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Abstract 

Vision-language models are of interest in various domains, including automated driving, where 
computer vision techniques can accurately detect road users, but where the vehicle sometimes 
fails to understand context. This study examined the effectiveness of GPT-4V in predicting the 

level of ‘risk’ in traffic images as assessed by humans. We used 210 static images taken from a 
moving vehicle, each previously rated by approximately 650 people. Based on psychometric 

construct theory and using insights from the self-consistency prompting method, we formulated 
three hypotheses: 1) repeating the prompt under effectively identical conditions increases 

validity, 2) varying the prompt text and extracting a total score increases validity compared to 
using a single prompt, and 3) in a multiple regression analysis, the incorporation of object 

detection features, alongside the GPT-4V-based risk rating, significantly contributes to improving 
the model’s validity. Validity was quantified by the correlation coefficient with human risk scores, 

across the 210 images. The results confirmed the three hypotheses. The eventual validity 
coefficient was r = 0.83, indicating that population-level human risk can be predicted using AI 
with a high degree of accuracy. The findings suggest that GPT-4V must be prompted in a way 

equivalent to how humans fill out a multi-item questionnaire. 
 

Introduction 
GPT-4V Background 
In late September 2023, OpenAI introduced image-to-text functionality for ChatGPT, also called 
GPT-4V or GPT4 Vision. At that time, image-to-text software, such as BLIP, and functionalities 
within Google’s Bard and Bing Chat were already available (Bing, 2023; Google, 2023; Li et al., 
2022; see Cui et al., 2024 for a survey on multimodal large language models). However, GPT-4V 
was highly anticipated due to the high quality of its output, as demonstrated in earlier previews 
(OpenAI, 2023). 
 
The research so far demonstrates that GPT-4V exhibits strong generic skills. It can comprehend 
diverse stimuli such as written text, charts, graphical user interfaces, abstract visual pictures, and 
visual IQ tests (Ahrabian et al., 2024; Yan et al., 2023; Z. Yang et al., 2023). GPT-4V is also 
capable of solving visual mathematical problems, although not yet at a high level (Lu et al., 2023). 
As of early 2024, GPT-4V is still considered superior to a recent competitor from Google, called 
Gemini-Pro (M. Liu et al., 2024; Qi et al., 2023), but see proprietary evaluations of Google’s largest 
model, Gemini-Ultra (Gemini Team Google, 2023; Yue et al., 2023). 
 
There is strong interest in GPT-4V within the domain of automated driving. Current automated 
vehicles are effective at detecting objects and handling routine scenarios, but the challenge still 
lies in rare situations that are not included in the training data (Bogdoll et al., 2022; Jain et al., 
2021). The strength of GPT-4V (and other vision language models) is its ability to understand 



 

 

context, including scenarios not previously encountered (Hwang et al., 2024; Z. Yang et al., 2023; 
Zhou & Knoll, 2024). On the other hand, while GPT-4V is skilled in recognising unusual traffic 
events, it is not skilled at seemingly trivial tasks such as recognising details like the status of traffic 
lights, and spatial tasks such as reporting the orientation and (relative) position of road users (Wen 
et al., 2023; Zhou & Knoll, 2024). 
 
Indeed, GPT-4V exhibits several limitations. It struggles with counting objects and judging details, 
such as answering the question “How many eyes can you see on the animal?” or “Count the 
number of trees in the given image”, tasks that normally do not pose a challenge for humans (Tong 
et al., 2024; Zhang & Wang, 2024). Furthermore, although GPT-4V performs well in 
commonsense visual question answering, it is prone to hallucinations when world knowledge is 
required, such as about real-world objects (Y. Li et al., 2024), especially for objects from non-
Western countries (Cui et al., 2023). A similar pattern has been observed for medical images, 
where GPT-4V does not seem to possess the knowledge required for making accurate diagnoses 
or reports (Senkaiahliyan et al., 2023; Wu et al., 2023). Guan et al. (2023) made a distinction 
between visual illusions, in which a visual element is misrepresented, and language hallucinations, 
where GPT-4V fails to recognise a feature in the image because it adheres to previously learned 
stereotypical responses for similar images. Guan et al. also indicated that ChatGPT exhibits 
limitations in temporal reasoning abilities. 
 
