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ABSTRACT
We examined what pedestrians look at when walking through a parking garage. Thirty-six par-
ticipants walked a short route in a parking garage while their eye movements and head rota-
tions were recorded with a Tobii Pro Glasses 2 eye-tracker. The participants’ fixations were then
classified into 14 areas of interest. The results showed that pedestrians often looked at the back
(20.0%), side (7.5%), and front (4.2%) of parked cars, and at approaching cars (8.8%). Much
attention was also paid to the ground (20.1%). The wheels of cars (6.8%) and the driver in
approaching cars (3.2%) received attention as well. In conclusion, this study showed that eye
movements are largely functional in the sense that they appear to assist in safe navigation
through the parking garage. Pedestrians look at a variety of sides and features of the car, sug-
gesting that displays on future automated cars should be omnidirectionally visible.

Practitioner summary: This study measured where pedestrians look when walking through a
parking garage. It was found that the back, side, and wheels of cars attract considerable atten-
tion. This knowledge may be important for the development of automated cars that feature so-
called external human-machine interfaces (eHMIs).

Abbreviations: AOI: area of interest; eHMI: external human-machine interface; NF: number of
fixations; NNF: normalised number of fixations; NT: number of transitions; NNT: normalised num-
ber of transitions
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Introduction

The media often speak of fully automated cars that
can take occupants from place A to place B with the
mere push of a button. In practice, however, the
development of automated cars may be better
described as an evolutionary process, with more and
more tasks being taken over by the automation
(Fraedrich, Beiker, and Lenz 2015). The latest auto-
mated driving systems available to the public can
drive largely automatically, and have advanced auto-
mation features such as traffic light detection, auto-
mated emergency braking, and automatic lane
changing. However, they still require an alert human
driver behind the steering wheel to intervene
occasionally.

When the level of automated driving is further
increased, the driver will no longer have to keep his

or her attention on the road permanently. This creates
new human factors challenges, including the much-
studied topic of ‘take-overs’ (Zhang et al. 2019). Less
researched are the consequences for road users out-
side the automated car, especially pedestrians and
cyclists. Automated cars may react differently than
human-driven cars. For example, automated cars are
likely to have a conservative driving style, which may
be confusing to pedestrians, and which pedestrians
could misuse by taking priority with impunity (Millard-
Ball 2018). Furthermore, pedestrians may have diffi-
culty understanding whether an approaching vehicle
is driving automatically (with a driver who is legitim-
ately not paying attention to the road) or manually
(with a dangerously distracted driver).

Car manufacturers have proposed the use of so-
called external human-machine interfaces (eHMIs) to
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inform pedestrians about the intentions of the auto-
mated car (for a survey, see Bazilinskyy, Dodou, and
De Winter 2019). Various types of eHMIs have been
presented, including text messages, walking symbols,
and a light bar around the car, showing either the
automation status or its intention to yield or to con-
tinue (e.g., Faas, Mathis, and Baumann 2020; interACT
2017). The effectiveness of eHMIs has already been
investigated in a series of studies, by means of virtual
reality glasses (e.g., Deb, Strawderman, and Carruth
2018; De Clercq et al. 2019) and other types of virtual
simulations (e.g., Kaleefathullah et al. 2021) as well as
WizardofOz methods (Faas and Baumann 2019;
Hensch et al. 2020) and online experiments
(Bazilinskyy, Dodou, and De Winter 2019; Bazilinskyy,
Dodou, and De Winter 2020; Dey et al. 2020). The
research so far shows that eHMIs are effective. That is,
participants tend to follow the eHMI’s instructions,
provided the message is unambiguous (De Clercq
et al. 2019; Fridman et al. 2019). A recent experiment
performed in a virtual parking garage concurs that
eHMIs that communicate the car’s upcoming deceler-
ation contribute to a decrease in crossing time of
pedestrians (Singer et al. 2020).

