Blinded windows and empty driver seats: The effects of automated vehicle characteristics on cyclists’ decision-making

Pavlo Bazilinskyy1, Dimitra Dodou2, Yke Bauke Eisma1, Willem Vlakveld3, Joost de Winter1

1Department of Cognitive Robotics, Delft University of Technology, Delft, The Netherlands
2Department of BioMechanical Engineering, Delft University of Technology, Delft, The Netherlands
3SWOV, The Hague, The Netherlands

Abstract
Automated vehicles (AVs) may feature blinded (i.e. blacked-out) windows and external human–machine interfaces (eHMI), and the driver may be inattentive or absent, but how these features affect cyclists is unknown. In a crowdsourcing study, participants viewed images of approaching vehicles from a cyclist’s perspective and decided whether to brake. The images depicted different combinations of traditional vehicles versus AVs, eHMI presence, vehicle approach direction, driver visibility/window-blinding, visual complexity of the surroundings, and distance to the cyclist (urgency). The results showed that the eHMI and urgency level had a strong impact on crossing decisions, whereas visual complexity had no significant influence. Blinded windows caused participants to brake for the traditional vehicle. A second crowdsourcing experiment aimed to clarify the findings of Experiment 1 by also requiring participants to detect the vehicle features. It was found that the eHMI ‘GO’ and blinded windows yielded high detection rates and that driver eye contact caused participants to continue pedalling. To conclude, blinded windows increase the probability that cyclists brake, and driver eye contact stimulates cyclists to continue cycling. Our findings, which were obtained with large international samples, may help elucidate how AVs (in which the driver may not be visible) affect cyclists' behaviour.

1 INTRODUCTION

About 70% of cycling fatalities occur as a result of a collision with a motorized vehicle [1]. A typical scenario is that the cyclist has right of way, and the approaching vehicle hits the cyclist perpendicularly at a road crossing [2, 3]. Common causes of such accidents are the driver’s failure to check the vehicle’s blind spot, improper visual scanning, and inattentiveness [3–5]. Automated vehicle (AV) technology could prevent these types of accidents by detecting the cyclist and adhering to the traffic rules by braking in time [6, 7].

Although AVs have the potential to prevent accidents, there is a risk that AVs may cause confusion or uncertainty with vulnerable road users [8, 9, 10]. In automated driving of SAE Level 3 and above [11], the person in the driver seat may not be paying attention to the road, whereas in Levels 4 and 5 automation, the driver seat might be empty [12] or the vehicle may feature a novel seating configuration without a driver seat at all (e.g. [13, 14]). In these cases, driver communication sources, such as eye contact, will be absent. Additionally, technology is under development that allows adjustment of window tinting or the windows to be used as displays [15–18]. These developments could prove useful for future AVs in which the occupants may want to customize their ride experience and secure privacy [19]. Currently, tinting of the windshield is prohibited in many countries or allowed to a limited extent, where typically a minimum visible light transmittance of 70% or 75% is used; at the same time, the permitted degree of blinding of the front side window varies greatly, from entirely banned down to only 20% light transmittance (e.g. [20]). Although fully blacked-out (i.e. blinded) windows are currently not allowed, it is possible that these rules will be relaxed when driverless vehicles are deployed, in which there is no benefit for other road users to see the vehicle occupants. As of present, it is unknown how blinded
windows would influence the decision-making of other road users, but it can be expected that blinded windows cause some confusion and hesitation.

Many current AVs are distinguishable from traditional vehicles by a lidar on the roof, distinctive branding, ‘self-driving’ signs (e.g. [12, 21]), or a distinctive pod-like shape (e.g. [22]). Previous online research suggests that cyclists are more certain that the vehicle has seen them if the vehicle is recognisable as an AV compared to when it is not [23]. These effects may be attributed to the fact that the omnidirectional sensors of an AV are able to detect the cyclist in the driver’s blind spot. More research is still needed to determine whether cyclists would behave more cautiously or less cautiously when encountering an AV compared to a traditional vehicle.

Several studies suggest that AVs should communicate using external human–machine interfaces (eHMIs). eHMIs can take various forms, including screens and light bars that depict instructions (e.g. [24–26]), intentions (e.g. [24, 27, 28]), or the automation mode (e.g. [29, 30]). Studies have shown that compared to AVs without eHMI, pedestrians feel safe and better informed when an eHMI is present [27, 29, 31] and are more inclined to cross when an eHMI indicates so (e.g. [26, 31, 32]). However, other studies showed that the effect of eHMIs is small compared to the effect of vehicle motion (e.g. [33–35]).

The efficacy of eHMIs may depend on the amount of visual information to be processed. Even though an eHMI may provide direct instructions or suggestions to a road user, the road user will still have to verify whether the eHMI’s message is valid by counterchecking the message with other cues in the environment. It could be overwhelming for a road user to make a crossing decision based on traffic rules, hazards, the driver’s presence and its behaviour, and the eHMI message, all at the same time. Visual demands could be particularly high if the environment is cluttered, such as in a city. A laboratory-based study by Tapiro et al. [36] showed that a visually dense environment led to missed crossing opportunities and visual attention dispersion by pedestrians. By extension, it is conceivable that eHMIs may be less effective in environments of higher visual complexity.