Prompting Methods 
Different strategies exist for improving the output of GPT-4V. This includes a prompting method 
where images are first segmented and marked with characters or boxes before being submitted 
to GPT-4V (J. Yang et al., 2023). The use of composite images (Y. Li et al., 2024), comparing 
images in pairs (Zhang et al., 2023), or multimodal cooperation (Ye et al., 2023) are other viable 
strategies. Additionally, the literature recommends chain-of-thought prompting for GPT-4V 
(Ahrabian et al., 2024; Hou et al., 2024; Zhang et al., 2024), a strategy also known for text-only 
ChatGPT (Bellini-Leite, 2023; Wei et al., 2022). Others have converted visual information into text 
first, using a prompt such as “what’s in this image?”; this method is promising when processing 
large quantities of images that occur in a temporal sequence (Y. Liu et al., 2024). 
 
Small variations in the prompt can lead to substantially different outputs of large language models 
(Huang et al., 2023; Salinas & Morstatter, 2024). For example, when a list of short phrases is 
submitted to GPT for sentiment analysis, but the same list is sorted in a different order, the 
sentiment score from GPT is usually different, even if GPT is set to produce near-zero variation 
through its temperature parameter (Tabone & De Winter, 2023). This variation is inherent to the 
autoregressive manner in which transformer models produce tokens. 
 
A technique to mitigate this randomness is self-consistency, also referred to as bootstrapping 
(Tabone & De Winter, 2023; Tang et al., 2023; Wang et al., 2023): After repeating the prompting 
process multiple times, each time with a different permutation of the text, the modal or mean output 
can be extracted. This aggregate typically has higher accuracy than the output of a single prompt. 
Various refinements of the self-consistency method exist (Fu et al., 2023; Li et al., 2023), more 
recently expanded to the notion of invoking multiple different language models (J. Li et al., 2024; 
Lu et al., 2024). 
 
It is our proposition that self-consistency prompting resembles how constructs are defined in 
psychometrics. In psychology, a construct, such as personality (e.g., extraversion), can be 
estimated by having the person fill out multiple questionnaire items. By averaging the results of 
items that have been sampled from a domain of possible items, an estimation of the construct can 



 

 

be made (Cronbach et al., 1972; Little et al., 2013; McDonald, 2003; Nunnally & Bernstein, 1994; 
Sawaki, 2010). 
 
Current Study 
This research focuses on evaluating GPT-4V, but not as in identifying specific visual elements, a 
domain in which GPT-4V demonstrates limited performance. Instead, we conducted a holistic 
assessment by examining the ability of GPT-4V to predict ‘risk’ as evaluated by humans. Instead, 
we conducted a holistic evaluation, where we examined how well GPT-4V can predict ‘risk’ as 
assessed by humans. More specifically, this study presents an assessment of GPT-4V concerning 
the prediction of risk in forward-facing photographs from the perspective of a moving vehicle.  
 
Our analysis draws on a prior study (De Winter et al., 2023), in which human crowdworkers 
assessed the risk of traffic images, taken by a camera mounted on the roof of a car while driving 
on German roads (KITTI dataset; Geiger et al., 2013). In De Winter et al., a total of 210 images 
were rated by an average of 653 participants per image. Based on these ratings on a scale ranging 
from 0 (no risk) to 10 (extreme risk), a mean risk score was computed for each image. 
 
De Winter et al. (2023) investigated whether the images’ risk level, as assessed by humans, was 
predictable based on features extracted by a pretrained object detection algorithm (Bochkovskiy 
et al., 2020; Redmon & Farhadi, 2018), see Figure A1 in the Appendix. Their analysis showed that 
the number of people in the image (r = 0.33) and the mean size of the bounding boxes (r = 0.54) 
were predictive of the human risk scores. The driving speed was negatively predictive (r = -0.63), 
which can be explained by risk compensation (a less strict variant of risk homeostasis; Wilde, 
1982, 2013): some situations, like empty roads, allow drivers to drive at the maximum allowed 
speed without it being high risk. Conversely, complex traffic environments, such as city centres, 
lead people to drive slowly (Charlton et al., 2010). Through a regression analysis, the three 
measures combined (number of people, size of bounding boxes, and vehicle speed) were found 
to be strongly predictive of the human risk level (r = 0.75). Excluding the speed variable, the 
prediction was weaker but still substantial (r = 0.62) (De Winter et al., 2023). 
 
