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Abstract. In a crowdsourced experiment, the effects of distance and type of the 
approaching vehicle, traffic density, and visual clutter on pedestrians’ attention 
distribution were explored. 966 participants viewed 107 images of diverse traffic 
scenes for durations between 100 and 4000 ms. Participants’ eye-gaze data were 
collected using the TurkEyes method. The method involved briefly showing co-
decharts after each image and asking the participants to type the code they saw 
last. The results indicate that automated vehicles were more often glanced at than 
manual vehicles. Measuring eye gaze without an eye tracker is promising.  
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1 Introduction 

Visual attention has been studied extensively from the driver’s perspective. To drive 
safely, a driver needs to allocate attentional resources to relevant elements of the driving 
task [1], [2]. It is well established that humans examine visual scenes through a combi-
nation of task-driven (top-down) and stimulus-driven (bottom-up) attention [3]–[5]. For 
example, drivers often focus on the vanishing point of the road [3]. 

The number of pedestrian deaths in traffic fatalities is growing [6]. Most pedestrian 
casualties occur during road crossing and can be attributed to incorrect crossing deci-
sions [7]. A report by the Netherlands Institute for Road Safety (SWOV) expressed 
concerns about the lack of knowledge regarding the distractions of non-motorists [8]. 

Research findings concerning eye movements of drivers cannot necessarily be trans-
lated to pedestrians. For example, the notion of the vanishing point is irrelevant for 
pedestrians, who generally walk at low speed. However, a similar concept of the longest 
line of sight has been reported to receive pedestrians’ attention when navigating in a 
street environment [9]. Pedestrians also tend to look at the area around the horizon [10].  

The crossing decisions of pedestrians depend on the configuration of the traffic scene 
[11], [12], including the distance to approaching vehicles and traffic density [13]. Pe-
destrians are more attentive to the road when moving vehicles are present as compared 
to roads without traffic [14]. In a naturalistic eye-tracking study, Geruschat et al. [15] 
found that pedestrians’ eye and head movements depend on crossing phase (e.g., look-
ing at bollards, curbs, and lines while walking to the curb and looking at cars while 
standing; turning the head left and right) and crossing strategy (looking at traffic lights 
when waiting and looking at cars when crossing early). A study with pedestrians walk-
ing in a parking garage found that pedestrians’ eye movements are directed to specific 



features, such as the backs of parked vehicles, wheels, the ground, and the area around 
the driver [16].  

Eye trackers tend to be expensive and require participants to come to the laboratory. 
Fosco et al. [17] used the TurkEyes method for the crowdsourced collection of eye 
gazes from a browser without specialized hardware. This method assumes that the lo-
cation of the code reported by the participant corresponds to the last location in the 
preceding image the participant was looking at. 

This study aimed to understand the effect of the distance and type of the approaching 
vehicle, traffic density, and visual clutter on pedestrians’ visual attention. Diverse im-
ages of traffic scenes were presented to participants for different exposure times. The 
experiment was conducted in a crowdsourced setting to collect a large dataset from a 
diverse population.  

2 Method 

The research was approved by the Human Research Ethics Committee of the TU 
Delft. The experiment was conducted via the crowdsourcing platform Appen 
(https://appen.com). Participants first answered questions on demographics and driving 
behavior and then proceeded to the experiment, where they looked at images of traffic 
scenes from the perspective of a pedestrian standing on the pavement and facing the 
street in front. 107 stimuli were selected based on four parameters: 
1. Distance to the most prominent approaching vehicle (car or two-wheeler) [dist]: 0 

= short (n = 60), 1 = medium (n = 31), 2 = long (n = 16). In 104 images, the ap-
proaching vehicle was a car, whereas in 3 images, two-wheelers were labelled as 
the approaching vehicle. Prominence was assessed subjectively based on the lateral 
and longitudinal distance to the pedestrian (i.e., driving lane and distance to the 
crossing line, respectively). 

2. Traffic density [traf]: 0 = low (one moving vehicle; n = 32), 1 = medium (a few 
moving vehicles; n = 38), 2 = high (many moving vehicles; n = 37). 

3. Visual clutter [clut]: 0 = low (only stationary vehicles; n = 21), 1 = medium (sta-
tionary vehicles and a few other objects; n = 60), and 2 = high (stationary vehicles 
and many other objects; n = 26), where objects included people, traffic signs, shop 
signs, etc. Greenery did not qualify for clutter. Images with a large variety of objects 
(in terms of type or color) were classified to the high visual clutter category. 

4. Type of the approaching vehicle [veh]: manual (veh = 0; n = 81) or automated (veh 
= 1; n = 26). Automated vehicles could be recognized by sensory equipment on the 
roof. Of the 26 images with automated vehicles, 18 depicted various types of 
Waymo, 6 depicted Uber vehicles, and 2 were a vehicle of Lyft Self-Driving. 