However, still little is known about the effectiveness
of eHMIs in real traffic. Two Wizard-of-Oz on-road
studies by Cefkin et al. (2019) reported only limited
success of their 360-degree led-strip eHMI called the
Intention Indicator. In the first study in a test environ-
ment, it was found that ‘there was no clear evidence
that they were noticed or understood to be signals
about the vehicle actions’ (p. 56). The second study
was conducted in a busy public environment, and par-
ticipants were informed about the Intention Indicator
before the experiment. Although post-experiment
interviews showed that participants generally liked the
idea of the Intention Indicator, only 1 of 21 partici-
pants reported that it influenced her decision making.
The problem again was that the eHMI was not well
noticeable, and there was only minimal time to learn
the meaning of it. Furthermore, it is conceivable that
pedestrians, especially on busy roads and in unstruc-
tured traffic situations, perceive approaching cars
using peripheral vision, that is, without actually focus-
sing on the car or the eHMI.

Recently, Lappi, Rinkkala, and Pekkanen (2017)
investigated in detail what a car driver looks at while
driving. The fixations were annotated and related to
seven ‘qualitative laws of gaze behavior in the wild’
(p. 2). In short, it turned out that the driver’s fixations
were almost always on task-relevant objects and loca-
tions, while there were only few fixations on irrelevant

objects. That is, there appeared to be no visual search,
but fixations were targeted and what is termed ‘just-
in-time’ (see also Ballard, Hayhoe, and Pelz 1995; Land
2006). In line with Lappi et al., one may expect that
pedestrian viewing behaviour is tightly connected to
their task of safely walking around, that is, that pedes-
trians mainly look at relevant cues in the environment.
What these relevant cues are, however, has not been
extensively explored yet. Previous research indicates
that pedestrians mostly look at the ground, street
edges, and other persons and vehicles (Fotios et al.
2015; Simpson et al. 2019), but these studies do not
report results regarding interactions with moving cars.
In an experiment using a manually-driven vehicle that
approached while slowing down, Dey et al. (2019)
found that pedestrians were inclined to look at the
windshield when the car was close by, perhaps to
read the driver’s face or seek eye contact. Whether
these findings can be generalised to more complex
traffic conditions remains to be investigated.

We aimed to explore the interactions between
pedestrians and their environments in a dynamic and
unstructured traffic environment. The underlying
motivation of this paper is that it is essential to inves-
tigate what pedestrians look at. In particular, if pedes-
trians hardly look at cars or their drivers, this could
mean that pedestrians can navigate safely without
eHMIs and that eHMIs may be effective to a limited
extent only.

In this study, we had pedestrians walk around a
parking garage while wearing an eye tracker that
recorded their eye movements. We chose a parking
garage for three reasons. The first reason was prac-
tical: A parking garage is shielded from direct sunlight,
which is beneficial for the quality of the measure-
ments from the infrared-illuminator-based eye-tracker.
The second reason was that many nonformalised
interactions between pedestrians and vehicles could
be expected in a parking garage, such as interactions
with cars moving in or out a parking space (as also
pointed out by Singer et al. 2020). A third reason is
the fact that parking garages are a candidate environ-
ment for the introduction of automated vehicles (e.g.,
Banzhaf et al. 2017).

Methods

The experiment included 43 participants (21 females,
22 males) with a mean age of 46.9 years (SD¼ 16.9).
All participants provided written informed consent.
The study was approved by the Human Research
Ethics Committee of the Delft University of
Technology. During the experiment, participants wore
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the Tobii Pro Glasses 2 eye tracker. The acquired eye
movement data were analysed with Tobii Pro Lab soft-
ware (version 1.152) and MATLAB R2020a.

The experiment was conducted during the after-
noon (between 13:00 and 17:30) between 14
November and 5 December 2018, in the covered park-
ing garage of a supermarket (W.H. van Leeuwenlaan 1,
2613 ZE Delft, The Netherlands). For four participants,
the experiment was conducted after sunset.

The participants were asked if they wanted to par-
ticipate when they were leaving or entering the super-
market. First, the participant signed an informed
consent form and completed a short questionnaire
that included questions about age and gender, after
which the Tobii Pro Glasses 2 was calibrated. Next, the
experiment started, and the participant walked the
designated path (Figure 1) as they normally would. An
experimenter walked behind the participant with a
laptop to guide the participant, monitor whether data
were recorded, and observe the intended use of the
eye-tracker. Three experimenters fulfilled this role over
the course of the experiment. The laptop showed a
real-time wireless feed of the participant’s view. The
interaction between the participant and experimenter
was minimal, although some of the participants
tended to be talkative. Analysis of the eye-tracking
footage showed that participants looked at experi-
menters only for about 1% of the time, which was
mostly near the end of the trial while walking up to

the rest of the experimenters who were standing at
the endpoint.