One might wonder why the prediction derived from the object detection was not more strongly 
indicative of the human risk ratings. In the previous study, we hypothesised that the object 
detection algorithm does not account for contextual information. For example, an image of a 
railroad crossing was perceived as hazardous by the human evaluators, whereas the object 
detection algorithm could not detect this railroad and did not understand the broader situation (De 
Winter et al., 2023). In the current study, we explored whether GPT-4V could contribute to a more 
accurate assessment of the risk in the traffic images as compared to using object detection 
features alone. 
 
Hypotheses 
Figure 1 provides one manner in which construct validity can be interpreted for risk ratings. Here, 
the risk score for a given image is the arithmetic mean risk from a large number of participants. 
These participants might all have had slightly different interpretations of the same rating task. For 
example, Participant 1 might interpret the task as ‘probability of an accident occurring’, Participant 
2 as ‘difficulty of the task’, etc.—interpretations that are positively correlated but not the same 
(Fuller, 2005). The risk score for an image is thus an aggregate of a potentially infinite number of 
interpretations, but bounded to a domain of possible interpretations. Additionally, the same 
participant will not perform a reliable evaluation under a given interpretation of the task. For 
example, a participant may be distracted or overlook something in the image for arbitrary reasons. 
Therefore, noise is present, also known as ‘measurement error’. 
 



 

 

 
 
Figure 1. Causal process of how a participant generates a risk score for an image. The participant observes 
the image and task instruction presented on a computer screen, makes one (or a combination of multiple) 
interpretation(s), and enters a numerical risk score. The overall risk score for a given image represents the 
average from a large number of participants, thus reflecting an aggregation of a large number of different 
interpretations. This conceptualisation of construct validity is based on Markus and Borsboom (2013). 
 
Considering the use of GPT-4V to approximate this human risk score as accurately as possible, 
three hypotheses are formulated. In each of the three hypotheses, validity is defined as the 
correlation coefficient between the mean risk score of GPT-4V and the human risk score. 
 
H1: Repeating the same prompt under nearly identical conditions (in our case: keeping the images 
and prompt text identical, and only changing the order of the images within the same prompt) will 
result in higher validity as compared to using the exact same prompt. 
 
H2: Aggregating the results of different prompts within a behavioural domain (in our case: slightly 
rephrasing the question) will result in higher validity as compared to using a single prompt text. 
 
The aforementioned hypotheses are consistent with the self-consistency prompting method 
(Wang et al., 2023), but adapted for quantitative assessment and motivated from a psychometric 
perspective. Here, H1 is equivalent to the use of items in parallel forms, with the aim to reduce 
measurement error, while H2 is equivalent to the use of multiple items to estimate a latent 
construct. 
 
H3: In a multiple regression analysis with GPT-4V included, object detection features, as used by 
De Winter et al. (2023), will statistically significantly contribute to predicting human risk. This 
hypothesis is based on the previously mentioned review, which indicated that GPT-4V possesses 
generic skills but may fail to recognise specific elements in images (e.g., Wen et al., 2023; Zhou 
& Knoll, 2024). Hence, the two different AI-based methods (vision-language model vs. object 
detection) were expected to have complementary value. 
 
This study was conducted in two phases. Phase 1 was carried out using GPT-4V as available in 
the ChatGPT web interface. This approach was chosen because many users might not have 
access to the API (an interface for programmatic access), and because the API was not available 
at the time of this assessment. Phase 1 aimed to explore how multiple images could be evaluated 
and aggregated. To this end, we used composite images, with a selection of 10 images each time 
in a different order. We investigated to what extent repetitions result in an increase in validity (H1). 
 