The coding was performed manually by the second author. The stimuli were ex-
tracted frames from YouTube videos (https://youtube.com), purchased via Shutterstock 
(https://shutterstock.com), or downloaded from pxfuel (https://pxfuel.com). 

For each stimulus, participants were first presented with a fixation cross for 700 ms, 
followed by the stimulus for 100, 151, 227, 342, 515, 776, 1170, 1762, 2655, or 4000 
ms, as defined using a logarithmic scale. There were two groups of participants. In 
Group 1, participants saw the 107 stimuli only once, with a randomly picked duration 
for each stimulus. In Group 2, participants were presented with a subset of 10 stimuli 



 

 

for all 10 durations (i.e., 10 stimuli x 10 durations = 100 stimuli). For both groups, the 
presentation order of the stimuli was randomized. After each stimulus, a codechart with 
randomly-generated codes linked to coordinates on the stimulus was shown for 700 ms. 
The participants were then asked to input the code that they saw last. To prevent par-
ticipants from looking at the at the same area of the screen, four sentinel images requir-
ing the participant to focus on a particular segment on the screen were used (a concept 
introduced in [17]). Each sentinel image contained an oval with a face. 

The experiment was preceded by a training session containing five traffic scene im-
ages not included in the experiment and five sentinel images. The participants had to 
provide at least eight correct codes for the ten images. The participants who failed to 
complete the training twice were not allowed to participate in the experiment. All im-
ages (i.e., fixation cross, stimulus, codechart, sentinel) were 1280x720 px. After com-
pleting the experiment, a unique worker code was shown that the participant had to 
enter to the Appen platform to receive a reimbursement of 0.50 USD.  

Heatmaps based on kernel density estimation were created for each stimulus (gener-
ated by the seaborn library for Python with default settings [18]). One Area of Interest 
(AOI) of the most prominent approaching vehicle was manually created for each stim-
ulus on the Image Map Generator (https://image-map.net) by the first author (see Figure 
1 for an example). One stimulus contained two two-wheelers approaching simultane-
ously; these were included in the same single AOI. The surface area of the AOI 
[veh_area] was calculated in pixels for each stimulus. A Pearson correlation matrix of 
the image characteristics and number of gazes to the AOI was calculated among the 
107 images. The script for processing data was created in Python 3.8.5. 

 

 
Fig. 1. Example of an AOI around the most prominent approaching vehicle. 

3 Results 

Between December 3rd 2020 and February 3rd 2021, 3848 attempts to conduct the 
study were recorded, including people who failed the training session more than twice 



or did not reach the end of the experiment. 2000 persons completed the experiment. We 
excluded persons who did not read the instructions (N = 24), reported an age under 18 
years (N = 3), completed the study in less than 5 min (N = 75), participated more than 
once from the same IP address (data from the first run were retained) (N = 408), made 
more than two mistakes with sentinel images (N = 394), or provided more than 20% of 
codechart values with coordinates within a square of 100x100 px around the center of 
the stimulus (N = 448). After filtering, 966 participants remained (mean age 35.5 years, 
SD = 10.4 years; 635 males, 328 females, and 3 participants indicated that they pre-
ferred not to respond to the gender question). The mean time for conducting the exper-
iment was 35.3 min (SD = 18.3 min). The three most represented countries were Ven-
ezuela (N = 429), the United States (N = 86), and Russia (N = 71). The survey was 
awarded an overall satisfaction rating of 3.7 on a scale from 1 to 5 by 129 participants 
who completed the satisfaction survey. Groups 1 and 2 contained 839 and 127 partici-
pants, respectively. 

Figure 2 shows that the distribution of attention varied with exposure time. For this 
stimulus, the vehicle at a large distance, not in the center of the image, attracted more 
eye gazes at longer exposure times. Still, participants often focused on the center of the 
stimulus across all exposure times.  

 

  

  
Fig. 2. Exploration of a traffic scene in the stimulus with a vehicle at a large distance, low traffic 
density, and medium visual clutter for the exposure times of 100, 1170, 2655, and 4000 ms.  

Figure 3 shows heatmaps for four selected stimuli aggregated across all exposure 
times. It is evident that much attention was given to the center of the stimuli.  

Figure 4 shows aggregated counts of eye gazes on the object vehicle for all stimuli 
and all exposure times for all data and split by the four parameters: vehicle distance, 
traffic density, visual clutter, and vehicle type. It can be seen that the number of gazes 
to the AOI containing the vehicle plateaued after an exposure time of 342 ms. It can 
also be noticed that it took time for the participants to detect the vehicle when it was far 



 

 

away (see green bars at the top left figure, representing 5.1% of gazes for 100-ms du-
rations, and 9.1% for 4000-ms durations). 