1.1 Study aims

Cycling safety is a concern in the Netherlands and many other countries [37]. As noted above, even though the cyclist may be moving on a designated bike path and have priority, it still regularly happens that the cyclist is hit because the driver of an approaching vehicle overlooks the cyclist or because the cyclist misunderstands the vehicle’s intentions [38].

In a previous online study, Vlakveld et al. [39] presented participants with animated video clips from a cyclist’s perspective. The results showed that participants more often decided to slow down when the approaching vehicle was an AV and less likely to slow down when the approaching AV communicated ‘GO’, compared to a traditional vehicle. Furthermore, Vlakveld et al. varied the urgency of the situation by ending the videos at different moments in time, an approach used by others before (e.g. [38]). It was found that the higher the urgency (i.e. the later the decision moment), the more often participants decided to slow down. Although the study of Vlakveld et al. is informative about the effects of vehicle appearance and urgency, the effects of the visibility of the driver, eye contact, driver presence, and visual complexity of the surroundings are yet to be established.

The aim of the current study was two-fold. First, we aimed to replicate the effects observed in Vlakveld et al. [39] regarding urgency level and vehicle type. More specifically, the study of Vlakveld et al. was conducted using Dutch participants; we aimed to examine whether the findings replicate in an international sample of participants. Our second aim was to examine the effects of blinded windows, driver presence, eye contact, and visual complexity of the surrounding environment. In our study, we measured not only brake/continue decisions but also participants’ response times.

Previous studies have evaluated the effects of AVs and eHMIs using virtual reality goggles (e.g. [40]), CAVE-based simulators (e.g. [41]), or real cars (e.g. Forke et al. [42]). However, these methods are not useful for tightly controlled evaluations using large sample sizes. We opted for a psychophysics-type method with demonstration video clips (as used in [39]) to give the participants a sense of the speed of the cyclist and approaching vehicle, followed by still images to which the participant had to respond. The advantage of using images is that they allow for controlled comparisons with a large number of repetitions. With video clips, on the other hand, the situation is continuously evolving, which may introduce additional sources of variance (e.g. participants may respond to features in the video which occurred earlier in time).

Two experiments were conducted. In Experiment 1, participants were asked to decide whether they would brake or continue pedalling. In Experiment 2, participants were again asked to make this decision and were also asked to respond to true/false statements that polled whether they had recognised specific AV features in the image, such as the presence of a driver and the blinded windows. Experiment 2 served to replicate Experiment 1, and acted as a validation check regarding whether participants acted based on what they saw in the image.

2 EXPERIMENT 1

2.1 Method

2.1.1 Stimuli

In total, 180 image stimuli were created: 2 traffic conflict types × 3 vehicle types × 3 window types × 2 visual complexity levels of the surroundings × 5 urgency levels. The experimental conditions are detailed in Table 1. Figure 1 shows examples of the images, featuring the three vehicle types, two visual complexity levels of the surroundings, and five urgency levels. Table 1
TABLE 1 Description of the experimental conditions

<table>
<thead>
<tr>
<th>Type</th>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflict</td>
<td>Vehicle Left</td>
<td>The vehicle approached the intersection from the left and was about to cross the cycling path. The cycling path was separated from the main road by a lawn or pavement.</td>
</tr>
<tr>
<td></td>
<td>Vehicle Right</td>
<td>The vehicle approached the intersection from the right and was about to cross the cycling path. The lane on which the vehicle was driving was separated by a verge with a sign on a pole. Further details about the conflict scenarios, including top-down views, are provided by Vlakveld et al. [39].</td>
</tr>
<tr>
<td>Vehicle</td>
<td>Automated GO</td>
<td>A white vehicle with a sticker ‘Google’ on its side, a sensory tower on its roof, and an eHMI on the roof with the message ‘GO’.</td>
</tr>
<tr>
<td></td>
<td>Automated</td>
<td>A white vehicle with a sticker ‘Google’ on its side, a sensory tower on its roof, and no eHMI. As Vlakveld et al. [39] pointed out, the automated Google vehicle in the videos is no longer in use. Nowadays, these vehicles are called Waymo and look differently. However, we assumed that participants would associate the Google logo with an AV.</td>
</tr>
<tr>
<td></td>
<td>Traditional</td>
<td>A blue vehicle with no sticker, no sensory tower, and no eHMI. The traditional vehicle had a different (but still neutral) colour and a different brand than the AVs, because our goal was to assess the effect of AV appearance relative to a traditional vehicle in its entirety (i.e. not just testing the effect of the stickers or sensory tower).</td>
</tr>
<tr>
<td>Windows</td>
<td>Driver</td>
<td>Transparent windows, with a driver present. In SAE Level 3 automation and above, the driver is likely not to pay attention to the driving task. Accordingly, for the Automated and Automated GO vehicles, the ‘driver’ stared downwards (suggesting he was texting) and was relatively hard to see for the cyclist. The driver of the traditional vehicle looked straight ahead and turned his head in the direction of the cyclist when approaching the intersection (see Table 2).</td>
</tr>
<tr>
<td></td>
<td>Blinded</td>
<td>Blinded windows, as a result of which no driver was visible.</td>
</tr>
<tr>
<td></td>
<td>No driver</td>
<td>Transparent windows, no driver present. This condition may occur in SAE Level 4 or 5 automation.</td>
</tr>
<tr>
<td>Visual complexity of surroundings</td>
<td>Rural (low)</td>
<td>A rural road with greenery and a few buildings.</td>
</tr>
<tr>
<td></td>
<td>Urban (high)</td>
<td>An urban road with buildings in the style of a European city centre. Note that the road layout was the same for the rural and urban road; only the visual surroundings were changed.</td>
</tr>
<tr>
<td>Urgency (time to conflict, TTC)</td>
<td>1.5 s</td>
<td>Urgency was varied by extracting frames from the video with 0.2 s increments. The distance between the location of the vehicle for two consecutive urgency levels was about 0.78 m (corresponding to a driving speed of 14 km/h). A TTC of 0.7 s corresponds to the moment of the smallest distance to the vehicle; at this moment, the front of the vehicle was about 2.6 m from the estimated collision point (centre of the cycling path). In theory, at 14 km/h, the approaching vehicle could come to a full stop in 0.5 s (assuming a deceleration of 8 m/s^{2}), and hence even for the short TTC of 0.7 s, it may still be ambiguous to the cyclist whether or not the car would stop in time. Note that at TTC = 0.7 s, the cyclist would crash into the side of the vehicle after about 2.5 s if the cyclist would not brake (based on [39]).</td>
</tr>
</tbody>
</table>