The first ten participants were asked to walk one lap
in the parking garage, and the rest of the participants
were asked to walk two laps. This change was made to
increase the total amount of data collected. For the
same reason, interactions were added from the 11th par-
ticipant onwards. More specifically, an experimenter
drove an Alfa Romeo 155 around the garage or started
from a parked position after which he drove around.
While parked, the experimenter had the tail lights of the
car on and the engine running, waited for the partici-
pant to approach, and then drove out of the parking
space a few metres in front of the participant. The driver
did not make eye contact with the participant. The
experimenter’s unparking car sometimes caused the par-
ticipant to pause walking because their path was
blocked. Because the eye movements during these
experimenter events (car driving around and unparking)
turned out to not be distinct compared to other events
(e.g., many other approaching cars and unparking cars),
it was decided to not analyse these events separately.

Areas of interest

Tobii’s I-VT (Attention) filter was used. This filter has
been designed for dynamic conditions and therefore
employs a relatively high velocity threshold of
100 deg/s (Tobii 2018). Each fixation was manually

Figure 1. The layout of the floor of the parking garage and the the path walked by the participants. There were 57 parking pla-
ces, as indicated by the numbers.
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annotated in areas of interest (AOIs). The AOIs were
defined using an inductive category formation
method. More specifically, within the research team,
the looking behaviour of participants in the recorded
videos was observed, and distinct viewing patterns
were noted down and discussed. For example, it was
observed that participants often looked at the backs
of cars, and hence ‘back of parked car’ was defined as
an AOI category. The other AOI categories were
derived in a similar manner, where it was kept in
mind that AOI categories should be a noticeable and
distinct attractor of visual attention (i.e., not easily
confused with other AOI categories), semantically dis-
tinct (e.g., approaching cars were a separate category
from parking/unparking cars, because these objects
were assumed to have a different meaning to partici-
pants), and frequently occurring (glances towards idio-
syncratic objects such as shopping carts were not
coded as a separate category). The annotation of fixa-
tions was conducted by the last author of this paper.
The results of the annotations were discussed (e.g., via
chat, by sharing screenshots) with the first two
authors, leading to refinements in the definitions of
the AOIs, and double-checks and adjustments in the
annotations. No assessment of interrater reliability
was performed.

Accordingly, the following 14 AOIs were defined
(see Table 1 for examples):

1. Approaching car.
2. Driver in approaching car.
3. Parking/Unparking car.
4. Driver in parking/unparking car.
5. Other moving car (car driving away from the par-

ticipant, elsewhere in the parking garage).
6. Driver in other moving car.
7. Wheels of moving or parked car.
8. Back of parked car.
9. Side of parked car.

10. Front of parked car.
11. Human outside car.
12. Experimenter (including fixation on the equip-

ment, such as the laptop).
13. Ground (asphalt/lines).
14. Environment (objects in the environment, such

as pillars, garage windows, and shopping carts).

The radius of the fixation circle was a tenth of the
height of the image. If a fixation circle overlaid more than
one object, the fixation was annotated as the object cov-
ered by the largest portion of the circle. For example, if
the circle overlaid 70% of the back of a parked car and
30% of a wheel, the fixation was classified as ‘back of

parked car’. Fixations on the driver were defined as fixa-
tions on the (location of the) face of the driver. However,
if the car was far away so that the fixation circle was
greater than half the width of the windshield, any fixation
on the car was counted as a fixation on the car, not on
the driver in that car.

Additionally, the total number of approaching cars,
parked cars per parking space, parking/unparking cars,
and humans outside cars encountered by each partici-
pant (either with or without fixations) were manu-
ally counted.

Data processing

An issue in real-world studies such as the present one
is that not all participants yield the same amount of
data, for example, due to differences in trial length or
trackability of the pupils. We decided to cope with
this issue via a normalisation procedure that ensured
that results from different participants can be com-
pared in a meaningful way. More specifically, the num-
bers of fixations per AOI were normalised per
participant so that the total equalled 100% for each
participant (Eq. 1, where NF is the number of fixations,
NNF is the normalised number of fixations, p is the
participant number, and i is the AOI number). In this
way, the normalised number of fixations represents,
for each participant, how participants distributed their
attention between the 14 AOIs. The normalised num-
ber of fixations was visualised in a boxplot.