 

  

  
Fig. 3. Heatmaps of four selected stimuli.  
 

 
Fig. 4. Aggregated counts of eye gazes on the object vehicle for values of the (a) dis-
tance to the vehicle, (b) traffic density, (c) visual clutter, and (d) vehicle type. 

 



Figure 5 depicts, for the 107 stimuli, the correlations of the parameters dist, traf, clut, 
veh, veh_area, and the number of participants who gazed at the AOI for each of the ten 
exposure times. It can be seen that the AOI was less often gazed at in higher traffic 
density and more cluttered environments. Furthermore, automated vehicles attracted 
greater attention than manual vehicles, which can be explained by the fact that the for-
mer were often presented in low-traffic-density (r = -0.39) and uncluttered (r = -0.34) 
environments. Finally, larger AOIs, which correspond to more nearby vehicles, at-
tracted more attention. 

 

  
Fig. 5. Correlations among stimulus characteristics and number of glances to the vehi-
cle (n = 107). 

4 Discussion 

In this crowdsourced study, we explored pedestrians’ visual attention with a large 
sample of participants. The focus was on four parameters of a typical traffic scene: (1) 
distance to the approaching vehicle, (2) traffic density, (3) visual clutter, and (4) type 
of approaching vehicle. 

We found that automated vehicles were more often glanced at than manual vehicles, 
which can be explained by the fact that images of automated vehicles were often taken 
from promotional material, with the automated vehicle being depicted in low-traffic-
density and uncluttered environments. Moreover, 21 of the 26 depicted automated ve-
hicles were white, which might have attracted attention. We also found that participants 
required some time to gaze towards the target vehicle. This result is not surprising as 
participants would need to refocus from the fixation cross to a location on the image 
and that fixation durations are typically about 250 ms.  

A known effect in simulated eye-tracking studies is the center bias [19]. Although 
care was taken to filter out people who exhibited unrealistic amounts of attention to the 



 

 

central part in the stimuli, our analysis still revealed such bias. This bias is reinforced 
by the fact that the most prominent vehicle was centered in many of the stimuli.  

Crowdsourcing is an efficient data collection method (see [20] for an overview of 15 
such studies). In certain cases, results are more robust than data obtained in a compara-
ble lab setting [21]. However, some people sign up for crowdsourced scientific experi-
ments purely because of monetary compensation without paying full attention to given 
instructions. This project employed a new data filtering method: we rejected work from 
participants who used the same worker code obtained at the end of experiment more 
than once. We recommend employing a combination of allocating unique worker codes 
and rejecting people that reuse them. 

We used a computer monitor, offering a limited field of view. Moreover, participants 
could not move through the environment. Previous research has expressed caution 
about the use of non-naturalistic data for examining pedestrians’ visual attention. Dong 
et al. [22] found differences in the durations of fixations when navigating or detecting 
objects in real-world versus simulated environments. The present experiment may be 
replicated in an on-road setting with the instruction to cross the road. 

The dataset in this research may be useful for answering follow-up research ques-
tions. For example, it may be used to examine the extent to which pedestrians observe 
the traffic scene using bottom-up (i.e., looking at salient features) or top-down attention 
mechanisms (i.e., looking at non-salient but task-relevant features) [3]. The participants 
in Group 2 were exposed to all durations for each of the presented stimuli. This may 
make it possible to conduct an autocorrelational analysis. Unlike the large body of lit-
erature focusing on the driver, no models of pedestrians’ visual attention and explora-
tion of traffic scenes appear to exist. The dataset could be explored for this purpose. In 
addition, the method may be expanded towards vulnerable road users such as cyclists, 
perhaps in combination with naturalistic data. Finally, the present dataset could be used 
to analyze national differences in looking behavior. 

Acknowledgement 

This research is supported by grant 016.Vidi.178.047 (2018–2024; “How should au-
tomated vehicles communicate with other road users?”), which is financed by the Neth-
erlands Organisation for Scientific Research (NWO). 

Supplementary Material 

Supplementary material with stimuli, their descriptions, and anonymized data are 
available at https://doi.org/10.4121/13614824. The code used for data processing and 
analysis is stored at https://github.com/bazilinskyy/gazes-crowdsourced. 

