 2 0 2 0 2
64 970 0 2 0 2 1 2
128 881 0 2 0 2 0 2
256 891 0 2 0 2 0 2
512 798 0 2 0 2 0 2
1024 1066 0 2 0 2 0 2
1184 1025 0 2 0 2 0 2
1344 1018 0 2 0 2 0 2
1504 1007 0 2 0 2 0 2
1664 970 0 2 0 2 1 2
1824 1015 1 2 0 2 0 2
1984 985 0 2 0 2 1 2
2144 1019 0 2 0 2 0 2
3104 963 0 2 0 2 1 2
4224 975 0 2 0 2 0 2

129

https://github.com/Hollgam/cache-mt/tree/master/results/ichec_clean-1-0.csv
https://github.com/Hollgam/cache-mt/tree/master/results/ichec_clean-1-0.csv

K. RESULTS OF EXPERIMENT 1, FILTERED DATA, XEON E5-2695
V2

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
5664 978 0 2 0 2 0 2
7104 963 0 2 0 2 0 2
9664 994 0 2 0 2 0 2
16064 1017 0 2 0 2 0 2
22464 981 0 2 0 2 0 2
30464 976 0 2 0 2 0 2
32064 976 0 2 1 2 0 2
33664 988 0 2 0 2 0 2
44864 1010 1 2 0 2 0 2
59264 1004 0 2 0 2 0 2
70464 948 0 2 0 2 0 2
112064 953 0 2 0 2 0 2
144064 1613 0 3 0 2 0 2
176064 1004 0 2 0 2 0 2
208064 1025 0 2 0 2 0 2
240064 978 0 2 1 2 0 2
256064 992 0 2 0 2 0 2
272064 998 0 2 0 2 0 2
288064 1718 0 3 1 2 0 2
384064 987 0 2 0 2 0 2
448064 1001 0 2 0 2 0 2
512064 987 0 2 0 2 0 2
704064 1009 0 2 0 2 0 2
1120064 1537 0 3 0 2 0 2
1600064 1756 0 3 0 2 1 2
2080064 1536 0 3 0 2 0 2
2720064 1563 0 3 0 2 0 2
3520064 1772 0 3 1 2 0 2
3840064 1960 0 3 0 2 0 2
4000064 1718 0 3 0 2 1 2
4160064 1622 0 3 0 2 0 2
4320064 1683 0 3 0 2 1 2
4480064 1624 0 3 0 2 0 2
4640064 1691 0 3 0 2 0 2
5280064 1638 0 3 0 2 0 2
7040064 1656 0 3 0 2 1 2
8000064 1654 0 3 1 2 0 2
11200064 1951 0 3 0 2 1 2
16000064 1677 0 3 0 2 0 2
22400064 1051 1 3 0 2 0 2
28800064 1658 0 3 0 2 0 2
30400064 1713 0 3 0 2 0 2

130

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
32000064 1900 0 3 0 2 1 2
40000064 0 0 4 0 4 0 4
51200064 0 0 4 1 4 0 4
60800064 0 0 4 0 4 0 4
73600064 0 0 4 0 4 0 4
80000064 0 0 4 0 4 0 4
128000064 0 0 4 0 4 0 4

131

Appendix L

Results of running the memory

benchmark from lmbench

N (MB) N (B) Xeon 5130 (ns) Xeon E5-2695 v2 (ns)
0.00049 514 1.506 1.25
0.00098 1028 1.506 1.25
0.00195 2045 1.506 1.25
0.00293 3072 1.506 1.25
0.00391 4100 1.506 1.25
0.00586 6145 1.506 1.25
0.00781 8189 1.506 1.251
0.00977 10245 1.506 1.251
0.01172 12289 1.506 1.251
0.01367 14334 1.508 1.251
0.01562 16379 1.508 1.251
0.01758 18434 1.507 1.251
0.01953 20479 1.509 1.25
0.02148 22523 1.509 1.25
0.02344 24579 1.51 1.251
0.02539 26623 1.506 1.25
0.02734 28668 1.506 1.253
0.0293 30723 1.506 1.251
0.03125 32768 1.507 1.251
0.03516 36868 7.028 3.752
0.03906 40957 7.028 3.752
0.04297 45057 7.502 3.753
0.04688 49157 7.461 3.752
0.05078 53247 7.828 3.752
0.05469 57347 7.548 3.752