TABLE 2 Description of covariates of the urgency factor

<table>
<thead>
<tr>
<th>Vehicle right</th>
<th>TTC</th>
<th>Turn indicator</th>
<th>Eye contact*</th>
<th>Vehicle left</th>
<th>TTC</th>
<th>Turn indicator</th>
<th>Eye contact*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5 s</td>
<td>Off</td>
<td>Yes</td>
<td>1.5 s</td>
<td>Off</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3 s</td>
<td>Off</td>
<td>No</td>
<td>1.3 s</td>
<td>Off</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 s</td>
<td>Off</td>
<td>No</td>
<td>1.1 s</td>
<td>Off</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.9 s</td>
<td>On</td>
<td>No</td>
<td>0.9 s</td>
<td>Off</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.7 s</td>
<td>On</td>
<td>No</td>
<td>0.7 s</td>
<td>Off</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

The presence of the turn indicator and eye contact varied with the progression of the driving scene, as in the videos used by Vlakveld et al. [39].

TTC, time to conflict.

*Eye contact only for the traditional vehicle.
provides an overview of the covariates (turn indicator, eye contact) of the five urgency levels.

The images showed a traffic situation from a cyclist’s perspective with an approaching vehicle. The traffic situation concerned an intersection without traffic lights and with a designated cycling path. Shark teeth were present on the road, meaning that the cyclist had right of way. The selected types of conflict are known to frequently result in bicycle–vehicle crashes (e.g. [2, 3]). The images in which the driver was present were frames extracted from videos used in Vlakveld et al. [39]. The driver was removed, or the windows were blinded using Adobe Photoshop.

2.1.2 Crowdsourcing experiment

The research was approved by the Human Research Ethics Committee of the TU Delft. The participants subscribed to the online study through the crowdsourcing service Appen (https://appen.com). Participants became aware of this research through one of many channel websites (e.g. https://www.ysense.com) where our study was available in a list of other projects available for completion. We allowed 2000 contributors from all countries to participate. It was not permitted to complete the study more than once with the same worker ID. A payment of USD 0.30 was offered for the completion of the study. The experiment was created using jsPsych (i.e. https://www.jspsych.org [43]).

On the top of the page, contact information was provided, and the purpose of the study was described as ‘to investigate how cyclists respond to approaching cars’. Participants were informed that they could contact the investigators to ask questions about the study and that they had to be at least 18 years old. Information about anonymity and voluntary participation was provided as well. Participants first answered demographic questions, such as about age, gender, and driving experience. They were then asked to leave the questionnaire by clicking on a link that opened a webpage with the experiment and were presented with the following instructions: ‘In the following images, you will see a traffic situation from the perspective of a cyclist. In each image, a car is approaching you. Sometimes this car is a self-driving car, and sometimes it is a normal car. Your task is to indicate what you, as a cyclist, would do: Brake (press ‘B’) or Continue Pedaling (press ‘P’). You will view 90 images. Observe the scene carefully before pressing the ‘B’ or ‘P’ key’. The participants were not given information about the eHMI, road signage, or applicable traffic rules, and were not instructed to respond as fast as possible.
The participants had to respond to a random 90 of the 180 images presented in three batches of 30 images in a random order. In other words, each image was seen by about 50% of the participants. Participants were exposed to 90 instead of all 180 images to limit the total duration of the experiment. Below each image, it was mentioned: ‘Imagine that you are the cyclist. Press ‘B’ if you would brake, press ‘P’ if you would continue pedaling’. After responding, a blank screen was shown for a random duration between 500 and 1500 ms. Participants did not receive feedback on their responses.

