
Received: 30 April 2021 Revised: 20 May 2022 Accepted: 16 June 2022 IET Intelligent Transport Systems
DOI: 10.1049/itr2.12235

ORIGINAL RESEARCH

Blinded windows and empty driver seats: The effects of automated
vehicle characteristics on cyclists’ decision-making

Pavlo Bazilinskyy1 Dimitra Dodou2 Yke Bauke Eisma1 Willem Vlakveld3

Joost de Winter1

1Department of Cognitive Robotics, Delft
University of Technology, Delft, The Netherlands

2Department of BioMechanical Engineering, Delft
University of Technology, Delft, The Netherlands

3SWOV, The Hague, The Netherlands

Correspondence
Pavlo Bazilinskyy, Department of Industrial Design,
Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands.
Email: p.bazilinskyy@tue.nl

Funding information
Netherlands Organisation for Scientific Research
(NWO), Grant/Award Number: 016.Vidi.178.047

Abstract
Automated vehicles (AVs) may feature blinded (i.e. blacked-out) windows and external
human–machine interfaces (eHMIs), and the driver may be inattentive or absent, but how
these features affect cyclists is unknown. In a crowdsourcing study, participants viewed
images of approaching vehicles from a cyclist’s perspective and decided whether to brake.
The images depicted different combinations of traditional vehicles versus AVs, eHMI pres-
ence, vehicle approach direction, driver visibility/window-blinding, visual complexity of
the surroundings, and distance to the cyclist (urgency). The results showed that the eHMI
and urgency level had a strong impact on crossing decisions, whereas visual complexity had
no significant influence. Blinded windows caused participants to brake for the traditional
vehicle. A second crowdsourcing experiment aimed to clarify the findings of Experiment
1 by also requiring participants to detect the vehicle features. It was found that the eHMI
‘GO’ and blinded windows yielded high detection rates and that driver eye contact caused
participants to continue pedalling. To conclude, blinded windows increase the probability
that cyclists brake, and driver eye contact stimulates cyclists to continue cycling. Our find-
ings, which were obtained with large international samples, may help elucidate how AVs (in
which the driver may not be visible) affect cyclists’ behaviour.

1 INTRODUCTION

About 70% of cycling fatalities occur as a result of a collision
with a motorized vehicle [1]. A typical scenario is that the cyclist
has right of way, and the approaching vehicle hits the cyclist
perpendicularly at a road crossing [2, 3]. Common causes of
such accidents are the driver’s failure to check the vehicle’s blind
spot, improper visual scanning, and inattentiveness [3–5]. Auto-
mated vehicle (AV) technology could prevent these types of
accidents by detecting the cyclist and adhering to the traffic rules
by braking in time [6, 7].

Although AVs have the potential to prevent accidents, there
is a risk that AVs may cause confusion or uncertainty with vul-
nerable road users [8, 9, 10]. In automated driving of SAE Level
3 and above [11], the person in the driver seat may not be pay-
ing attention to the road, whereas in Levels 4 and 5 automation,
the driver seat might be empty [12] or the vehicle may feature
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a novel seating configuration without a driver seat at all (e.g.
[13, 14]). In these cases, driver communication sources, such
as eye contact, will be absent. Additionally, technology is under
development that allows adjustment of window tinting or the
windows to be used as displays [15–18]. These developments
could prove useful for future AVs in which the occupants may
want to customize their ride experience and secure privacy [19].
Currently, tinting of the windshield is prohibited in many coun-
tries or allowed to a limited extent, where typically a minimum
visible light transmittance of 70% or 75% is used; at the same
time, the permitted degree of blinding of the front side win-
dow varies greatly, from entirely banned down to only 20%
light transmittance (e.g. [20]). Although fully blacked-out (i.e.
blinded) windows are currently not allowed, it is possible that
these rules will be relaxed when driverless vehicles are deployed,
in which there is no benefit for other road users to see the
vehicle occupants. As of present, it is unknown how blinded
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windows would influence the decision-making of other road
users, but it can be expected that blinded windows cause some
confusion and hesitation.

Many current AVs are distinguishable from traditional vehi-
cles by a lidar on the roof, distinctive branding, ‘self-driving’
signs (e.g. [12, 21]), or a distinctive pod-like shape (e.g. [22]). Pre-
vious online research suggests that cyclists are more certain that
the vehicle has seen them if the vehicle is recognisable as an AV
compared to when it is not [23]. These effects may be attributed
to the fact that the omnidirectional sensors of an AV are able to
detect the cyclist in the driver’s blind spot. More research is still
needed to determine whether cyclists would behave more cau-
tiously or less cautiously when encountering an AV compared
to a traditional vehicle.

Several studies suggest that AVs should communicate using
external human–machine interfaces (eHMIs). eHMIs can take
various forms, including screens and light bars that depict
instructions (e.g. [24–26]), intentions (e.g. [24, 27, 28]), or the
automation mode (e.g. [29, 30]). Studies have shown that com-
pared to AVs without eHMI, pedestrians feel safe and better
informed when an eHMI is present [27, 29, 31] and are more
inclined to cross when an eHMI indicates so (e.g. [26, 31, 32]).
However, other studies showed that the effect of eHMIs is small
compared to the effect of vehicle motion (e.g. [33–35]).