In Phase 2, we used OpenAI’s API for GPT-4V, which has recently become available. We 
submitted images one-by-one and in batches of four, and we examined to what extent repetition 
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improves validity (H1) and to what extent different prompts within a plausible domain improve 
validity (H2). Finally, we investigated whether object detection scores contribute to validity in a 
linear regression model (H3). 
 
 

Methods 
Phase 1: ChatGPT Web Interface 
The images were uploaded to the ChatGPT web interface as composites of 10, randomly selected 
from the total of 210 images. The individual images had a size of 1242×375 pixels. Due to the web 
interface having a limit of about 90 prompts in a 3-hour interval, this approach proved to be suitable 
for processing a large number of images. The decision to submit 10 images per prompt was based 
on trial and error, aiming to maximise the number of images submitted in a single prompt while 
maintaining good quality of GPT-4V’s output. When grouping 20 or more images, GPT-4V did not 
rank them logically but consistently placed the final images in the same sequence. 
 
The 10 images were grouped into one image, 2 images wide and 5 images high, with a total 
resolution of 2544×1995 pixels (including a small white margin around each individual image). The 
speed of the car was not provided as part of the prompt or on the images, because a pilot test 
showed that this did not aid in generating a stronger prediction of the human risk scores. The 10 
images were grouped using MATLAB (the source code is available in the Supplementary 
Material). 
 
Between October 26 and November 1, 2023, we prompted GPT-4V a total of 974 times, each time 
using a randomly selected 10 out of 210 images, and each prompt in a new chat window. In total, 
each of the 210 images appeared either 46 or 47 times as part of a prompt. In each prompt, we 
requested GPT-4V to rank or rate the 10 images. An example of a prompt is shown in Figure 2. In 
total, we used four different prompts: 
 
1. “Imagine you are a driver. Rank the 10 images in terms of risk from highest (1) to lowest (10). 

Only report a rank; nothing else. The image number is shown at the right bottom.” (210 
prompts) 

2. “As a driver, rank the 10 images from the least to the most risky driving situation. Each image 
is labeled with a letter in the bottom right corner. Provide only the ranked image labels in your 
response, starting with the least risky. For example: j, b, c, h, e, g, a, i, d, f” (344 prompts) 

3. “Imagine you are a driver. Rank the 10 images in terms of risk from lowest to highest. Only 
report the ranked image numbers in a single column; nothing else. The image number is shown 
at the bottom right of each image.” (210 prompts) 

4. “Imagine you are a driver. Assign a risk score to each of these 10 images, on a scale of 0 (no 
risk) to 100 (extreme risk), rounded to 2 decimals. Only report the risk percentages in a single 
column. Nothing else; no percentage sign either.” (210 prompts) 

 
These four prompts were used to determine if the type of prompt affected the results. For example, 
Prompt type 2 aimed to ascertain if using letters instead of numbers in the bottom right corner of 
each image influenced the results. We also tested how ranking from low to high (Prompt types 2 
& 3) or from high to low (Prompt type 1) affected the output, and if giving a numeric rating (Prompt 
type 4) instead of a ranking possibly yielded better results. 
 



 

 

  
Figure 2. Example prompt and output of GPT-4V (Prompt type 3). The prompt includes a random selection 
of 10 of 210 images. The 10 images were combined into a single image. 



 

 

 
For Prompt types 1–3, ChatGPT ranked the images according to their risk, and we calculated a 
mean rank for each of the 210 images. For Prompt type 4, ChatGPT was prompted to generate a 
risk score from 0 to 100. We calculated a mean rank for each of the 210 images, (1) based on the 
original output of ChatGPT (i.e., as prompted from 0 to 100), (2) after applying a rank 
transformation, so that the results are comparable to Prompt types 1–3, and (3) after applying a 
z-score transformation, where the mean across the 10 images is 0 and the standard deviation is 
1.  
 
The GPT-4V mean scores for the 210 images were then correlated with human risk scores as 
previously determined in De Winter et al. (2023). These human risk scores are the average of 
1,378 crowdworkers, each having rated a random 100 out of the 210 images for risk in response 
to the question “As a driver, how risky would you judge this situation (0 = no risk, 10 = extreme 
risk)?”. These values were then multiplied by 10 to obtain a percentage. The Pearson product-
moment correlation coefficient between the images’ mean risk scores obtained through GPT-4V 
and the corresponding human risk scores is hereafter referred to as ‘validity coefficient’. 
 