Before each batch of images, the participants were shown an example video from a randomised set of six videos (Automated GO, Automated, and Traditional Vehicle, in the Vehicle Left or Vehicle Right conflicts), which allowed them to get an indication of the speed of the vehicle and the cyclist. In the videos, the vehicle was moving at a speed of approximately 14 km/h, and the speed of the bicycle was approximately 17 km/h. The example videos depicted the same vehicle types as the image stimuli, with transparent windows and driver present, but in different surroundings (outskirts of a town) and traffic situation. After each batch of images, participants were shown the following text: ‘You have now completed 30 images out of 90. When ready press ‘C’ to proceed to the next batch’. At the end of the experiment, the participants were shown a unique code. They were required to enter the code as proof that they completed the experiment to receive their remuneration.

An important question in empirical research is what the unit of analysis should be. In educational research, for example, it has to be decided whether the unit of analysis is ‘students’, ‘classes’, or ‘schools’ (e.g. [45]). In the present study, the unit of analysis was ‘images’ (instead of ‘participants’). The reason is that (1) we were interested in understanding differences between images, and (2) there were a large number of images (n = 180) with many participants per image. We calculated, for each of the 180 images, the percentage of participants who indicated they would brake and the median response time across participants. Multiple regression analyses were performed to examine which image characteristics were predictive of the percentage of participants who indicated they would brake and the median response time across participants. More specifically, the regression weights for a given independent variable indicate the contribution of that variable in predicting the dependent variable (i.e. braking percentage, median response time) with all other independent variables held constant [46].

In cases where we compared the percentage of participants who braked between image conditions (e.g. images with the driver visible vs blinded windows vs no driver), we used within-subject confidence intervals, computed at the level of participants [47]. In short, this approach involves subtracting the participants’ grand mean before computing confidence intervals. Confidence intervals were calculated based on a normal distribution, an assumption that seems legitimate for typical binary response data, especially when responses are averaged over multiple trials [48].

Results

The 2000 participants took part between 2 and 4 May 2020. After the survey, participants had the option to complete a satisfaction survey offered by the crowdsourcing service Appen. This survey allows researchers to judge whether participants found the task and its instructions clear and the payment satisfactory. The results of this survey showed an overall satisfaction rating of 4.3 on a scale from 1 (‘very dissatisfied’) to 5 (‘very satisfied’) (103 participants completed this optional survey).

Before proceeding with the analysis, we removed participants who appeared not to have taken the task seriously (i.e. participants who indicated not to have read the instructions and participants who completed the study in less than 5 min, which was deemed the minimal reasonable time to complete the study) and participants with incomplete data (e.g. due to database storage errors). Furthermore, if it appeared that a participant conducted the study more than once from the same IP address, only the first response of that participant was kept. In total, 740 of 2000 responses were removed, most of whom because of duplicate IP addresses, thus leaving 1260 participants. A mapping error had occurred, where one of the 180 images (Vehicle Left, Traditional, Blinded, Urban, TTC = 1.5 s) was shown instead of another image (Vehicle Left, Traditional, Driver, Urban, TTC = 1.5 s) for the first 293 participants. The data for this image for these participants (0.08% of the total data) were removed.

The sample consisted of 830 males, 427 females, and three participants who selected ‘I prefer not to respond’ to the gender question. The mean age of the participants was 36.5 years (SD = 11.5, min = 18, max = 73). The participants resided in 63 countries, with the most represented countries being Venezuela (n = 544), USA (n = 75), Russia (n = 71), Egypt (n = 63), and Ukraine (n = 59). Their primary mode of transportation was mostly a private vehicle (n = 751), followed by public transportation (n = 284), walking/cycling (n = 126), motorcycle (n = 88), and ‘other’ (n = 3).

First, the percentage of participants who indicated that they would brake (called henceforth braking percentage) was computed for each of the 180 images. These percentages ranged between 28.2% (Vehicle Right, Automated GO, No Driver, Urban, TTC = 1.5 s) and 82.3% (Vehicle Left, Traditional, Driver, Urban, TTC = 0.7 s). The overall mean of the braking percentage of the 180 images was 58.9%, and the standard deviation was 14.0%.