132

N (MB) N (B) Xeon 5130 (ns) Xeon E5-2695 v2 (ns)
0.05859 61436 7.373 3.752
0.0625 65536 7.353 3.752
0.07031 73725 7.663 3.753
0.07812 81915 7.912 3.752
0.08594 90115 7.926 3.752
0.09375 98304 8.024 3.752
0.10156 106493 7.909 3.752
0.10938 114693 8.068 3.752
0.11719 122883 7.964 3.752
0.125 131072 8.078 3.752
0.14062 147451 8.546 3.753
0.15625 163840 8.068 8.124
0.17188 180229 8.059 5.661
0.1875 196608 8.072 5.796
0.20312 212987 8.07 5.991
0.21875 229376 8.073 5.752
0.23438 245765 8.072 11.571
0.25 262144 8.055 12.09
0.28125 294912 8.346 11.182
0.3125 327680 8.288 11.869
0.34375 360448 8.466 12.544
0.375 393216 8.062 13.226
0.40625 425984 8.757 15.121
0.4375 458752 8.301 15.116
0.46875 491520 8.564 15.568
0.5 524288 8.351 15.125
0.5625 589824 8.698 15.112
0.625 655360 8.849 15.151
0.6875 720896 9.047 15.109
0.75 786432 9.056 15.12
0.8125 851968 9.49 15.115
0.875 917504 10.465 15.534
0.9375 983040 10.957 15.112
1 1048576 10.665 15.121
1.125 1179648 11.519 15.128
1.25 1310720 12.062 15.131
1.375 1441792 12.29 15.118
1.5 1572864 12.474 15.528
1.625 1703936 12.62 15.115
1.75 1835008 12.955 15.114
1.875 1966080 12.753 15.116
2 2097152 13.062 15.124

133

L. RESULTS OF RUNNING THE MEMORY BENCHMARK FROM
LMBENCH

N (MB) N (B) Xeon 5130 (ns) Xeon E5-2695 v2 (ns)
2.25 2359296 15.928 15.121
2.5 2621440 18.078 15.517
2.75 2883584 21.459 15.122
3 3145728 23.455 15.119
3.25 3407872 26.475 15.138
3.5 3670016 30.88 15.118
3.75 3932160 36.586 15.118
4 4194304 41.852 15.138
4.5 4718592 53.525 15.145
5 5242880 62.311 15.131
5.5 5767168 71.353 15.149
6 6291456 78.651 15.156
6.5 6815744 87.018 15.123
7 7340032 92.426 15.559
7.5 7864320 97.64 15.144
8 8388608 101.318 15.141
9 9437184 15.157
10 10485760 15.177
11 11534336 15.185
12 12582912 15.585
13 13631488 15.186
14 14680064 15.183
15 15728640 15.216
16 16777216 15.301
18 18874368 15.804
20 20971520 16.743
22 23068672 18.53
24 25165824 22.573
26 27262976 28.967
28 29360128 35.377
30 31457280 43.408
32 33554432 49.88
36 37748736 60.447
40 41943040 67.496
44 46137344 70.999
48 50331648 71.507
52 54525952 72.306
56 58720256 72.877
60 62914560 73.27

134

Appendix M

Results of Experiment 2,

unfiltered data, Xeon 5130

Information on the numbers of interrupts and minor page faults for first three runs of

each iteration of the experiment is given. Selected rows were removed. The original file

that contains information on all 10 runs of each of 235 sub-experiments of each iteration

of the experiment and presents data on the numbers of recorded major page faults, may

be found at: https://github.com/Hollgam/cache-mt/tree/master/results/nuim_

dirty-2-0.csv.

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
8 619266 0 6 0 2 0 2
16 584172 0 2 2 2 0 2
32 578280 0 2 0 2 0 2
64 580951 0 2 0 2 0 2
128 581254 0 2 0 2 0 2
256 581294 0 2 0 2 0 2
512 581624 0 2 0 2 0 2
1024 599460 1 2 0 2 0 2
1184 581814 0 2 0 2 0 2
1344 581196 0 2 0 2 0 2
1504 581347 0 2 0 2 0 2
1664 581280 0 2 0 2 0 2
1824 581274 0 2 0 2 0 2
1984 581261 0 2 0 2 0 2
2144 590534 0 2 1 2 1 2
3104 581827 0 2 0 2 0 2
4224 581856 0 2 0 2 0 2

135

https://github.com/Hollgam/cache-mt/tree/master/results/nuim_dirty-2-0.csv
https://github.com/Hollgam/cache-mt/tree/master/results/nuim_dirty-2-0.csv