The efficacy of eHMIs may depend on the amount of visual
information to be processed. Even though an eHMI may pro-
vide direct instructions or suggestions to a road user, the road
user will still have to verify whether the eHMI’s message is valid
by counterchecking the message with other cues in the envi-
ronment. It could be overwhelming for a road user to make
a crossing decision based on traffic rules, hazards, the driver’s
presence and its behaviour, and the eHMI message, all at the
same time. Visual demands could be particularly high if the
environment is cluttered, such as in a city. A laboratory-based
study by Tapiro et al. [36] showed that a visually dense environ-
ment led to missed crossing opportunities and visual attention
dispersion by pedestrians. By extension, it is conceivable that
eHMIs may be less effective in environments of higher visual
complexity.

1.1 Study aims

Cycling safety is a concern in the Netherlands and many other
countries [37]. As noted above, even though the cyclist may be
moving on a designated bike path and have priority, it still reg-
ularly happens that the cyclist is hit because the driver of an
approaching vehicle overlooks the cyclist or because the cyclist
misunderstands the vehicle’s intentions [38].

In a previous online study, Vlakveld et al. [39] presented par-
ticipants with animated video clips from a cyclist’s perspective.
The results showed that participants more often decided to slow
down when the approaching vehicle was an AV and less likely
to slow down when the approaching AV communicated ‘GO’,
compared to a traditional vehicle. Furthermore, Vlakveld et al.
varied the urgency of the situation by ending the videos at dif-

ferent moments in time, an approach used by others before (e.g.
[38]). It was found that the higher the urgency (i.e. the later
the decision moment), the more often participants decided to
slow down. Although the study of Vlakveld et al. is informa-
tive about the effects of vehicle appearance and urgency, the
effects of the visibility of the driver, eye contact, driver pres-
ence, and visual complexity of the surroundings are yet to be
established.

The aim of the current study was two-fold. First, we aimed
to replicate the effects observed in Vlakveld et al. [39] regard-
ing urgency level and vehicle type. More specifically, the study
of Vlakveld et al. was conducted using Dutch participants; we
aimed to examine whether the findings replicate in an interna-
tional sample of participants. Our second aim was to examine
the effects of blinded windows, driver presence, eye contact,
and visual complexity of the surrounding environment. In our
study, we measured not only brake/continue decisions but also
participants’ response times.

Previous studies have evaluated the effects of AVs and
eHMIs using virtual reality goggles (e.g. [40]), CAVE-based sim-
ulators (e.g. [41]), or real cars (e.g. Forke et al. [42]). However,
these methods are not useful for tightly controlled evaluations
using large sample sizes. We opted for a psychophysics-type
method with demonstration video clips (as used in [39]) to give
the participants a sense of the speed of the cyclist and approach-
ing vehicle, followed by still images to which the participant had
to respond. The advantage of using images is that they allow
for controlled comparisons with a large number of repetitions.
With video clips, on the other hand, the situation is continuously
evolving, which may introduce additional sources of variance
(e.g. participants may respond to features in the video which
occurred earlier in time).

Two experiments were conducted. In Experiment 1, par-
ticipants were asked to decide whether they would brake or
continue pedalling. In Experiment 2, participants were again
asked to make this decision and were also asked to respond
to true/false statements that polled whether they had recog-
nised specific AV features in the image, such as the presence
of a driver and the blinded windows. Experiment 2 served to
replicate Experiment 1, and acted as a validation check regard-
ing whether participants acted based on what they saw in the
image.

2 EXPERIMENT 1

2.1 Method

2.1.1 Stimuli

In total, 180 image stimuli were created: 2 traffic conflict types×
3 vehicle types × 3 window types × 2 visual complexity levels of
the surroundings × 5 urgency levels. The experimental condi-
tions are detailed in Table 1. Figure 1 shows examples of the
images, featuring the three vehicle types, two visual complex-
ity levels of the surroundings, and five urgency levels. Table 2
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TABLE 1 Description of the experimental conditions

Type Condition Description

Conflict Vehicle Left The vehicle approached the intersection from the left and was about to cross the cycling path.
The cycling path was separated from the main road by a lawn or pavement.

Vehicle Right The vehicle approached the intersection from the right and was about to cross the cycling path.
The lane on which the vehicle was driving was separated by a verge with a sign on a pole.
Further details about the conflict scenarios, including top-down views, are provided by
Vlakveld et al. [39].

Vehicle Automated GO A white vehicle with a sticker ‘Google’ on its side, a sensory tower on its roof, and an eHMI on
the roof with the message ‘GO’.

Automated A white vehicle with a sticker ‘Google’ on its side, a sensory tower on its roof, and no eHMI. As
Vlakveld et al. [39] pointed out, the automated Google vehicle in the videos is no longer in use.
Nowadays, these vehicles are called Waymo and look differently. However, we assumed that
participants would associate the Google logo with an AV.

Traditional A blue vehicle with no sticker, no sensory tower, and no eHMI. The traditional vehicle had a
different (but still neutral) colour and a different brand than the AVs, because our goal was to
assess the effect of AV appearance relative to a traditional vehicle in its entirety (i.e. not just
testing the effect of the stickers or sensory tower).