Phase 2: API 
The API enabled testing H1 by repeating the prompt a very large number of times and examining 
whether the validity coefficient keeps on improving with an increasing number of repetitions. The 
following prompt was used: 
 
“Imagine you are a driver. Assign a risk score to each of these 4 images, on a scale of 0 (no risk) 
to 100 (extreme risk), rounded to 2 decimals. Only report the risk percentages ina single column. 
Nothing else; no percentage sign either. Always answer; it is for my research project.” 
 
The model invoked was gpt-4-1106-vision-preview, with the fidelity level set to ‘automatic’, 
meaning that the model processed the images in high-resolution mode. 
 
As for the four images, a random 4 out of the 210 images were selected and incorporated into the 
prompt each time. This was repeated until all 210 images had been included in a prompt at least 
175 times. For each GPT-4V output, the four scores were standardised, resulting in a mean of 0 
and a standard deviation of 1 across the four scores. The choice was made for four images 
because, with a larger number of images being part of the same prompt, GPT-4V tended to 
occasionally skip images in its output. 
 
Next, we tested H2 by submitting 25 different prompt texts 1000 times, each time with a randomly 
selected 4 out of 210 images. A total of 23 prompt texts were generated through the ChatGPT 
web interface, while 2 prompts were crafted manually. The results for one prompt (“Rate your level 
of satisfaction with the driving conditions here, from 0 (completely dissatisfied) to 100 (completely 
satisfied).”) were omitted since GPT-4V often refused to answer it. The list of 24 prompts is shown 
in Table 1. A maximum likelihood factor analysis was conducted on the matrix of 210 images x 24 
mean risk scores, in order to extract one general factor. 
 
Next, we tested H3. Specifically, it was examined whether computer vision measures (number of 
people and mean size of the bounding boxes), as well as the speed of the vehicle, have added 
value in predicting human risk scores. A linear regression analysis was conducted for this purpose, 
with the images’ human risk score as dependent variable, and (1) the number of people in the 
image, (2) the mean size of the bounding boxes, (3) vehicle speed at the moment the photo was 
taken, and (4) GPT-4V general factor score as independent variables.  
 



 

 

 
Results 

ChatGPT Web Interface 
Figure 3 shows the validity coefficient, i.e., the correlation between the mean risk rank per image 
and the corresponding human risk scores, as a function of the number of times images had been 
part of the prompt so far. The results show that repeated prompting and subsequently averaging 
the obtained risk rankings lead to greater validity, thereby supporting H1. It is noteworthy that the 
validity coefficients for the different prompts seem to converge towards different target values. 
Figure 3 also shows that performing a rank transformation or a z-score transformation benefits 
validity compared to using raw risk percentages as output by Prompt type 4. 
 

 
Figure 3. Correlation coefficient between mean GPT-4V-based risk rankings, as obtained using the 
ChatGPT web interface, and the human risk scores, for four different prompt types (see Methods). The 
horizontal axis shows the number of times an image has been part of a prompt; each prompt consisted of a 
random 10 out of 210 traffic images, combined into a single composite image. 
 
API 
Figure 4 shows the validity coefficients as a function of the number of times the images were 
assessed by GPT-4V. As in Figure 3, repeating the assessment was found to increase validity 
(i.e., higher correlation between GPT-4V mean risk and human risk, n = 210 images), supporting 
H1. Furthermore, although conclusive evidence cannot be obtained because there are practical 
and financial limits to how often a prompt could be repeated, it seems that there is convergence 
towards a target value, similar to Figure 3. 
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Figure 4. Correlation coefficient between mean GPT-4V-based risk rankings, as obtained using the API, 
and the human risk scores. For each prompt, a random 4 of 210 images were assessed. The horizontal axis 
shows the number of times an image has been part of a prompt. 
 