M. RESULTS OF EXPERIMENT 2, UNFILTERED DATA, XEON 5130

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
5664 581984 0 2 0 2 0 2
7104 582451 0 2 0 2 0 2
9664 583131 0 2 1 2 1 2
16064 583962 0 2 0 2 0 2
22464 585060 0 2 0 2 0 2
28864 586132 0 2 0 2 0 2
30464 602738 1 2 0 2 0 2
32064 586887 0 2 0 2 0 2
33664 604500 0 2 0 2 0 2
44864 611441 1 2 0 2 0 2
59264 602685 1 2 0 2 0 2
70464 592831 0 2 0 2 0 2
112064 599328 0 2 0 2 0 2
144064 609556 0 6 0 2 0 2
176064 610426 0 2 0 2 0 2
208064 617255 0 2 0 2 0 2
240064 620824 0 2 0 2 0 2
256064 623362 0 2 0 2 0 2
272064 625996 0 2 0 2 0 2
288064 639406 1 6 0 2 0 2
384064 644297 0 2 0 2 0 2
448064 654963 0 2 0 2 0 2
512064 666424 0 2 0 2 0 2
704064 698085 0 2 0 2 0 2
1120064 861759 0 41 0 2 0 2
1600064 1000109 0 41 0 2 0 2
2080064 1269200 2 41 0 2 0 2
2720064 1690367 1 41 0 2 0 2
3520064 2383495 0 41 0 2 0 2
3840064 2734461 1 41 1 2 1 2
4000064 2880563 0 41 1 2 1 2
4160064 3071961 1 41 1 2 1 2
4320064 3226864 0 41 1 2 1 2
4480064 3353673 1 41 0 2 0 2
4640064 3488904 1 41 0 2 0 2
5280064 4231113 0 41 1 2 1 2
7040064 6179215 1 41 1 2 1 2
8000064 7174824 1 41 1 2 3 2
11200064 10755464 1 393 3 2 3 2
16000064 15353640 2 393 3 2 3 2
22400064 21550614 3 392 5 2 5 2
28800064 25464565 4 393 5 2 4 2

136

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
30400064 29179611 4 393 6 2 4 2
32000064 30692766 4 392 4 2 4 2
40000064 91816075 12 9768 12 9768 13 9768
51200064 117506902 15 12503 15 12503 15 12503
60800064 139374775 18 14846 19 14846 20 14846
73600064 168198043 21 17971 22 17971 23 17971
80000064 182867231 23 19534 24 19534 26 19534
128000064 291886303 38 31253 38 31253 37 31253

137

Appendix N

Results of Experiment 2,

unfiltered data, Xeon E5-2695 v2

Information on the numbers of interrupts and minor page faults for first three runs of

each iteration of the experiment is given. Selected rows were removed. The original file

that contains information on all 10 runs of each of 235 sub-experiments of each iteration

of the experiment and presents data on the numbers of recorded major page faults,

may be found at: https://github.com/Hollgam/cache-mt/tree/master/results/

ichec_dirty-2-0.csv.

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
8 1030536 0 4 0 2 0 2
16 1017101 0 2 0 2 0 2
32 1016779 0 2 0 2 1 2
64 1025470 0 2 0 2 1 2
128 1034344 0 2 1 2 0 2
256 1022265 0 2 0 2 0 2
512 1015446 1 2 1 2 0 2
1024 1014706 1 2 1 2 0 2
1184 1051483 0 2 0 2 1 2
1344 1017538 0 2 0 2 1 2
1504 1029012 0 2 0 2 0 2
1664 1011316 0 2 1 2 0 2
1824 1016544 1 2 1 2 1 2
1984 1013231 0 2 0 2 1 2
2144 1012184 0 2 0 2 0 2
3104 1039081 0 2 0 2 0 2
4224 1018107 1 2 0 2 0 2

138

https://github.com/Hollgam/cache-mt/tree/master/results/ichec_dirty-2-0.csv
https://github.com/Hollgam/cache-mt/tree/master/results/ichec_dirty-2-0.csv