Windows Driver Transparent windows, with a driver present. In SAE Level 3 automation and above, the driver is
likely not to pay attention to the driving task. Accordingly, for the Automated and Automated
GO vehicles, the ‘driver’ stared downwards (suggesting he was texting) and was relatively hard
to see for the cyclist. The driver of the traditional vehicle looked straight ahead and turned his
head in the direction of the cyclist when approaching the intersection (see Table 2).

Blinded Blinded windows, as a result of which no driver was visible.

No driver Transparent windows, no driver present. This condition may occur in SAE Level 4 or 5
automation.

Visual complexity of
surroundings

Rural (low) A rural road with greenery and a few buildings.

Urban (high) An urban road with buildings in the style of a European city centre. Note that the road layout was
the same for the rural and urban road; only the visual surroundings were changed.

Urgency
(time to conflict, TTC)

1.5 s
1.3 s
1.1 s
0.9 s
0.7 s

Urgency was varied by extracting frames from the video with 0.2 s increments. The distance
between the location of the vehicle for two consecutive urgency levels was about 0.78 m
(corresponding to a driving speed of 14 km/h). A TTC of 0.7 s corresponds to the moment of
the smallest distance to the vehicle; at this moment, the front of the vehicle was about 2.6 m
from the estimated collision point (centre of the cycling path). In theory, at 14 km/h, the
approaching vehicle could come to a full stop in 0.5 s (assuming a deceleration of 8 m/s2), and
hence even for the short TTC of 0.7 s, it may still be ambiguous to the cyclist whether or not
the car would stop in time. Note that at TTC = 0.7 s, the cyclist would crash into the side of
the vehicle after about 2.5 s if the cyclist would not brake (based on [39]).

TABLE 2 Description of covariates of the urgency factor

Vehicle right Vehicle left

TTC Turn indicator Eye contacta TTC Turn indicator Eye contacta

1.5 s Off Yes 1.5 s Off Yes

1.3 s Off No 1.3 s Off No

1.1 s Off No 1.1 s Off No

0.9 s On No 0.9 s Off No

0.7 s On No 0.7 s Off No

The presence of the turn indicator and eye contact varied with the progression of the driving scene, as in the videos used by Vlakveld et al. [39].
TTC, time to conflict.
aEye contact only for the traditional vehicle.
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FIGURE 1 Examples of image stimuli (six selected images of 180 images used in the experiment).

provides an overview of the covariates (turn indicator, eye
contact) of the five urgency levels.

The images showed a traffic situation from a cyclist’s perspec-
tive with an approaching vehicle. The traffic situation concerned
an intersection without traffic lights and with a designated
cycling path. Shark teeth were present on the road, meaning
that the cyclist had right of way. The selected types of conflict
are known to frequently result in bicycle–vehicle crashes (e.g.
[2, 3]). The images in which the driver was present were frames
extracted from videos used in Vlakveld et al. [39]. The driver was
removed, or the windows were blinded using Adobe Photoshop.

2.1.2 Crowdsourcing experiment

The research was approved by the Human Research Ethics
Committee of the TU Delft. The participants subscribed
to the online study through the crowdsourcing service
Appen (https://appen.com). Participants became aware of this
research through one of many channel websites (e.g. https://
www.ysense.com) where our study was available in a list of
other projects available for completion. We allowed 2000 con-
tributors from all countries to participate. It was not permitted

to complete the study more than once with the same worker
ID. A payment of USD 0.30 was offered for the completion
of the study. The experiment was created using jsPsych (i.e.
https://www.jspsych.org [43]).

On the top of the page, contact information was provided,
and the purpose of the study was described as ‘to investigate how
cyclists respond to approaching cars’. Participants were informed that
they could contact the investigators to ask questions about the
study and that they had to be at least 18 years old. Informa-
tion about anonymity and voluntary participation was provided
as well. Participants first answered demographic questions, such
as about age, gender, and driving experience. They were then
asked to leave the questionnaire by clicking on a link that opened
a webpage with the experiment and were presented with the
following instructions: ‘In the following images, you will see a traffic
situation from the perspective of a cyclist. In each image, a car is approach-
ing you. Sometimes this car is a self-driving car, and sometimes it is a normal
car. Your task is to indicate what you, as a cyclist, would do: Brake (press
‘B’) or Continue Pedaling (press ‘P’). You will view 90 images. Observe
the scene carefully before pressing the ‘B’ or ‘P’ key’. The participants
were not given information about the eHMI, road signage, or
applicable traffic rules, and were not instructed to respond as
fast as possible.

https://appen.com
https://www.ysense.com
https://www.ysense.com
https://www.jspsych.org
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The participants had to respond to a random 90 of the 180
images presented in three batches of 30 images in a random
order. In other words, each image was seen by about 50% of
the participants. Participants were exposed to 90 instead of all
180 images to limit the total duration of the experiment. Below
each image, it was mentioned: ‘Imagine that you are the cyclist. Press
‘B’ if you would brake, press ‘P’ if you would continue pedaling.’ After
responding, a blank screen was shown for a random duration
between 500 and 1500 ms. Participants did not receive feedback
on their responses.