References 

1. Shinar, D.: Traffic Safety and Human Behavior. Emerald Group Publishing, UK (2017) 
2. Lappi, O., Rinkkala, P., Pekkanen, J.: Systematic Observation of an Expert Driver’s Gaze 



Strategy—An on-Road Case Study. Front. Psychol. 8, 620 (2017) 
3. Deng, T., Yang, K., Li, Y., Yan, H.: Where Does the Driver Look? Top-Down-Based Saliency 

Detection in a Traffic Driving Environment. IEEE Trans. Intell. Transp. Syst. 17, 2051-2062 
(2016) 

4. Katsuki, F., Constantinidis, C.: Bottom-Up and Top-Down Attention: Different Processes and 
Overlapping Neural Systems. The Neuroscientist 20, 509-521 (2014) 

5. Connor, C.E., Egeth, H.E., Yantis, S.: Visual Attention: Bottom-Up Versus Top-Down. Curr. 
Biol. 14, R850-R852 (2004) 

6. National Highway Traffic Safety Administration: Pedestrian Safety (2018) 
7. DaSilva, M.P., Smith, J.D., Najm, W.G.: Analysis of Pedestrian Crashes. Technical report 

DOT-VNTSC-NHTSA-02-02. National Highway Traffic Safety Administration (2003) 
8. Stelling, A., Hagenzieker, M.P. Afleiding in het Verkeer: Een Overzicht van de Literatuur. 

SWOV Institute for Road Safety Research (2012) 
9. Emo, B.: Seeing the Axial Line: Evidence From Wayfinding Experiments. Behav. Sci. 4, 167-

180 (2014) 
10. Foulsham, T., Walker, E., Kingstone, A.: The Where, What and When of Gaze Allocation in 

the Lab and the Natural Environment. Vis. Res. 51, 1920-1931 (2011) 
11. De Lavalette, B.C., Tijus, C., Poitrenaud, S., Leproux, C., Bergeron, J., Thouez, J.P.: Pedes-

trian Crossing Decision-Making: A Situational and Behavioral Approach. Saf. Sci. 47, 1248-
1253 (2009) 

12. Lévêque, L., Ranchet, M., Deniel, J., Bornard, J.C., Bellet, T.: Where Do Pedestrians Look 
When Crossing? A State of the Art of the Eye-Tracking Studies. IEEE Access 8, 164833-
164843 (2020) 

13. Rasouli, A., Tsotsos, J.K.: Autonomous vehicles that interact with pedestrians: A survey of 
theory and practice. IEEE Trans. Intell. Transport. Sys. 21, 900-918 (2019) 

14. Tapiro, H., Meir, A., Parmet, Y., Oron-Gilad, T.: Visual Search Strategies of Child-Pedestri-
ans in Road Crossing Tasks. In: De Waard, D., Brookhuis, K., Wiczorek, R., Di Nocera, F., 
Brouwer, R., Barham, P., Weikert, C., Kluge, A., Gerbino, W., Toffetti, A. (eds.) Proceedings 
of the Human Factors and Ergonomics Society Europe Chapter 2013 Annual Conference 
(2014) 

15. Geruschat, D.R., Hassan, S.E., Turano, K.A.: Gaze Behavior While Crossing Complex Inter-
sections. Optom. Vis. Sci. 80, 515-528 (2003) 

16. De Winter, J., Bazilinskyy, P., Wesdorp, D., De Vlam, V., Hopmans, B., Visscher, J., Dodou, 
D.: How Do Pedestrians Distribute Their Visual Attention When Walking Through a Parking 
Garage? An Eye-Tracking Study. Ergon. (2020) 

17. Fosco, C., Newman, A., Sukhum, P., Zhang, Y. B., Oliva, A., Bylinskii, Z.: How Many 
Glances? Modeling Multi-Duration Saliency. In: Workshop on Shared Visual Representations 
in Human and Machine Intelligence at NeurIPS (2019) 

18. Waskom, M.: seaborn.kdeplot-seaborn 0.11.1 documentation (2020) https://sea-
born.pydata.org/generated/seaborn.kdeplot.html 

19. Tawari, A., Kang, B.: A Computational Framework for Driver’s Visual Attention Using a 
Fully Convolutional Architecture. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 
887-894. IEEE Press, New York (2017) 

20. Bazilinskyy, P., Kyriakidis, M., Dodou, D., De Winter, J.: When Will Most Cars Be Able To 
Drive Fully Automatically? Projections of 18,970 Survey Respondents. Transp. Res. F: Traf-
fic Psychol. Beh. 64, 184-195 (2019) 

21. Bazilinskyy, P., De Winter, J.: Crowdsourced Measurement of Reaction Times To Audiovis-
ual Stimuli With Various Degrees of Asynchrony. Hum. Factors 60, 1192-1206 (2018) 

22. Dong, W., Liao, H., Liu, B., Zhan, Z., Liu, H., Meng, L., Liu, Y.: Comparing Pedestrians’ 
Gaze Behavior in Desktop and in Real Environments. Cartogr. Geogr. Inform. Sci. 47, 432-
451 (2020) 

 

View publication statsView publication stats

https://www.researchgate.net/publication/348960793