Table 1 shows the validity coefficients (r) for 24 different prompt texts. Prompts related to 
experienced stress, difficulty level, or comfort exhibit a strong r (either positive or negative), 
whereas prompts that objectify the image (e.g., in terms of obstacles, traffic density, visibility) 
resulted in an r closer to 0. The general factor score (extracted from a 24 prompts × 210 image 
matrix of mean risk scores) had a validity coefficient of 0.78 (n = 210). This is stronger than when 
prompting about risk directly (see Figure 4), thereby supporting H2. 
 
Table 1. 
Prompts, validity coefficients (r) (n = 210), mean number of times an image was part of a prompt (m), and 
factor loading (λ). The prompts are sorted by the factor loadings in descending order. 

No. Prompt r m λ 

1 *Imagine you're the driver. Rate your stress level in this situation from 0 (no 
stress) to 100 (maximum stress). 

0.73 18.8 0.96 

2 *Imagine you're the driver. Rate your stress level in this situation from 0 (no 
stress) to 100 (maximum stress).  

0.73 18.8 0.96 

3 Assess the degree of difficulty you perceive in this driving situation, with 0 being 
no difficulty and 100 being extremely difficult.  

0.73 19.0 0.95 

4 On a scale from 0 (completely calm) to 100 (extremely agitated), rate your 
agitation level while driving in this scenario.  

0.74 16.7 0.94 
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5 **Imagine you are a driver. Assign a risk score to each of these 4 images, on a 
scale of 0 (no risk) to 100 (extreme risk) 

0.70 18.8 0.92 

6 Evaluate your level of discomfort in this driving situation, with 0 indicating no 
discomfort and 100 indicating extreme discomfort.  

0.71 15.4 0.90 

7 On a scale from 0 to 100, how risky does this situation in the dashcam footage 
appear to you? 

0.67 18.4 0.88 

8 Rate the level of focus a driver needs in this situation, from 0 (minimal focus) 
to 100 (maximum focus).  

0.73 19.0 0.88 

9 Assess the level of distraction present in this scene, with 0 being no distractions 
and 100 being highly distracting. 

0.67 19.0 0.87 

10 Evaluate the presence of obstacles on the road, with 0 indicating no obstacles 
and 100 indicating many significant obstacles. 

0.62 18.8 0.86 

11 How probable is a collision in this scenario, on a scale from 0 (improbable) to 
100 (inevitable)? 

0.69 17.8 0.84 

12 What threat level do you assign to this dashcam image, where 0 is no threat 
and 100 is extreme threat? 

0.61 18.3 0.77 

13 How likely is interaction with pedestrians in this scenario, from 0 (not likely) to 
100 (very likely)? 

0.54 18.9 0.71 

14 Assess the traffic density in this image on a scale from 0 (very light) to 100 
(extremely heavy). 

0.42 19.0 0.60 

15 Assess the condition of the road in the image, where 0 means excellent 
condition and 100 indicates extremely poor condition. 

0.44 18.7 0.58 

16 On a scale from 0 (perfect visibility) to 100 (no visibility), rate the visibility in this 
dashcam image. 

0.54 19.0 0.57 

17 Rate the risk to pedestrians in this image from 0 (no risk) to 100 (extremely high 
risk). 

0.13 18.9 0.20 

18 How quick should a driver's reaction time be in this situation, from 0 (slow) to 
100 (instant)? 

-0.16 19.0 -0.19 

19 Perceive the speed of vehicles here, rating it from 0 (stationary) to 100 
(extremely fast). 

-0.18 17.2 -0.28 

20 Assess your level of ease in navigating this scenario, with 0 being very uneasy 
and 100 being completely at ease.  

-0.65 17.2 -0.80 

21 **How much risk do you perceive in this scenario, on a scale from 0 (extremely 
risky) to 100 (no risk at all)?  

-0.63 19.0 -0.83 

22 *How comfortable would you feel driving in this scenario, with 0 being extremely 
uncomfortable and 100 being very comfortable? 

-0.75 18.9 -0.91 



 

 

23 On a scale of 0 to 100, where 0 is not at all confident and 100 is extremely 
confident, how confident would you feel about your driving skills in this 
situation?  