The results of the regression analysis for the braking percentage are provided in Table 3. These results show that the baseline braking percentage was 59.6% (i.e. Vehicle Left, lowest urgency, lowest visual complexity, Traditional Vehicle, No Driver), with the Vehicle Right conflicts yielding a 16.8% lower braking percentage than the Vehicle Left conflicts. For every 0.2 s reduction in TTC, the percentage braking increased by 6.0%. Moreover, Automated GO yielded a 13.6% lower braking percentage than the Traditional Vehicle. The conflict type (β = −0.605), urgency level (β = 0.612), and Automated GO
TABLE 3 Regression model statistics for the prediction of the braking percentage (n = 180)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>B</th>
<th>(\beta)</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>59.646</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conflict (0 = Vehicle Left, 1 = Vehicle Right)</td>
<td>-16.838</td>
<td>-0.605</td>
<td>-36.807</td>
<td><0.001</td>
</tr>
<tr>
<td>Urgency (0 = 1.5 s, 1 = 1.3 s, 2 = 1.1 s, 3 = 0.9 s, 4 = 0.7 s)</td>
<td>6.028</td>
<td>0.612</td>
<td>37.270</td>
<td><0.001</td>
</tr>
<tr>
<td>Visual complexity (0 = Rural, 1 = Urban)</td>
<td>0.364</td>
<td>0.013</td>
<td>0.796</td>
<td>0.427</td>
</tr>
<tr>
<td>Vehicle (0 = Traditional, 1 = Automated GO)</td>
<td>-13.634</td>
<td>-0.462</td>
<td>-24.335</td>
<td><0.001</td>
</tr>
<tr>
<td>Vehicle (0 = Traditional, 1 = Automated)</td>
<td>-0.133</td>
<td>-0.004</td>
<td>-0.237</td>
<td>0.813</td>
</tr>
<tr>
<td>Windows (0 = Driver, 1 = No Driver)</td>
<td>-0.734</td>
<td>-0.025</td>
<td>-1.310</td>
<td>0.192</td>
</tr>
<tr>
<td>Windows (0 = Driver, 1 = Blinded)</td>
<td>0.890</td>
<td>0.030</td>
<td>1.588</td>
<td>0.114</td>
</tr>
</tbody>
</table>

\(F(7,172) = 504.98, p < 0.001, r = 0.977, r^2 = 0.954\). B: Unstandardised regression coefficient, \(\beta\): standardised regression coefficient, t: t-statistic, p: p value that describes whether the regression coefficient is statistically significantly different from 0.

\(\beta = -0.462\) had the strongest effects on the braking percentage. The effects of visual complexity of the surroundings, vehicle type, and window type were comparatively small (\(|\beta| \leq 0.03\)), contributing less than 1% to the braking percentage. The independent variables combined predicted the braking percentage with high accuracy (\(r = 0.977, r^2 = 0.954\)).

The effects of the three strongest predictor variables are illustrated in Figure 2. It can be seen that the urgency level had a monotonic effect, with the braking percentage increasing with increasing urgency. The Vehicle Left conflict caused more participants to brake than the Vehicle Right conflict. The Automated GO images stimulated people to continue pedalling, an effect found in the Vehicle Left as well as Vehicle Right conflicts. In the least urgent condition (TTC = 1.5 s), the driver of the Traditional Vehicle made eye contact. No consistent effects of eye contact (relative to the vehicle type or to the other urgency levels without eye contact) can be distinguished in Figure 2.

The median response times per image ranged between 1033 ms (Vehicle Left, Automated GO, No Driver, Urban, TTC = 0.7 s) and 1375 ms (Vehicle Left, Traditional, No Driver, Rural, TTC = 1.5 s). The overall mean of the median response times of the 180 images was 1186 ms, and the standard deviation of these 180 images was 69 ms.
The results of the regression analysis for the median response time (Table 4) mirror those of the braking percentage. That is, faster responses (28 ms faster for each 0.2 s reduction of TTC) were found for more urgent situations, for the Vehicle Right as compared to the Vehicle Left conflict (29 ms faster), for Automated GO as compared to the Traditional Vehicle (42 ms faster), and for Blinded Windows compared to the Driver (30 ms faster). The predictive accuracy of the median response time was strong ($r = 0.726$, $R^2 = 0.528$), but less strong than the abovementioned predictions for the braking percentage. Images that yielded a higher braking percentage yielded a faster median response time ($r = -0.30, p < 0.001, n = 180$).

As shown in Tables 3 and 4, the largest effects were found for conflict type, urgency level, and Automated GO versus the Traditional Vehicle. Considerably smaller effects were found for the No Driver and Blinded Windows conditions. These effects were not statistically significant at the level of the images ($n = 180$, see Table 3), but were explored in further depth at the level of participants ($n = 1260$). Figure 3 shows the effects on the braking percentage as a function of the three window conditions (Driver, No Driver, Blinded) and the three vehicle conditions (Automated GO, Automated, Traditional).

Two patterns can be distinguished. First, the Automated GO vehicle with No Driver caused participants to continue pedalling compared to the Automated GO vehicle with a Driver or with Blinded Windows. In other words, the eHMI appeared to work best when there was no driver. Secondly, the Traditional Vehicle with Blinded Windows caused participants to brake.

A possible validity threat is that the present study was conducted among participants from many different countries, including countries without an established cycling culture. Figure S1 in the Supporting Information provides a subgroup analysis for participants whose primary self-reported transport mode was walking/cycling ($n = 126$) versus other participants ($n = 1134$). There were no substantial differences between these two groups. Additionally, regression analyses were conducted for participants from the most highly represented countries (see Figure S2). The results showed that although there were several significant differences in effect sizes between the different countries, the signs of the effects for conflict type, urgency level, and Automated Go were the same for Venezuela, the USA, Russia, Egypt, Ukraine, and the remainder of the countries combined.