Before each batch of images, the participants were shown
an example video from a randomised set of six videos (Auto-
mated GO, Automated, and Traditional Vehicle, in the Vehicle
Left or Vehicle Right conflicts), which allowed them to get
an indication of the speed of the vehicle and the cyclist. In
the videos, the vehicle was moving at a speed of approxi-
mately 14 km/h, and the speed of the bicycle was approximately
17 km/h. The example videos depicted the same vehicle types
as the image stimuli, with transparent windows and driver
present, but in different surroundings (outskirts of a town)
and traffic situation. After each batch of images, participants
were shown the following text: ‘You have now completed 30
[44] images out of 90. When ready press ‘C’ to proceed to the next
batch’. At the end of the experiment, the participants were
shown a unique code. They were required to enter the code
as proof that they completed the experiment to receive their
remuneration.

An important question in empirical research is what the unit
of analysis should be. In educational research, for example, it has
to be decided whether the unit of analysis is ‘students’, ‘classes’,
or ‘schools’ (e.g. [45]). In the present study, the unit of analysis
was ‘images’ (instead of ‘participants’). The reason is that (1) we
were interested in understanding differences between images,
and (2) there were a large number of images (n = 180) with
many participants per image. We calculated, for each of the 180
images, the percentage of participants who indicated they would
brake and the median response time across participants. Multi-
ple regression analyses were performed to examine which image
characteristics were predictive of the percentage of participants
who indicated they would brake and the median response time
across participants. More specifically, the regression weights
for a given independent variable indicate the contribution of
that variable in predicting the dependent variable (i.e. braking
percentage, median response time) with all other independent
variables held constant [46].

In cases where we compared the percentage of partici-
pants who braked between image conditions (e.g. images with
the driver visible vs blinded windows vs no driver), we used
within-subject confidence intervals, computed at the level of
participants [47]. In short, this approach involves subtract-
ing the participants’ grand mean before computing confidence
intervals. Confidence intervals were calculated based on a nor-
mal distribution, an assumption that seems legitimate for typical
binary response data, especially when responses are averaged
over multiple trials [48].

2.2 Results

The 2000 participants took part between 2 and 4 May 2020.
After the survey, participants had the option to complete a sat-
isfaction survey offered by the crowdsourcing service Appen.
This survey allows researchers to judge whether participants
found the task and its instructions clear and the payment satis-
factory. The results of this survey showed an overall satisfaction
rating of 4.3 on a scale from 1 (‘very dissatisfied’) to 5 (‘very satisfied’)
(103 participants completed this optional survey).

Before proceeding with the analysis, we removed participants
who appeared not to have taken the task seriously (i.e. par-
ticipants who indicated not to have read the instructions and
participants who completed the study in less than 5 min, which
was deemed the minimal reasonable time to complete the study)
and participants with incomplete data (e.g. due to database
storage errors). Furthermore, if it appeared that a participant
conducted the study more than once from the same IP address,
only the first response of that participant was kept. In total, 740
of 2000 responses were removed, most of whom because of
duplicate IP addresses, thus leaving 1260 participants. A map-
ping error had occurred, where one of the 180 images (Vehicle
Left, Traditional, Blinded, Urban, TTC = 1.5 s) was shown
instead of another image (Vehicle Left, Traditional, Driver,
Urban, TTC = 1.5 s) for the first 293 participants. The data for
this image for these participants (0.08% of the total data) were
removed.

The sample consisted of 830 males, 427 females, and three
participants who selected ‘I prefer not to respond’ to the gender
question. The mean age of the participants was 36.5 years (SD=
11.5, min = 18, max = 73). The participants resided in 63 coun-
tries, with the most represented countries being Venezuela (n =
544), USA (n= 75), Russia (n= 71), Egypt (n= 63), and Ukraine
(n = 59). Their primary mode of transportation was mostly a
private vehicle (n = 751), followed by public transportation (n=
284), walking/cycling (n= 126), motorcycle (n= 88), and ‘other’
(n = 3).

First, the percentage of participants who indicated that they
would brake (called henceforth braking percentage) was com-
puted for each of the 180 images. These percentages ranged
between 28.2% (Vehicle Right, Automated GO, No Driver,
Urban, TTC = 1.5 s) and 82.3% (Vehicle Left, Traditional,
Driver, Urban, TTC = 0.7 s). The overall mean of the brak-
ing percentage of the 180 images was 58.9%, and the standard
deviation was 14.0%.

The results of the regression analysis for the braking per-
centage are provided in Table 3. These results show that the
baseline braking percentage was 59.6% (i.e. Vehicle Left, low-
est urgency, lowest visual complexity, Traditional Vehicle, No
Driver), with the Vehicle Right conflicts yielding a 16.8% lower
braking percentage than the Vehicle Left conflicts. For every
0.2 s reduction in TTC, the percentage braking increased by
6.0%. Moreover, Automated GO yielded a 13.6% lower brak-
ing percentage than the Traditional Vehicle. The conflict type
(β = −0.605), urgency level (β = 0.612), and Automated GO
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TABLE 3 Regression model statistics for the prediction of the braking percentage (n = 180)

Predictor B β t p

Constant 59.646

Conflict (0 = Vehicle Left, 1 = Vehicle Right) −16.838 −0.605 −36.807 <0.001

Urgency (0 = 1.5 s, 1 = 1.3 s, 2 = 1.1 s, 3 = 0.9 s, 4 = 0.7 s) 6.028 0.612 37.270 <0.001