NNFp, i ¼ 100% " NFp, iP14
i¼1NFp, i

(1)

In addition, we computed the total number of tran-
sitions (NT) between fixations on AOIs for all partici-
pants combined, yielding a 14# 14 matrix (Eq. 2). This
matrix provides the reader with an overview of the
most frequently occurring transitions. A similar matrix
was computed for the normalised number of transi-
tions (NNT), where the normalisation was performed
according to the expected number of transitions if
participants had fixated entirely randomly according
to the AOI base rates (Eq. 3, where C is a constant
used to scale the values to a percentage of the total
number of transitions). The NNT matrix allows for
assessing which types of transitions stand out relative
to random sampling.

NTi, j ¼
Xn

p¼1

NTp, i, j (2)

NNTi, j ¼ C
NTi, j

P14
i¼1NTi, j

! " P14
j¼1NTi, j

! " (3)
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As a follow-up analysis, we attempted to under-
stand individual differences in the number of fixations.
Accordingly, we calculated a head movement index,
representing the mean absolute head yaw velocity, as
calculated from the IMU in the eye-tracker. Loosely
speaking, the head movement index represents how
actively the participant was looking to the left and
right. We computed Spearman’s rank-order correlation
coefficients between the head movement index and
the participants’ normalised fixation count.

The percentage of time that the participant was
walking was extracted by filtering the signal of a

vertically-oriented accelerometer that was embedded
in the eye-tracker using a median filter with an order
of 600ms (a typical step interval). Walking was defined
as this signal being above its median value over the
entire trial.

Results

Data availability

The data recording lasted on average 144.0 s per par-
ticipant (SD¼ 41.9 s, n¼ 43). For the first ten

Table 1. Examples of fixations per area of interest.
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participants, who walked one lap, this was on average
78.9 s (SD¼ 9.7 s), and for the remaining 33 partici-
pants, who walked two laps, this was on average
163.7 s (SD¼ 23.5 s). The average percentage of avail-
able gaze samples, calculated by dividing the number
of eye-tracking samples that were correctly identified
by the theoretical maximum of 50 samples per second
in 50Hz data, was 62.3% (SD¼ 15.5%, n¼ 43). From
the vertically-oriented accelerometer in the eye-
tracker, we estimated that participants were walking
(i.e., stepping) on average 96.3% of the
time (SD¼ 4.0%).

From the 43 participants, a total of 12,996 fixations
were recorded. Thus, an average of 302 fixations were
annotated per participant. The number of fixations
varied considerably between participants (SD¼ 160,
min ¼ 24, max ¼ 691, n¼ 43). This large variation can
partly be explained by individual differences in avail-
able gaze sample data and individual differences in
the duration of the trial. On average, participants fix-
ated on something for 31.2% of the time
(SD¼ 19.2%, n¼ 43).

As a data quality criterion, we excluded participants
for whom less than 10% of the total recording time
consisted of fixations. A low percentage was caused
by jittery or unavailable/interrupted eye-gaze data, as
a result of which the algorithm could not capture the
fixations of the participants. Accordingly, 36 of the 43
participants were retained. These participants yielded
a total of 12,599 fixations, and a corresponding

average of 350 fixations per participant (SD¼ 127, min
¼ 150, max ¼ 691). The 36 participants encountered
an average of 8.0 approaching cars (SD¼ 3.7), 2.3
parking/unparking cars (SD¼ 1.8), and 7.7 humans
outside cars (SD¼ 3.1). Furthermore, an average of
37.6 of the 57 parking places were occupied
(SD¼ 7.4). For parking spaces 1–29, along which the
participant walked (see Figure 1), 17.9 of the parking
places were occupied (SD¼ 4.5, n¼ 36).

Fixation analysis

Figure 2 shows the distribution of the normalised
number of fixations for different AOIs and participants.
It can be seen that participants, on average, often
looked at the ground (20.1%), the backs of parked
cars (19.9%), the environment (14.5%), approaching
cars (8.8%), as well as the side of parked cars (7.5%).
The wheels of cars also received considerable atten-
tion (6.8%). Of note, most of the 853 fixations towards
wheels concerned wheels of parked cars (71.6%) and
wheels of approaching cars (19.7%), see Table S1 in
the supplementary materials for a detailed analysis of
which wheels participants fixated at.