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
5664 1049987 0 2 0 2 0 2
7104 1016715 0 2 0 2 0 2
9664 1027904 0 2 0 2 1 2
16064 1023074 1 2 1 2 0 2
22464 983132 0 2 0 2 0 2
30464 1011515 0 2 0 2 0 2
32064 992920 0 2 0 2 0 2
33664 1006246 0 2 0 2 0 2
44864 991329 0 2 0 2 0 2
59264 1055314 0 2 0 2 0 2
70464 1043101 1 2 0 2 0 2
112064 1051905 1 2 0 2 0 2
144064 1061435 1 6 0 2 0 2
176064 1073913 0 2 0 2 0 2
208064 1065894 0 2 0 2 0 2
240064 1072751 0 2 0 2 0 2
256064 1078002 0 2 0 2 0 2
272064 1081807 0 2 0 2 0 2
288064 1079374 0 6 0 2 0 2
384064 1104044 0 2 0 2 0 2
448064 1115606 0 2 0 2 0 2
512064 1145448 0 2 0 2 0 2
704064 1199155 0 2 0 2 0 2
1120064 1232264 0 41 0 2 0 2
1600064 1324047 0 41 0 2 0 2
2080064 1414881 0 41 0 2 0 2
2720064 1537678 0 41 0 2 0 2
3520064 1690114 1 41 1 2 0 2
3840064 1751979 0 41 0 2 0 2
4000064 1867139 1 41 1 2 1 2
4160064 1813562 0 41 0 2 0 2
4320064 1955584 1 41 1 2 1 2
4480064 1914871 0 41 0 2 0 2
4640064 1950666 1 41 1 2 1 2
5280064 2098993 0 41 1 2 1 2
7040064 2508360 0 41 0 2 4 2
8000064 2638315 0 41 0 2 0 2
11200064 3370217 0 393 1 2 1 2
16000064 4441729 0 393 1 2 1 2
22400064 5973842 1 392 1 2 1 2
28800064 7885239 2 393 1 2 1 2
30400064 8321660 1 393 1 2 3 2

139

N. RESULTS OF EXPERIMENT 2, UNFILTERED DATA, XEON
E5-2695 V2

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
32000064 8899784 2 392 1 2 1 2
80000064 50428118 14 627 6 627 5 627

140

Appendix O

Results of Experiment 3,

unfiltered data, Xeon 5130

Information on the numbers of interrupts and minor page faults for first three runs of

each iteration of the experiment is given. Selected rows were removed. The original file

that contains information on all 10 runs of each of 235 sub-experiments of each iteration

of the experiment and presents data on the numbers of recorded major page faults, may

be found at: https://github.com/Hollgam/cache-mt/tree/master/results/nuim_

dirty-3-0.csv.

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
8 601996 2 6 0 2 0 2
16 591022 0 2 0 2 0 2
32 588343 0 2 0 2 0 2
64 590107 0 2 0 2 0 2
128 597182 0 2 0 2 0 2
256 592795 0 2 1 2 0 2
512 591092 0 2 0 2 0 2
1024 590766 0 2 1 2 0 2
1184 590187 0 2 0 2 0 2
1344 589933 0 2 0 2 0 2
1504 589546 0 2 0 2 0 2
1664 589650 0 2 0 2 0 2
1824 590006 0 2 0 2 0 2
1984 598257 0 2 0 2 0 2
2144 595206 0 2 1 2 1 2
3104 590145 0 2 0 2 0 2
4224 589725 0 2 0 2 0 2

141

https://github.com/Hollgam/cache-mt/tree/master/results/nuim_dirty-3-0.csv
https://github.com/Hollgam/cache-mt/tree/master/results/nuim_dirty-3-0.csv

O. RESULTS OF EXPERIMENT 3, UNFILTERED DATA, XEON 5130

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
5664 612273 1 2 0 2 1 2
7104 606850 1 2 0 2 1 2
9664 591372 0 2 0 2 0 2
16064 599323 0 2 1 2 1 2
22464 592747 0 2 0 2 0 2
30464 610123 1 2 1 2 0 2
32064 594842 0 2 0 2 0 2
33664 604591 0 2 1 2 1 2
44864 609042 1 2 0 2 1 2
59264 599559 0 2 0 2 0 2
70464 601290 0 2 0 2 0 2
112064 618359 0 2 0 2 0 2
144064 617545 0 6 0 2 0 2
176064 619170 0 2 0 2 0 2
208064 624846 0 2 0 2 0 2
240064 631709 0 2 1 2 0 2
256064 657498 1 2 0 2 0 2
272064 633921 0 2 0 2 0 2
288064 645504 0 6 0 2 0 2
384064 653741 0 2 0 2 0 2
448064 665349 0 2 0 2 0 2
512064 673756 0 2 0 2 0 2
704064 705851 0 2 0 2 0 2
1120064 841053 0 41 0 2 0 2
1600064 996346 0 41 0 2 0 2
2080064 1325258 2 41 0 2 0 2
2720064 1716262 1 41 0 2 0 2
3520064 2421809 1 41 1 2 1 2
3840064 2664181 0 41 0 2 0 2
4000064 2786167 1 41 0 2 0 2
4160064 2944912 1 41 0 2 0 2
4320064 3110211 1 41 0 2 0 2
4480064 3308595 1 41 1 2 0 2
4640064 3469279 0 41 1 2 1 2
5280064 4196478 1 41 0 2 0 2
7040064 6122805 1 41 0 2 0 2
8000064 7216819 1 41 2 2 1 2
11200064 10713836 2 393 3 2 2 2
16000064 15383038 2 393 3 2 3 2
22400064 21478843 4 392 4 2 4 2
28800064 27574834 3 393 5 2 6 2
30400064 29090680 4 393 5 2 4 2