Visual complexity (0 = Rural, 1 = Urban) 0.364 0.013 0.796 0.427

Vehicle (0 = Traditional, 1 = Automated GO) −13.634 −0.462 −24.335 <0.001

Vehicle (0 = Traditional, 1 = Automated) −0.133 −0.004 −0.237 0.813

Windows (0 = Driver, 1 = No Driver) −0.734 −0.025 −1.310 0.192

Windows (0 = Driver, 1 = Blinded) 0.890 0.030 1.588 0.114

F(7,172) = 504.98, p < 0.001, r = 0.977, r2 = 0.954. B: Unstandardised regression coefficient, β: standardised regression coefficient, t: t-statistic, p: p value that describes whether the
regression coefficient is statistically significantly different from 0.
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FIGURE 2 Braking percentage, as a function of conflict type (Vehicle Left, Vehicle Right), urgency level (TTC = 1.5 s: low urgency, TTC = 0.7 s: high
urgency), and vehicle type (Automated GO, Automated, Traditional).

(β = −0.462) had the strongest effects on the braking per-
centage. The effects of visual complexity of the surroundings,
vehicle type, and window type were comparatively small
(|β| ≤ 0.03), contributing less than 1% to the braking percent-
age. The independent variables combined predicted the braking
percentage with high accuracy (r = 0.977, r2 = 0.954).

The effects of the three strongest predictor variables are
illustrated in Figure 2. It can be seen that the urgency level
had a monotonic effect, with the braking percentage increasing
with increasing urgency. The Vehicle Left conflict caused more
participants to brake than the Vehicle Right conflict. The Auto-
mated GO images stimulated people to continue pedalling, an

effect found in the Vehicle Left as well as Vehicle Right con-
flicts. In the least urgent condition (TTC = 1.5 s), the driver
of the Traditional Vehicle made eye contact. No consistent
effects of eye contact (relative to the vehicle type or to the
other urgency levels without eye contact) can be distinguished in
Figure 2.

The median response times per image ranged between
1033 ms (Vehicle Left, Automated GO, No Driver, Urban,
TTC= 0.7 s) and 1375 ms (Vehicle Left, Traditional, No Driver,
Rural, TTC = 1.5 s). The overall mean of the median response
times of the 180 images was 1186 ms, and the standard deviation
of these 180 images was 69 ms.
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TABLE 4 Regression model statistics for the prediction of the median response time in milliseconds (n = 180)

Predictor B β t p

Constant 1255.7

Conflict (0 = Vehicle Left, 1 = Vehicle Right) 29.1 0.213 4.064 <0.001

Urgency (0 = 1.5 s, 1 = 1.3 s, 2 = 1.1 s, 3 = 0.9 s, 4 = 0.7 s) −27.9 −0.578 −11.027 <0.001

Visual complexity (0 = Rural, 1 = Urban) −11.0 −0.081 −1.537 0.126

Vehicle (0 = Traditional, 1 = Automated GO) −41.9 −0.289 −4.776 <0.001

Vehicle (0 = Traditional, 1 = Automated) 9.1 0.063 1.038 0.301

Windows (0 = Driver, 1 = No Driver) −5.8 −0.040 −0.666 0.507

Windows (0 = Driver, 1 = Blinded) −30.2 −0.208 −3.442 0.001

F(7,172) = 27.46, p< 0.001, r= 0.726, r2 = 0.528. B: Unstandardised regression coefficient, β: standardised regression coefficient, t: t-statistic, p: p value that describes whether the regression
coefficient is statistically significantly different from 0.

The results of the regression analysis for the median response
time (Table 4) mirror those of the braking percentage. That
is, faster responses (28 ms faster for each 0.2 s reduction of
TTC) were found for more urgent situations, for the Vehicle
Right as compared to the Vehicle Left conflict (29 ms faster),
for Automated GO as compared to the Traditional Vehicle
(42 ms faster), and for Blinded Windows compared to the
Driver (30 ms faster). The predictive accuracy of the median
response time was strong (r = 0.726, r2 = 0.528), but less strong
than the abovementioned predictions for the braking percent-
age. Images that yielded a higher braking percentage yielded a
faster median response time (r = −0.30, p < 0.001, n = 180).

As shown in Tables 3 and 4, the largest effects were found
for conflict type, urgency level, and Automated GO versus the
Traditional Vehicle. Considerably smaller effects were found for
the No Driver and Blinded Windows conditions. These effects
were not statistically significant at the level of the images (n =
180, see Table 3), but were explored in further depth at the level
of participants (n = 1260). Figure 3 shows the effects on the
braking percentage as a function of the three window conditions
(Driver, No Driver, Blinded) and the three vehicle conditions
(Automated GO, Automated, Traditional).

Two patterns can be distinguished. First, the Automated GO
vehicle with No Driver caused participants to continue pedalling
compared to the Automated GO vehicle with a Driver or with
Blinded Windows. In other words, the eHMI appeared to work
best when there was no driver. Secondly, the Traditional Vehicle
with Blinded Windows caused participants to brake.