3 | EXPERIMENT 2

3.1 | Method

The results of Experiment 1 showed that blinded windows caused cyclists to brake (Figure 3, bottom), and that the absence of a driver increased the effectiveness of the eHMI ‘GO’ (i.e. fewer cyclists braked, see Figure 3, top). However, these theoretically relevant effects were small and on the verge of statistical significance, suggesting a need for replication. Furthermore, a limitation of Experiment 1 was that the effect of eye contact was not controlled but rather co-varied with urgency level. Additionally, it was unknown whether specific features of the stimuli, such as (the absence of) the driver in the vehicle, were noticeable.

Therefore, the study was repeated using a subset of 36 of the 180 stimuli. Only urban surroundings and two of the five urgency levels (TTC = 1.5 s and TTC = 0.7 s) were used. Accordingly, the 36 images, which differed in terms of conflict type (Vehicle Left, Vehicle Right), vehicle (Automated GO, Automated, Traditional), windows (Driver, Blinded, No Driver), and urgency (1.5 s, 0.7 s), were used. Four additional images were created so that eye contact was manipulated (i.e. eye contact vs no eye contact) for the following four images of the traditional vehicle: Vehicle Left—TTC = 1.5 s, Vehicle Left—TTC = 0.7 s, Vehicle Right—TTC = 1.5 s, and Vehicle Right—TTC = 0.7 s. Figure 4 provides an example of eye-contact manipulation (Vehicle Left—TTC = 0.7 s). Before each batch of 10 images, the participants were shown an example video from a randomised set of four videos (the Automated GO and Traditional Vehicle videos, in the Vehicle Left or Vehicle Right conflicts, also used in Experiment 1).

A payment of USD 0.20 was offered for the completion of the study. A total of 1568 participants took part between 25 November and 19 December 2020. Results of this survey showed an overall satisfaction rating of 4.0 on a scale from 1 (‘very dissatisfied’) to 5 (‘very satisfied’) ($n = 111$).

TABLE 4 Regression model statistics for the prediction of the median response time in milliseconds ($\varepsilon = 180$)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>B</th>
<th>β</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1255.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conflict (0 = Vehicle Left, 1 = Vehicle Right)</td>
<td>29.1</td>
<td>0.213</td>
<td>4.064</td>
<td><0.001</td>
</tr>
<tr>
<td>Urgency (0 = 1.5 s, 1 = 1.3 s, 2 = 1.1 s, 3 = 0.9 s, 4 = 0.7 s)</td>
<td>-27.9</td>
<td>-0.578</td>
<td>-11.027</td>
<td><0.001</td>
</tr>
<tr>
<td>Visual complexity (0 = Rural, 1 = Urban)</td>
<td>-11.0</td>
<td>-0.081</td>
<td>-1.537</td>
<td>0.126</td>
</tr>
<tr>
<td>Vehicle (0 = Traditional, 1 = Automated GO)</td>
<td>-41.9</td>
<td>-0.289</td>
<td>-4.776</td>
<td><0.001</td>
</tr>
<tr>
<td>Vehicle (0 = Traditional, 1 = Automated)</td>
<td>9.1</td>
<td>0.063</td>
<td>1.038</td>
<td>0.301</td>
</tr>
<tr>
<td>Windows (0 = Driver, 1 = No Driver)</td>
<td>-5.8</td>
<td>-0.040</td>
<td>-0.666</td>
<td>0.507</td>
</tr>
<tr>
<td>Windows (0 = Driver, 1 = Blinded)</td>
<td>-30.2</td>
<td>-0.208</td>
<td>-3.442</td>
<td>0.001</td>
</tr>
</tbody>
</table>

$F(7,172) = 27.46, p < 0.001, r = 0.726, R^2 = 0.528$. B: Unstandardised regression coefficient, β: standardised regression coefficient, t: t-statistic, p: p value that describes whether the regression coefficient is statistically significantly different from 0.
After the participant provided the Braking (B) or continue pedalling (P) response, the image disappeared, and the following four statements were shown on the same page: (1) The windows of the car were blinded. (2) There was a message ‘GO’ on the car. (3) There was a sticker and sensor on the car. (4) A driver was visible in the car. Participants were required to answer these four questions based on what they had memorised from the previously shown image. The four questions were presented in random order, and each had the response options ‘True’ and ‘False’.

4 | RESULTS

A total of 1086 participants were retained after filtering, of which 286 had participated in Experiment 1. The sample consisted of 668 males, 414 females, and four participants who selected ‘I prefer not to respond’ to the gender question. The mean age of the participants was 37.2 years (SD = 11.4, min = 18, max = 77). The participants resided in 71 countries, with the most represented countries being Venezuela (n = 471), USA (n = 50), India (n = 44), Russia (n = 42), and Turkey (n = 41). Their primary mode of transport was mostly a private vehicle (n = 611), followed by public transportation (n = 255), walking/cycling (n = 128), motorcycle (n = 74), and ‘other’ (n = 2).