142

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
32000064 30587832 4 392 5 2 4 2
40000064 91494915 12 9768 12 9768 13 9768
51200064 117261793 15 12503 16 12503 16 12503
60800064 140262323 18 14846 18 14846 18 14846
73600064 167912731 21 17971 22 17971 22 17971
80000064 180547384 23 19534 24 19534 24 19534
128000064 215758434 36 31253 37 31253 39 31253

143

Appendix P

Results of Experiment 3,

unfiltered data, Xeon E5-2695 v2

Information on the numbers of interrupts and minor page faults for first three runs of

each iteration of the experiment is given. Selected rows were removed. The original file

that contains information on all 10 runs of each of 235 sub-experiments of each iteration

of the experiment and presents data on the numbers of recorded major page faults,

may be found at: https://github.com/Hollgam/cache-mt/tree/master/results/

ichec_dirty-3-0.csv.

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
8 1028934 1 4 1 2 0 2
16 1027292 0 2 0 2 0 2
32 1032230 0 2 0 2 0 2
64 1022156 0 2 0 2 0 2
128 1022138 0 2 0 2 0 2
256 1041187 0 2 0 2 0 2
512 1027599 1 2 1 2 1 2
1024 1051099 0 2 0 2 0 2
1184 1017721 0 2 0 2 0 2
1344 1036920 0 2 0 2 0 2
1504 1029928 0 2 0 2 0 2
1664 1017489 0 2 0 2 0 2
1824 1016941 0 2 0 2 0 2
1984 1018412 0 2 0 2 0 2
2144 1018587 0 2 0 2 0 2
3104 1034151 1 2 0 2 0 2
4224 1021787 0 2 0 2 1 2

144

https://github.com/Hollgam/cache-mt/tree/master/results/ichec_dirty-3-0.csv
https://github.com/Hollgam/cache-mt/tree/master/results/ichec_dirty-3-0.csv

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
5664 1017253 0 2 0 2 0 2
7104 1006029 0 2 1 2 0 2
9664 997130 0 2 0 2 0 2
16064 989427 1 2 1 2 0 2
22464 997972 0 2 0 2 0 2
30464 1006581 0 2 0 2 0 2
32064 996979 0 2 0 2 0 2
33664 1013160 0 2 0 2 0 2
44864 1003484 0 2 0 2 0 2
59264 1014041 1 2 1 2 1 2
70464 1007678 1 2 1 2 0 2
112064 1017765 0 2 0 2 0 2
144064 1040940 0 6 1 2 1 2
176064 1033918 0 2 0 2 0 2
208064 1045080 0 2 0 2 1 2
240064 1047508 0 2 1 2 1 2
256064 1059599 1 2 0 2 0 2
272064 1050195 0 2 0 2 0 2
288064 1052770 1 6 0 2 0 2
384064 1074396 0 2 0 2 0 2
448064 1088081 1 2 1 2 1 2
512064 1099764 0 2 0 2 0 2
704064 1149934 0 2 0 2 1 2
1120064 1238121 0 41 0 2 0 2
1600064 1335403 1 41 1 2 0 2
2080064 1423968 0 41 0 2 0 2
2720064 1563381 0 41 0 2 1 2
3520064 1711890 1 41 1 2 0 2
3840064 1755669 1 41 1 2 1 2
4000064 1793700 0 41 0 2 0 2
4160064 1847079 0 41 0 2 0 2
4320064 1894753 0 41 0 2 0 2
4480064 1893789 0 41 0 2 0 2
4640064 1923756 0 41 0 2 0 2
5280064 2030400 0 41 0 2 0 2
7040064 2390080 1 41 1 2 0 2
8000064 2574418 0 41 0 2 0 2
11200064 3331855 1 393 1 2 0 2
16000064 4370622 1 393 0 2 1 2
22400064 5866392 1 392 1 2 0 2
28800064 7849144 1 393 1 2 1 2
30400064 8369473 1 393 0 2 1 2