A portion of fixations were directed to drivers in
cars (3.2% for drivers of approaching cars, 1.1% for
drivers in parking/unparking cars, and 0.2% for drivers
in other moving cars). In other words, based on the
average of participants, 26.6% (3.2/(8.8þ 3.2)), 20.1%
(1/1/(4.5þ 1.1)), and 16.3% (0.2/(0.9þ 0.2)) of the

Figure 2. Boxplot of the normalised number of fixations (NNF). Each circular marker represents one participant (n¼ 36). The green
cross represents the participant mean. One marker for Ground (75.1%) is not shown as it falls outside the range of the y-axis.
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fixations towards, respectively, approaching cars, park-
ing/unparking car, and other moving cars were on
the driver.

Figure 2 showed the normalised number of fixa-
tions (NNF), which is a measure of how participants
distributed their fixations across the 14 AOIs. For com-
pleteness, we also provide the total number of fixa-
tions (Figure S1) and the total fixation duration
(Figure S2) in the supplementary materials. The results
in Figures S1 and S2 are in agreement with Figure 2,
with most attention being paid to the ground, the
backs of parked cars, and the environment (r¼ 0.99
between the 14 medians reported in Figure 2 and the
medians reported in Figure S1), and r¼ 1.00 between
the medians reported in Figure 2 and the 14 medians
reported in Figure S2). In other words, the relative
results are the same regardless of which metric we
employ. The mean fixation duration, averaged across
participants, was fairly constant across the different
AOIs, between 121ms and 144ms. Exceptions were
the drivers in approaching cars (195ms) and drivers in
parking/unparking cars (169ms) AOIs, which yielded
somewhat longer fixations (Figure S3).

Figure 3 shows the total number of transitions (NT)
between the different AOIs. It can be seen that the

number of transitions for pairs of AOIs was highly
symmetric. The strong symmetry indicates that partici-
pants were equally likely to sample from AOIi to AOIj
as compared to from AOIj to AOIi, without clearly iden-
tifiable scan paths. For example, participants switched
their attention from parking/unparking cars to the
drivers of these cars (38 transitions) almost as often as
from the drivers to the parking/unparking cars (35
transitions). Similarly, the number of transitions from
the ground to the back of car and the number of tran-
sitions from the back of car to the ground were
equivalent (288 and 299 transitions, respectively).
Figure 3 also shows that participants were likely to re-
fixate on the same type of AOI, as can be seen by the
high numbers on the diagonal as compared to the
off-diagonal numbers.

The results in Figure 3 offer insight into the abso-
lute number of transitions, but do not elucidate which
transitions dominate in relative terms. We therefore
performed a normalisation of the numbers of fixations
(NNT) according to the expected number of transitions
if participants fixated entirely randomly based on the
total number of fixations per AOI. The results in
Figure 4 show a high number of transitions from park-
ing/unparking cars to the drivers in parking/unparking

Figure 3. The number of transitions (NT) between AOIs (participants switching attention from ‘Fixation from’ to ‘Fixation to’). The
total number of transitions is 12,563, which equals the total number of fixations (12,599) minus the number of participants (36).
The numbers on the diagonal represent re-fixations on the same AOI.
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cars and from drivers in the parking/unparking cars to
parking/unparking cars. Similarly, a relatively large
number of transitions were performed from approach-
ing cars to drivers of approaching cars as well as in
the opposite direction.

Head movement analysis

Figure 5 illustrates the head yaw rate of two partici-
pants: one participant with a low head movement
index (11.3 deg/s) and one participant with a high
head movement index (27.4 deg/s). In comparison, the
mean head movement index of the 36 participants
was 20.8 deg/s (SD¼ 5.35 deg/s). It can be seen that
head movement takes the form of rapid head turns
towards either the left or the right. The correlation
coefficients in Figure 6 show that people with a higher
head movement index were more likely to look at
other humans and cars, and less likely to look at
the ground.