The results of the regression analysis for the braking percentage and the median response time (n = 36 images without eye contact) are provided in the Supporting Information (Table S1 & S2). An overview of the results for each of the stimuli separately is provided in the Supporting Information as well.
FIGURE 5 Braking percentage (n = 1086), as a function of window type (Driver, No Driver, Blinded) and vehicle type (Automated GO, Automated, Traditional) (four responses for urgency level and conflict type were averaged). The error bars represent within-subject confidence intervals, calculated for the three vehicle types separately [47].

The results of Experiment 2 can be summarised as follows:

- The effect of conflict (0 = Vehicle Left, 1 = Vehicle Right) on the braking percentage was weaker than in Experiment 1 ($B = -16.838$ and $\beta = -0.605$ in Experiment 1 versus $B = -6.384$ and $\beta = -0.237$ in Experiment 2).
- The effect of Automated GO versus the Traditional Vehicle on the braking percentage was stronger than in Experiment 1 ($B = -13.634$ and $\beta = -0.462$ in Experiment 1 versus $B = -25.709$ and $\beta = -0.899$ in Experiment 2).
- The effect of Blinded Windows versus Driver on the braking percentage was statistically significant and stronger than in Experiment 1 ($B = 0.890$ and $\beta = 0.030$ in Experiment 1 versus $B = 4.978$ and $\beta = 0.174$ in Experiment 2).

Figure 5 illustrates that Blinded Windows caused participants to brake, except for the Automated GO condition. Similarly, the absence of a driver caused participants to brake, except for the Automated GO condition.

Participants took considerably longer (5381 ms, see Table S2) to provide their braking/pedalling response as compared to Experiment 1 (1256 ms, see Table 4). Possibly, participants in Experiment 2 used more time to reflect on the AV’s features because they had to remember those features. Figure S3 in the Supporting Information depicts the learning curves of the response times in Experiment 1 versus Experiment 2.

DISCUSSION

This work aimed to investigate how the appearance of an approaching vehicle influences cyclists’ decision-making behaviour. This study offers insights into the effects of blinded windows, eye contact, and the visual complexity of the
surroundings on decision-making and response times. The current experiment was conducted with images instead of video clips, combined with introductory videos based on which participants could get an impression of the speed of the vehicle and cyclist. The static stimuli allowed us to make many tightly controlled comparisons between conditions. Other strengths of our experiments are that they were conducted internationally and with very large numbers of participants (1260 and 1086 in Experiments 1 and 2, respectively), which should have produced higher statistical power than typical human-subject research done in the lab.

5.1 | Replication of previous studies

In line with Vlakveld et al. [39], the more urgent the situation, the more likely the cyclists were to brake, and the vehicle with eHMI encouraged the cyclists to continue pedalling. The effect of urgency was stronger than in the video-based study of Vlakveld et al., indicating that our image-based method is sensitive. Overall braking percentages were different as well (49%–81% in Experiment 1 vs 22%–47% in Vlakveld et al.). A possible cause is that participants in our study were mostly non-European, and hence less familiar with the fact that the cyclist had right of way.

Our findings are in line with a simulator study by TRL [49], which reported that AV distinguishability had no significant effect on gap acceptance, a video-based experiment by Dey et al. [50], which concluded that knowledge of a vehicle driving mode does not play a significant role in pedestrians’ crossing behaviours, and a study using a head-mounted display which found that vehicle type did not have a significant impact on cyclists’ crossing intentions (Nuñez Velasco et al. [51]). A possible reason for the lack of effect is that stickers and a lidar are hard to detect, as Experiment 2 showed. Furthermore, although Experiment 2 showed that the driver’s presence was well noticed, it may have been hard to distinguish whether the driver was attentive or inattentive (driver looking downward in the AV).

5.2 | Novel findings

Besides replicating Vlakveld et al. [39], our study was concerned with examining several effects not described by Vlakveld et al. First, the visual complexity of the surroundings had negligible effects on cyclists’ decision-making. An eye-tracking study by Lappi et al. [52] similarly showed that drivers make very few fixations on irrelevant stimuli. Previous research has cautioned that eHMIs might contribute to additional cognitive load [53, 54]. The present study suggests that participants are able to ignore irrelevant information and that the effectiveness of an eHMI is independent of whether one cycles in a rural environment or a more built-up environment. Future research may test other forms of scene complexity, such as complexity defined as the number of road users in the traffic scene.
Second, we found that if a traditional vehicle (Experiments 1 and 2) or an AV (Experiment 2) had blinded windows, participants were more likely to brake and responded faster compared to a traditional vehicle with a visible driver. These effects may be related to the notion that vehicles with blinded/tinted windows are associated with more antisocial and dangerous driving behaviour than vehicles where the driver is visible [55]. Furthermore, the blinded windows were easy to recognise, with correct detection rates of 83% to 92% in Experiment 2.