145

P. RESULTS OF EXPERIMENT 3, UNFILTERED DATA, XEON
E5-2695 V2

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
32000064 8974220 1 392 1 2 1 2
40000064 21104529 2 570 4 570 2 570
51200064 30283292 3 750 3 750 3 750
60800064 36494919 4 538 4 538 4 538
73600064 45910812 5 597 13 597 5 597
80000064 65943425 5 627 5 627 5 627
128000064 86075985 9 593 9 593 9 593

146

Appendix Q

Results of Experiment 4,

unfiltered data, Xeon 5130

Information on the numbers of interrupts and minor page faults for first three runs of

each iteration of the experiment is given. Selected rows were removed. The original file

that contains information on all 10 runs of each of 235 sub-experiments of each iteration

of the experiment and presents data on the numbers of recorded major page faults, may

be found at: https://github.com/Hollgam/cache-mt/tree/master/results/nuim_

dirty-4-0.csv.

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
8 1397017 1 10 0 6 0 6
16 1392631 0 6 0 6 0 6
32 1401596 1 6 0 7 0 6
64 1398981 0 6 0 6 0 6
128 1436929 1 6 0 6 0 6
256 1408738 0 6 1 6 0 6
512 1427410 0 6 0 6 0 6
1024 1410851 0 6 1 6 1 6
1184 1406710 0 6 0 6 0 6
1344 1410399 0 6 0 6 0 6
1504 1412462 0 6 0 6 0 6
1664 1416471 0 6 0 6 0 6
1824 1416144 0 6 0 6 0 6
1984 1452141 1 6 0 6 1 6
2144 1430587 0 6 1 6 1 6
3104 1440027 0 6 0 6 0 6
4224 1480252 0 6 1 6 1 6

147

https://github.com/Hollgam/cache-mt/tree/master/results/nuim_dirty-4-0.csv
https://github.com/Hollgam/cache-mt/tree/master/results/nuim_dirty-4-0.csv

Q. RESULTS OF EXPERIMENT 4, UNFILTERED DATA, XEON 5130

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
5664 1464481 0 6 0 6 0 6
7104 1485832 0 6 0 6 0 6
9664 1503113 0 6 1 6 0 6
16064 1509354 0 6 0 6 0 6
22464 1543867 1 6 0 6 1 6
30464 1529266 0 6 0 6 0 6
32064 1534090 1 6 0 6 0 6
33664 1533876 0 6 0 6 0 6
36864 1583109 1 6 0 6 0 6
38464 1557558 0 6 1 6 1 6
40064 1586430 0 6 1 6 1 6
41664 1548652 0 6 1 6 1 6
44864 1552199 0 6 0 6 0 6
59264 1573273 0 6 0 6 0 6
70464 1589045 0 6 0 6 0 6
112064 1614253 0 6 0 6 0 6
144064 1640271 1 10 0 6 0 6
176064 1664830 1 6 0 6 0 6
208064 1645885 0 6 0 6 0 6
240064 1657708 0 6 0 6 0 6
256064 1661406 0 6 0 6 0 6
272064 1710101 1 73 0 6 0 6
288064 1692838 1 6 0 6 0 6
384064 1706643 0 6 0 6 0 6
448064 1721851 0 6 0 6 0 6
512064 1783254 0 6 1 6 1 6
704064 1943788 1 10 1 6 1 6
1120064 2206729 0 45 1 6 1 6
1600064 2423628 2 45 1 6 1 6
2080064 2732883 0 45 0 6 0 6
2720064 3304969 1 45 1 6 1 6
3520064 4094494 1 46 0 6 0 6
3840064 4453770 2 45 1 6 1 6
4000064 4626890 0 45 1 6 1 6
4160064 4821171 0 45 1 6 1 6
4320064 4945555 2 45 1 6 1 6
4480064 5097888 1 45 1 6 1 6
4640064 5234799 1 45 0 6 0 6
5280064 6022661 1 45 1 6 1 6
7040064 7862694 2 45 1 6 2 6
8000064 8921407 2 45 1 6 1 6
11200064 12435094 2 397 2 6 2 6