Discussion

The purpose of this study was to examine what
pedestrians look at when walking a number of laps

through a parking garage. Our study was simple but
relatively unique in the literature. To our knowledge,
only a small number of outdoor studies with pedes-
trians or cyclists have been published so far, mostly
focussing on locomotion and interactions with other
pedestrians rather than interactions with vehicles in
an unstructured environment (e.g., Arai et al. 2017;
Fotios et al. 2015; Liu et al. 2020; Mantuano, Bernardi,
and Rupi 2017; Rupi and Krizek 2019; Simpson et al.
2019; Trefzger et al. 2018).

We list some interesting observations from our
study. It was striking that participants often looked at
the backs of cars. There are several possible explana-
tions for this phenomenon. First, the backs of cars are
what was visible to the participants, whereas the
fronts or sides, in a full parking garage, are often
occluded by other parked cars. Second, the backs of
the cars pose the most immediate threat and there-
fore requires the most attention. Third, the back of a
parked car provides an important cue because it
allows for detecting vehicle movement relative to the
background as well as brake lights and reversing
lights. If a car starts to reverse, the pedestrian should
respond immediately by, for example, stopping for the
car or walking around it. It should be noted here that

Figure 4. The normalised number of transitions (NNT) between AOIs. The normalisation was performed according to the expected
number of transitions if totally random sampling were used (with diagonal removed). The data for the category ‘driver in other
moving car’ was omitted because of the small number of fixations. The depicted numbers were multiplied with a constant C,
so that they add up to 100%.
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it is useful to look at the back of a car even when this
car shows no movement or activity. What is important
for the pedestrian is to detect possible changes (e.g.,
initiation of movement, reversing lights or brake lights
that turn on or off) that require action. The same prin-
ciple of functional attention could apply to the cars
approaching the participants in our study: These cars

are not necessarily the nearest cars, but may be the
most important cars for pedestrians to assess whether
they should adjust their walking path.

Similarly, a substantial amount of attention was
paid to the wheels of cars, in particular the rear
wheels of parked cars. It can be argued that the
wheels are suitable for detecting the intention of the

Figure 6. Correlation between head movement index and normalised number of fixations (n¼ 36). The error bars represent 95%
confidence intervals.

Figure 5. Left: Head yaw rate of a participant with a low head movement index (11.3 deg/s). Right: Head yaw rate of a partici-
pant with a high head movement index (27.4 deg/s). A positive value indicates a rotational velocity towards the left.
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driver as changes in speed can be picked up directly
from their rotation. The fact that pedestrians are
inclined to look at the wheels of cars appears to be a
novel finding in the literature. Exceptions are Aupetit,
Espi!e, and Bouaziz (2015), who noted that motorcy-
clists look at the front wheels of cars to infer their
intended lateral movement, and Vlakveld (2014; see
also De Winter et al. 2019), who used turned front
wheels as a hazard precursor in a hazard percep-
tion study.

Most of the fixations were aimed at the ground.
This could be explained by the fact that locomotion
through the parking garage is a rather demanding
task, with obstacles such as concrete bumpers in the
parking places, and lines defining the walking area.
These findings can be related to earlier work of Fotios
et al. (2015), who recorded eye movements of pedes-
trians walking through a university campus. They
found that the pedestrians tended to look at their
near path as well as small objects that could cause
the pedestrian to slip. Similarly, Simpson et al. (2019)
reported that the fixations of pedestrians were primar-
ily on the street edges and the ground, which would
again indicate the importance of these elements for
safe navigation.

The pedestrians also looked at the drivers in cars:
In about 25% of the cases when the pedestrian looked
towards an approaching car, the fixation was aimed at
the driver. This finding is consistent with Dey et al.
(2019), who showed that pedestrians tend to look at
the windshield, especially when the approaching car is
close by, and offers a rebuttal to some recent voices
suggesting that reading cues from the car driver is
not important because pedestrians are perfectly cap-
able of crossing the road in front of a driverless car
(Moore et al. 2019). We argue that, although looking
at the driver may not be essential for pedestrians to
move around safely, pedestrians do try to use this
information to make predictions about how a situation
will unfold. The participants’ mean fixation durations
were elevated for drivers in approaching cars, which
may be because participants tried to track the driver
(i.e., smooth pursuit) or process this information in

depth, for example in an attempt to read the driver’s
face or posture (and see Underwood, Crundall, and
Chapman 2011, for an interpretation of fixation dur-
ation in traffic). The fact that other people’s faces
attract attention may have an innate component. A
study among infants previously showed that faces
attract more attention than other visual objects (Gliga
et al. 2009).