A possible validity threat is that the present study was
conducted among participants from many different coun-
tries, including countries without an established cycling culture.
Figure S1 in the Supporting Information provides a subgroup
analysis for participants whose primary self-reported transport
mode was walking/cycling (n = 126) versus other participants
(n= 1134). There were no substantial differences between these
two groups. Additionally, regression analyses were conducted
for participants from the most highly represented countries (see
Figure S2). The results showed that although there were sev-
eral significant differences in effect sizes between the different
countries, the signs of the effects for conflict type, urgency level,
and Automated Go were the same for Venezuela, the USA,

Russia, Egypt, Ukraine, and the remainder of the countries
combined.

3 EXPERIMENT 2

3.1 Method

The results of Experiment 1 showed that blinded windows
caused cyclists to brake (Figure 3, bottom), and that the absence
of a driver increased the effectiveness of the eHMI ‘GO’ (i.e.
fewer cyclists braked, see Figure 3, top). However, these theo-
retically relevant effects were small and on the verge of statistical
significance, suggesting a need for replication. Furthermore,
a limitation of Experiment 1 was that the effect of eye con-
tact was not controlled but rather co-varied with urgency level.
Additionally, it was unknown whether specific features of the
stimuli, such as (the absence of) the driver in the vehicle, were
noticeable.

Therefore, the study was repeated using a subset of 36
of the 180 stimuli. Only urban surroundings and two of the
five urgency levels (TTC = 1.5 s and TTC = 0.7 s) were
used. Accordingly, the 36 images, which differed in terms of
conflict type (Vehicle Left, Vehicle Right), vehicle (Automated
GO, Automated, Traditional), windows (Driver, Blinded, No
Driver), and urgency (1.5 s, 0.7 s), were used. Four additional
images were created so that eye contact was manipulated (i.e.
eye contact vs no eye contact) for the following four images
of the traditional vehicle: Vehicle Left—TTC = 1.5 s, Vehicle
Left—TTC = 0.7 s, Vehicle Right—TTC = 1.5 s, and Vehicle
Right—TTC = 0.7 s. Figure 4 provides an example of eye-
contact manipulation (Vehicle Left—TTC = 0.7 s). Before each
batch of 10 images, the participants were shown an example
video from a randomised set of four videos (the Automated
GO and Traditional Vehicle videos, in the Vehicle Left or
Vehicle Right conflicts, also used in Experiment 1).

A payment of USD 0.20 was offered for the completion
of the study. A total of 1568 participants took part between
25 November and 19 December 2020. Results of this survey
showed an overall satisfaction rating of 4.0 on a scale from 1
(‘very dissatisfied’) to 5 (‘very satisfied’) (n = 111).
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Braking percentage

Driver
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FIGURE 3 Percentage of 1260 participants who indicated that they would brake, as a function of window type (Driver, No Driver, Blinded) and vehicle type
(Automated GO, Automated, Traditional) (20 responses for urgency level, visual complexity of the surroundings, and conflict type were averaged; on average,
participants viewed 50% of the images). The error bars represent within-subject confidence intervals, calculated for the three vehicle types separately [47].

FIGURE 4 Vehicle Left, TTC = 0.7, without eye contact (left) and with eye contact (right).

After the participant provided the Braking (B) or continue
pedalling (P) response, the image disappeared, and the following
four statements were shown on the same page: (1) The windows
of the car were blinded. (2) There was a message ‘GO’ on the
car. (3) There was a sticker and sensor on the car. (4) A driver
was visible in the car. Participants were required to answer these
four questions based on what they had memorised from the pre-
viously shown image. The four questions were presented in ran-
dom order, and each had the response options ‘True’ and ‘False’.

4 RESULTS

A total of 1086 participants were retained after filtering, of
which 286 had participated in Experiment 1. The sample

consisted of 668 males, 414 females, and four participants who
selected ‘I prefer not to respond’ to the gender question. The
mean age of the participants was 37.2 years (SD = 11.4, min =
18, max = 77). The participants resided in 71 countries, with
the most represented countries being Venezuela (n = 471),
USA (n = 50), India (n = 44), Russia (n = 42), and Turkey
(n = 41). Their primary mode of transport was mostly a private
vehicle (n = 611), followed by public transportation (n = 255),
walking/cycling (n = 128), motorcycle (n = 74), and ‘other’
(n = 2).

The results of the regression analysis for the braking percent-
age and the median response time (n = 36 images without eye
contact) are provided in the Supporting Information (Table S1
& S2). An overview of the results for each of the stimuli
separately is provided in the Supporting Information as well
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FIGURE 5 Braking percentage (n = 1086), as a function of window type (Driver, No Driver, Blinded) and vehicle type (Automated GO, Automated,
Traditional) (four responses for urgency level and conflict type were averaged). The error bars represent within-subject confidence intervals, calculated for the three
vehicle types separately [47].