148

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
16000064 1844674406958591899 2 397 2 6 2 6
22400064 23251461 3 396 4 6 5 6
28800064 29166607 4 397 4 6 3 6
30400064 30669320 4 397 5 6 4 6
32000064 32207199 4 396 4 6 4 6
40000064 1844674407035111662 13 9772 13 9772 12 9772
51200064 119335028 15 12507 15 12507 15 12507
60800064 141472125 17 14850 18 14850 18 14850
73600064 171039555 22 17975 22 17975 21 17975
80000064 185276806 23 19538 26 19538 23 19538
128000064 1844674407236115333 37 31257 38 31257 37 31257

149

Appendix R

Results of Experiment 4,

unfiltered data, Xeon E5-2695 v2

Information on the numbers of interrupts and minor page faults for first three runs of

each iteration of the experiment is given. Selected rows were removed. The original file

that contains information on all 10 runs of each of 235 sub-experiments of each iteration

of the experiment and presents data on the numbers of recorded major page faults,

may be found at: https://github.com/Hollgam/cache-mt/tree/master/results/

ichec_dirty-4-0.csv.

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
8 2548031 1 8 1 6 1 6
16 2522592 1 6 1 6 1 6
32 2527839 1 6 1 7 1 6
64 2454354 1 6 1 6 1 6
128 2494133 1 6 1 6 1 6
256 2581793 2 6 2 6 2 6
512 2519865 1 6 1 6 1 6
1024 2546838 2 6 1 6 1 6
1184 2527693 1 6 1 6 1 6
1344 2531010 1 6 3 6 2 6
1504 2602064 2 6 2 6 2 6
1664 2526871 1 6 1 6 1 6
1824 2508098 2 6 2 6 1 6
1984 2535332 1 6 1 6 2 6
2144 2373062 1 6 1 6 1 6
3104 2541866 1 6 1 6 1 6
4224 2546319 1 6 1 6 2 6

150

https://github.com/Hollgam/cache-mt/tree/master/results/ichec_dirty-4-0.csv
https://github.com/Hollgam/cache-mt/tree/master/results/ichec_dirty-4-0.csv

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
5664 2515585 1 6 1 6 1 6
7104 2544633 2 6 2 6 1 6
9664 2575154 2 6 2 6 2 6
16064 2521857 1 6 1 6 1 6
22464 2540439 2 6 2 6 1 6
30464 2554948 1 6 2 6 2 6
32064 2546059 1 6 2 6 2 6
33664 2578253 1 6 1 6 1 6
44864 2572658 2 6 2 6 2 6
59264 2574974 2 6 2 6 2 6
70464 2573646 1 6 1 6 1 6
112064 2527029 2 6 2 6 1 6
144064 2520386 1 10 1 6 1 6
176064 2520117 1 6 1 6 1 6
208064 2618397 2 6 2 6 2 6
240064 2608581 2 6 2 6 2 6
256064 2575350 1 6 1 6 1 6
272064 2495150 1 73 1 6 1 6
288064 2799116 2 6 3 3 1 6
384064 2636192 2 6 2 6 2 6
448064 2607630 1 6 1 6 1 6
512064 2678427 2 6 2 6 2 6
704064 2714094 2 10 2 6 2 6
1120064 2761824 2 45 1 6 1 6
1600064 2838096 1 45 1 6 1 6
2080064 2943301 1 45 1 6 1 6
2720064 3096922 1 45 1 6 2 6
3520064 3274884 1 46 1 6 2 6
3840064 3284221 2 45 2 6 1 6
4000064 3303512 1 45 2 6 2 6
4160064 3353371 1 45 1 6 1 6
4320064 3416279 2 45 2 6 1 6
4480064 3431566 2 45 2 6 2 6
4640064 3445297 2 45 2 6 2 6
5280064 3567552 2 45 2 6 2 6
7040064 3958893 2 45 2 6 1 6
8000064 4119581 1 45 1 6 2 6
11200064 4826867 1 397 2 6 2 6
16000064 5822610 2 397 1 6 2 6
22400064 7336956 2 396 2 6 2 6
28800064 9253199 2 397 2 6 2 6
30400064 9804653 3 397 2 6 2 6