The normalised number of transitions showed that
transitions between drivers and their cars was higher
than what could be expected based on random sam-
pling. In other words, it appears that pedestrians rela-
tively often shifted focus from the car to its driver and
back. The high number of transitions between driver
and car may be due to the close proximity of these
two AOIs, causing overlap, especially for noisy eye-
tracker data. However, the high number of transitions
may also suggest that pedestrians rely on vehicle
motion in combination with cues from the driver
when trying to judge an approaching vehicle’s inten-
tions, as pointed out above. In other words, the driver
and its vehicle appear to be interpreted jointly.

Of note, there were individual differences in
whether participants looked at other humans. Some
participants were more likely to look down towards
the ground and less likely to make visual contact with
other humans. It can be hypothesised that individual
differences in looking behaviour to other humans are
associated with an introverted or extroverted personal-
ity, as argued by Wu et al. (2014). Further research
could test this hypothesis using a large number of
participants, and in controlled conditions with an
equal number of other humans in the environment for
all participants.

A limitation of our study is that there was a sub-
stantial amount of missing data. The Tobii Glasses are
known among researchers as reliable, but the percent-
age of available data was somewhat disappointing.
Future research should examine how data availability
can be improved, either via technological advance-
ments or improved experimental procedures. Another
limitation, inherent to eye movement research, is that
a participant’s fixations do not necessarily relate to the

Figure 7. Example of a participant tracking a car behind parked cars.
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participant’s cognitive activity at that time. This is illus-
trated in Figure 7. This figure shows that the pedes-
trian tracked an approaching car that emerged from
behind parked cars. These fixations were conserva-
tively classified as ‘side of parked car’ or ‘back of
parked car’, but in essence they were devoted to a
latent hazard behind these parked cars.

Conclusions and implications

From our research, we can conclude that pedestrian
viewing behaviour is highly targeted. Pedestrians
seem to be extracting cues that can functionally con-
tribute to the task of safely walking around the park-
ing garage. At first sight, this conclusion may seem
trivial, but, upon closer reflection, it is intriguing that
pedestrians know how to focus on the right cues with-
out visually searching for those cues. In a previous
study in car driving, it was also found that very few
fixations were made on irrelevant objects and scenery,
leading the authors to conclude that ‘peripheral visual
information is used in a very efficient way to guide
the gaze at the relevant locations with high accuracy
and reliability’ (Lappi, Rinkkala, and Pekkanen 2017).

What do the present findings mean for the devel-
opment of eHMIs for automated cars? We found that
pedestrians pay considerable attention to vehicle-cen-
tric cues such as wheels, approaching cars, and the
backs of cars. Our observations are consistent with
Cefkin et al. (2019), who concluded that ‘vehicle
motion was the primary basis of communicating
vehicle actions and intent’ (p. 56). What our study
shows is that people look at different sides and fea-
tures of the car (front, side, rear, wheels), as well as
humans in cars. This, in turn, would require that
eHMIs are omnidirectionally visible, for example by
means of a display on the roof (Vlakveld, Van der Kint,
and Hagenzieker 2020) or LED strips on the car (Cefkin
et al. 2019; Nissan 2015; Volvo Cars 2018). Our findings
also suggest that an eHMI on only the front of the
car, which appears to be the norm in the literature so
far (Dey et al. 2020), is of limited use in parking
garages, as the fronts of cars receive less than 50% of
the attention than the backs of cars.

Finally, we note that the fact that vehicle motion
cues seem dominant does not imply that eHMIs are
superfluous. As shown in the present study, pedes-
trians often look at the driver as well, suggesting that
humans may benefit from an eHMI when driverless
cars hit the roads. eHMIs may remove confusion for
pedestrians, or be used to communicate information
that cannot be deduced at all from vehicle movement.

An example of this is the current state of automation;
that is, whether the automation is currently active or
not. Another idea could be to have an eHMI display
that the automated car is about to drive away, a few
seconds before the car actually does so (Eisma et al.
2019; Singer et al. 2020). We see this type of anticipa-
tory eHMIs as an interesting subject for follow-
up research.
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