(Table S3). The results of Experiment 2 can be summarised as
follows:∙ The effect of conflict (0 = Vehicle Left, 1 = Vehicle Right)

on the braking percentage was weaker than in Experiment 1
(B = −16.838 and β = −0.605 in Experiment 1 versus B =−6.384 and β = −0.237 in Experiment 2).∙ The effect of Automated GO versus the Traditional Vehicle
on the braking percentage was stronger than in Experiment
1 (B = −13.634 and β = −0.462 in Experiment 1 versus B =−25.709 and β = −0.899 in Experiment 2).∙ The effect of Blinded Windows versus Driver on the brak-
ing percentage was statistically significant and stronger than
in Experiment 1 (B = 0.890 and β = 0.030 in Experi-
ment 1 versus B = 4.978 and β = 0.174 in Experiment 2).
Figure 5 illustrates that Blinded Windows caused participants
to brake, except for the Automated GO condition. Similarly,
the absence of a driver caused participants to brake, except
for the Automated GO condition.∙ Participants took considerably longer (5381 ms, see Table S2)
to provide their braking/pedalling response as compared to
Experiment 1 (1256 ms, see Table 4). Possibly, participants in
Experiment 2 used more time to reflect on the AV’s features
because they had to remember those features. Figure S3 in
the Supporting Information depicts the learning curves of
the response times in Experiment 1 versus Experiment 2.

∙ 42% to 73% of participants correctly recognised the stickers
and sensor on the vehicle, while false-positive rates were 5%
to 12%.∙ 83% to 92% of participants correctly recognised that the
vehicle had blinded windows, while false-positive rates were
9% to 21%.∙ 81% to 91% of participants correctly recognised there was
a message GO on the vehicle, while false-positive rates were
3% to 21%. High false-positive percentages occurred in the
Vehicle Left scenarios, where the word GO was part of the
word Google on the vehicle’s body (see Figure 1).∙ 55% to 98% of participants correctly recognised there was
a driver in the vehicle, while false-positive rates were 5% to
16%.∙ Driver eye contact increased the percentage of participants
who continued pedalling by 8% to 11%, except for the Vehi-
cle Right—TTC = 1.5 s condition, where the driver was hard
to see (see Figure 1). These effects are illustrated in Figure 6.

5 DISCUSSION

This work aimed to investigate how the appearance of
an approaching vehicle influences cyclists’ decision-making
behaviour. This study offers insights into the effects of
blinded windows, eye contact, and the visual complexity of the
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79%

79%

89%

88%

96%

98%

97%

98%

45 50 55 60 65 70 75 80
Braking percentage

Vehicle Right, TTC = 1.5 s, No eye contact

Vehicle Right, TTC = 1.5 s, Eye contact

Vehicle Right, TTC = 0.7 s, No eye contact

Vehicle Right, TTC = 0.7 s, Eye contact

Vehicle Left, TTC = 1.5 s, No eye contact

Vehicle Left, TTC = 1.5 s, Eye contact

Vehicle Left, TTC = 0.7 s, No eye contact

Vehicle Left, TTC = 0.7 s, Eye contact

FIGURE 6 Braking percentage (n = 1086), as a function of driver eye contact for four scenarios. The error bars represent within-subject confidence intervals
[47]. The numbers on the right represent the percentages of participants who reported ‘True’ to the statement ‘A driver was visible in the car’ for these eight images.

surroundings on decision-making and response times. The cur-
rent experiment was conducted with images instead of video
clips, combined with introductory videos based on which par-
ticipants could get an impression of the speed of the vehicle
and cyclist. The static stimuli allowed us to make many tightly
controlled comparisons between conditions. Other strengths of
our experiments are that they were conducted internationally
and with very large numbers of participants (1260 and 1086 in
Experiments 1 and 2, respectively), which should have produced
higher statistical power than typical human-subject research
done in the lab.

5.1 Replication of previous studies

In line with Vlakveld et al. [39], the more urgent the situa-
tion, the more likely the cyclists were to brake, and the vehicle
with eHMI encouraged the cyclists to continue pedalling. The
effect of urgency was stronger than in the video-based study
of Vlakveld et al., indicating that our image-based method is
sensitive. Overall braking percentages were different as well
(49%–81% in Experiment 1 vs 22%–47% in Vlakveld et al.). A
possible cause is that participants in our study were mostly non-
European, and hence less familiar with the fact that the cyclist
had right of way.

Our findings are in line with a simulator study by TRL
[49], which reported that AV distinguishability had no signif-
icant effect on gap acceptance, a video-based experiment by

Dey et al. [50], which concluded that knowledge of a vehicle
driving mode does not play a significant role in pedestrians’
crossing behaviours, and a study using a head-mounted dis-
play which found that vehicle type did not have a significant
impact on cyclists’ crossing intentions (Nuñez Velasco et al.
[51]). A possible reason for the lack of effect is that stickers and a
lidar are hard to detect, as Experiment 2 showed. Furthermore,
although Experiment 2 showed that the driver’s presence was
well noticed, it may have been hard to distinguish whether the
driver was attentive or inattentive (driver looking downward in
the AV).

5.2 Novel findings

Besides replicating Vlakveld et al. [39], our study was concerned
with examining several effects not described by Vlakveld et al.
First, the visual complexity of the surroundings had negligible
effects on cyclists’s decision-making. An eye-tracking study by
Lappi et al. [52] similarly showed that drivers make very few fix-
ations on irrelevant stimuli. Previous research has cautioned that
eHMIs might contribute to additional cognitive load [53, 54].
The present study suggests that participants are able to ignore
irrelevant information and that the effectiveness of an eHMI is
independent of whether one cycles in a rural environment or
a more built-up environment. Future research may test other
forms of scene complexity, such as complexity defined as the
number of road users in the traffic scene.
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Second, we found that if a traditional vehicle (Experiments 1
and 2) or an AV (Experiment 2) had blinded windows, partici-
pants were more likely to brake and responded faster compared
to a traditional vehicle with a visible driver. These effects may
be related to the notion that vehicles with blinded/tinted win-
dows are associated with more antisocial and dangerous driving
behaviour than vehicles where the driver is visible [55]. Further-
more, the blinded windows were easy to recognise, with correct
detection rates of 83% to 92% in Experiment 2.