Third, the absence of a driver caused cyclists to brake (Experiment 2), except when the eHMI ‘GO’ was present. In fact, in Experiment 1, the eHMI seemed to work better (i.e. cyclists were more likely to continue pedalling) when the driver was absent compared to when the driver was present. This latter effect may be explained by the notion that a person behind the steering wheel could create the impression of this person being in control. That is, if a driver sits behind the wheel, it may be unclear to other road users whether the AV’s eHMI signal is to trusted, as there may be a ‘risk’ that the car is being driven manually or that the driver in the car will override the eHMI signal. It is noted, however, that these interactive effects, although statistically significant, are not robust since they were not consistent between Experiments 1 and 2 (Figures 3 vs 5). That is, the effect of the absence of a driver seems contingent on subtleties such as whether participants take the time to deliberate on the image (Experiment 2) or not (Experiment 1).

Fourth, we found that eye contact promotes the cyclist to continue pedalling. Our results provide some justification for a study performed by Chang et al. [56], which presented an eHMI consisting of artificial eyes at the location of the headlamps. They found that synthetic ‘eye contact’ established by the eHMI led to faster correct crossing decisions and generated a safer feeling to cross the road. The effect of eye contact in Experiment 2 was contingent on driver visibility. Research by AlAdawy et al. [57] indicates that in most cases, pedestrians begin crossing before the driver’s face or gaze can be distinguished through the windshield. Similarly, it has to be determined whether the present findings generalise to real traffic, where factors such as windshield glare may affect the visibility of the driver.

A recent study by Faas et al. [58] appears to confirm our findings using a Wizard-of-Oz method. More specifically, they concluded that ‘without an eHMI, pedestrians felt significantly less safe if the windshield was tinted or the driver was distracted as compared to an attentive driver’ (p. 1364). This corresponds to Figure 5, in which we showed that the No Driver and Blinded conditions made cyclists brake, especially if there was no eHMI (i.e. automated and traditional vehicle types).

5.3 | Limitations

In this study, participants were presented with only two conflict types, in which a single vehicle approached from a perpendicular angle. In real traffic, vehicles can come from different sides, which could affect the results. For example, in a previous online study where the cyclist was in the AV’s blind spot, it was found that ‘self-driving’ stickers on the AV increased the cyclists’ confidence that the AV had noticed them compared to baseline [23], which may be because AVs are expected to have an omnidirectional vision. Future research should include a larger variety of scenarios and response options (i.e. not only braking or pedalling, but also steering and different levels of speed). Another limitation is that participants were unlikely to have experience with AVs and eHMIs, and long-term effects are therefore unknown (see [33], for a discussion). As pointed out by TRL [49], ‘drivers typically do not feel sufficiently knowledgeable about AV behaviour to treat them any differently than they would an HDV /Human Driven Vehicle’ (p. 5).

Another point of attention is that our study was conducted with an international sample, to a large extent represented by people from Venezuela, the USA, and Russia. Earlier online research has shown that participants from different countries are sensitive to different types of traffic risks [59]. It would have been possible to apply a selection and only admit participants from Western Europe (see [38]), so that the participants are more familiar with the context and traffic rules of the images from our study (e.g. shark teeth indicating right of way). Still, our regression analysis for participants from different countries separately revealed fairly consistent baseline braking values (‘constant’ in the regression analyses) and consistent effects of urgency between countries (see Figures S2 and S4 for Experiments 1 and 2, respectively). The consistency of effects may be because the perception of risk and physical proximity have a biological basis [60] and are less dependent on learned behaviour and knowledge, such as traffic rules. Our previous research confirms that the effects of eHMIs and vehicle appearances are generalisable and relatively independent of the participant’s country of origin (e.g. [61]). In contrast, much of the psychological research is unable to examine international generalisability as the research is conducted with narrowly selected samples, such as university students. Thus, instead of viewing our cross-national sample as a limitation, it could also be seen as a strength.

6 | CONCLUSIONS

In conclusion, this study replicated the effects of Vlakveld et al. [39] regarding an eHMI ‘GO’ and temporal urgency. Furthermore, we found that the visual complexity of the surroundings has only minor effects on cyclists’ decision-making. Finally, blinded windows make it more likely that cyclists will brake (unless an eHMI signals that the cyclists can go), and driver eye contact, if detectable, stimulates cyclists to continue pedalling. In other words, our findings suggest that future AVs, in which there is no longer an attentive or visible driver, may cause uncertainty among cyclists. Cyclists may benefit from an eHMI indicating the AV’s intent.

ACKNOWLEDGEMENT

This research is supported by grant 016.Vidi.178.047 (‘How should automated vehicles communicate with other road users?’), which is financed by the Netherlands Organisation for Scientific Research (NWO).
CONFLICT OF INTEREST
All authors have no conflict of interest to disclose.

DATA AVAILABILITY STATEMENT
The questionnaire used in Appen, image stimuli, video examples, anonymised data, and MATLAB code are accessible at https://doi.org/10.4121/20103188.

REFERENCES

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.