151

R. RESULTS OF EXPERIMENT 4, UNFILTERED DATA, XEON
E5-2695 V2

N Time 1.INT 1.PFMIN 2.INT 2.PFMIN 3.INT 3.PFMIN
32000064 10413840 5 396 3 6 2 6
40000064 22009531 4 574 4 574 3 574
43200064 25096383 4 844 4 844 4 844
44800064 24804033 3 213 4 213 4 213
46400064 26792005 3 604 4 604 4 604
48000064 27835230 4 483 4 483 4 483
51200064 33574544 4 243 5 243 4 243
60800064 38195267 5 542 5 542 5 542
73600064 47715908 6 601 7 601 6 601
80000064 51843811 7 631 9 631 6 631
128000064 87720640 9 597 10 597 10 597

152

View publication statsView publication stats

https://www.researchgate.net/publication/282074873

	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 The Aim of the Thesis
	1.2 Dissertation Structure

	2 Related Work
	2.1 CPU
	2.2 Cache
	2.2.1 Cache Affinity
	2.2.2 Cache Latency and Throughput

	2.3 Benchmarks for Testing Performance of Cache in Multi-Core Systems

	3 Taxonomy and Model of Inter-Thread Communication
	3.1 Taxonomy of Inter-Thread Communication
	3.2 Model of Inter-Thread Communication

	4 Experimental Environment and Experiments
	4.1 Organisation of Solution
	4.2 Experiments
	4.2.1 Cycle-Level Experiments
	4.2.1.1 Experiment 0
	4.2.1.2 Experiment 1

	4.2.2 Application-Level Experiments
	4.2.2.1 Experiments 2 – 4

	4.2.3 Organisation of Experiments

	4.3 Configuring Experimental Environment
	4.3.1 Avoiding Overhead from Operating System
	4.3.2 Measuring Interrupts and Minor and Major Page Faults

	4.4 Timing
	4.4.1 Measuring Time at Nano-Second Accuracy
	4.4.1.1 Using clock_gettime(3)
	4.4.1.2 Using RDTSC/RDTSCP

	4.5 Support for Mac OS
	4.6 Measuring Duration of Interrupts and Minor Page Faults
	4.7 Dependability

	5 Conducting Experiments
	5.1 Hardware
	5.2 Constraints
	5.3 Experiments
	5.3.1 Running Experiments on Servers
	5.3.2 Execution of Experiments
	5.3.3 Cycle-Level Experiments. Experiments 0 and 1
	5.3.4 Application-Level Experiments. Experiments 2 – 4

	6 Results
	6.1 Cycle-Level Experiments
	6.1.1 Experiment 0
	6.1.2 Experiment 1
	6.1.3 Measuring Latency of Cache with lmbench

	6.2 Application-Level Experiments. Experiments 2 – 4
	6.3 Measuring Duration of Interrupts and Minor Page Faults

	7 Evaluation of Results
	7.1 Deriving Parameters in the Model
	7.1.1 Deriving Latency of Cache and Main Memory
	7.1.2 Applying Sizes of Cache and Memory to the Model
	7.1.3 Deriving Amount of Overhead from the OS
	7.1.4 Quantified Model

	7.2 Evaluation of the Model
	7.2.1 Accuracy of the Model
	7.2.2 Implications for Scheduling

	7.3 Possible Effects not Included in the Model
	7.4 Survey of Similar Results

	8 Conclusions and Future Work
	8.1 Limitations
	8.2 Future Work

	References
	Appendices
	A Source code of pagefaults_fopen.c
	B Source code of clock-gettime_test.c
	C Source code of the function void test_rdtsc(void)
	D Bash code for running lmbench on the Xeon E5-2695 v2
	E Source code of the main function of void test_time_int_pf.c
	F Source code of the experiment with threads residing on the same core
	G Makefile used to run experiments
	H Average duration of interrupts and minor page faults, Xeon 5130
	I Average duration of interrupts and minor page faults, Xeon E5-2695 v2
	J Results of Experiment 1, filtered data, Xeon 5130
	K Results of Experiment 1, filtered data, Xeon E5-2695 v2
	L Results of running the memory benchmark from lmbench
	M Results of Experiment 2, unfiltered data, Xeon 5130
	N Results of Experiment 2, unfiltered data, Xeon E5-2695 v2
	O Results of Experiment 3, unfiltered data, Xeon 5130
	P Results of Experiment 3, unfiltered data, Xeon E5-2695 v2
	Q Results of Experiment 4, unfiltered data, Xeon 5130
	R Results of Experiment 4, unfiltered data, Xeon E5-2695 v2