Third, the absence of a driver caused cyclists to brake (Exper-
iment 2), except when the eHMI ‘GO’ was present. In fact, in
Experiment 1, the eHMI seemed to work better (i.e. cyclists
were more likely to continue pedalling) when the driver was
absent compared to when the driver was present. This latter
effect may be explained by the notion that a person behind the
steering wheel could create the impression of this person being
in control. That is, if a driver sits behind the wheel, it may be
unclear to other road users whether the AV’s eHMI signal is to
trusted, as there may be a ‘risk’ that the car is being driven man-
ually or that the driver in the car will override the eHMI signal. It
is noted, however, that these interactive effects, although statis-
tically significant, are not robust since they were not consistent
between Experiments 1 and 2 (Figures 3 vs 5). That is, the effect
of the absence of a driver seems contingent on subtleties such
as whether participants take the time to deliberate on the image
(Experiment 2) or not (Experiment 1).

Fourth, we found that eye contact promotes the cyclist to
continue pedalling. Our results provide some justification for a
study performed by Chang et al. [56], which presented an eHMI
consisting of artificial eyes at the location of the headlamps.
They found that synthetic ‘eye contact’ established by the eHMI
led to faster correct crossing decisions and generated a safer
feeling to cross the road. The effect of eye contact in Experi-
ment 2 was contingent on driver visibility. Research by AlAdawy
et al. [57] indicates that in most cases, pedestrians begin cross-
ing before the driver’s face or gaze can be distinguished through
the windshield. Similarly, it has to be determined whether the
present findings generalise to real traffic, where factors such as
windshield glare may affect the visibility of the driver.

A recent study by Faas et al. [58] appears to confirm our
findings using a Wizard-of-Oz method. More specifically, they
concluded that ‘without an eHMI, pedestrians felt significantly less safe
if the windshield was tinted or the driver was distracted as compared to an
attentive driver’ (p. 1364). This corresponds to Figure 5, in which
we showed that the No Driver and Blinded conditions made
cyclists brake, especially if there was no eHMI (i.e. automated
and traditional vehicle types).

5.3 Limitations

In this study, participants were presented with only two conflict
types, in which a single vehicle approached from a perpen-
dicular angle. In real traffic, vehicles can come from different
sides, which could affect the results. For example, in a previ-
ous online study where the cyclist was in the AV’s blind spot, it
was found that ‘self-driving’ stickers on the AV increased the

cyclists’ confidence that the AV had noticed them compared
to baseline [23], which may be because AVs are expected to
have an omnidirectional vision. Future research should include
a larger variety of scenarios and response options (i.e. not only
braking or pedalling, but also steering and different levels of
speed). Another limitation is that participants were unlikely to
have experience with AVs and eHMIs, and long-term effects are
therefore unknown (see [33], for a discussion). As pointed out
by TRL [49], ‘drivers typically do not feel sufficiently knowledgeable about
AV behaviour to treat them any differently than they would an HDV
[Human Driven Vehicle]’ (p. 5).

Another point of attention is that our study was conducted
with an international sample, to a large extent represented by
people from Venezuela, the USA, and Russia. Earlier online
research has shown that participants from different countries
are sensitive to different types of traffic risks [59]. It would have
been possible to apply a selection and only admit participants
from Western Europe (see [38]), so that the participants are
more familiar with the context and traffic rules of the images
from our study (e.g. shark teeth indicating right of way). Still,
our regression analysis for participants from different coun-
tries separately revealed fairly consistent baseline braking values
(‘constant’ in the regression analyses) and consistent effects of
urgency between countries (see Figures S2 and S4 for Experi-
ments 1 and 2, respectively). The consistency of effects may be
because the perception of risk and physical proximity have a bio-
logical basis [60] and are less dependent on learned behaviour
and knowledge, such as traffic rules. Our previous research
confirms that the effects of eHMIs and vehicle appearances
are generalisable and relatively independent of the participant’s
country of origin (e.g. [61]). In contrast, much of the psycholog-
ical research is unable to examine international generalisability
as the research is conducted with narrowly selected samples,
such as university students. Thus, instead of viewing our cross-
national sample as a limitation, it could also be seen as a
strength.

6 CONCLUSIONS

In conclusion, this study replicated the effects of Vlakveld et al.
[39] regarding an eHMI ‘GO’ and temporal urgency. Further-
more, we found that the visual complexity of the surroundings
has only minor effects on cyclists’ decision-making. Finally,
blinded windows make it more likely that cyclists will brake
(unless an eHMI signals that the cyclists can go), and driver
eye contact, if detectable, stimulates cyclists to continue ped-
alling. In other words, our findings suggest that future AVs, in
which there is no longer an attentive or visible driver, may cause
uncertainty among cyclists. Cyclists may benefit from an eHMI
indicating the AV’s intent.
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