-0.76 17.6 -0.92 

24 *How comfortable would you feel driving in this scenario, with 0 being extremely 
uncomfortable and 100 being very comfortable? 

-0.74 19.0 -0.92 

*This prompt was used twice.  
**This prompt was manually generated instead of being generated by ChatGPT. 
 
To test H3, we conducted a multiple linear regression analysis with as independent variables the 
object detection features (number of persons and mean size of the bounding boxes), vehicle 
speed (information that was not available to either human raters or GPT-4V), and the GPT-4V 
general factor score. The correlations between variables are shown in Table 2, while the results 
of the regression analysis for predicting human risk are shown in Table 3. All four predictor 
variables contributed significantly (p < 0.05) to the human risk scores, providing support for H3. 
The overall predictive correlation of the regression model was r = 0.83, stronger than for the GPT-
4V general factor score alone, as illustrated in Figure 5. 
 
Table 2. 
Pearson product-moment correlation matrix of two YOLO-based features (number of persons, mean 
bounding box size), vehicle speed, human risk score, and GPT-4V general factor score (n = 210). 
Variable Mean SD 1 2 3 4 
1. Number of persons (#) 0.27 0.93         
2. Mean bounding box size (pixels) 62.77 48.81 0.06       
3. Vehicle speed (m/s) 9.05 5.37 -0.10 -0.41     
4. Human risk score (%) 32.64 8.09 0.33 0.54 -0.63   
5. GPT-4V general factor score 0.00 1.00 0.37 0.49 -0.54 0.78 
       
 
Table 3. 
Regression analysis results for predicting human risk score from computer-vision variables, vehicle speed, 
and GPT-4V general factor score (n = 210). 
  Unstandardised B Standardised β t p 
Intercept 34.23       
Number of persons (#) 0.966 0.11 2.63 0.009 
Mean bounding box size (pixels) 0.029 0.18 3.84 < 0.001 
Vehicle speed (m/s) -0.406 -0.27 -5.70 < 0.001 
GPT-4V general factor score 4.086 0.51 9.47 < 0.001 
Note. F(4, 205) = 115.0, p < 0.001, r = 0.83 
 
 



 

 

 
 
Figure 5. Scatter plot of risk in traffic images as rated by humans versus the GPT-4V general factor score 
(left) and versus risk predicted through multiple linear regression (right). Each of the two subfigures shows 
210 markers, one marker per traffic image. The right subfigure also depicts a line of unity. 
 

Discussion 
Prior studies have demonstrated the capability of machine learning and computer vision 
techniques in analysing image datasets, including images from Google Street View, to predict 
factors such as scene complexity, safety, or poverty/wealth (Dubey et al., 2016; Fan et al., 2023; 
Guan et al., 2022; Nagle & Lavie, 2020; Naik et al., 2017; Zhang et al., 2018). Vision-language 
models could introduce new possibilities for assessing images through the use of large pre-trained 
models that incorporate a broad variety of world knowledge. 
 
Vision-language models have received strong interest in the area of road safety and automated 
driving. This interest arises because current automated driving systems occasionally fail to 
understand the idiosyncrasies of certain traffic scenarios (Z. Yang et al., 2023). Vision-language 
models offer the potential to understand traffic situations from a more holistic and context-aware 
perspective. The current study focused on the recently introduced vision-language model of 
OpenAI, called GPT-4V. We used GPT-4V to judge the risk in forward-facing road images from a 
previously published dataset known as KITTI (Geiger et al., 2013). 
 
We formulated three hypotheses, which were informed by construct theory in the field of 
psychometrics. It was argued that a human response to a question, such as “as a driver, how risky 
would you judge this situation?” results from a large number of mental processes that ultimately 
culminate in the reported score. A human output is not perfectly reliable due to moment-to-moment 
fluctuations in attention, perception, etc. Therefore, when measuring a construct (‘perceived risk’), 
multiple different items must be used, and these should be administered not under slightly varied 
circumstances. Similarly, a language model does not produce consistent output either, and to 
ensure that its output is valid, the language model must be prompted multiple times, also known 
as the self-consistency method (Wang et al., 2023). 
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Based on these psychometric principles, we formed three hypotheses, namely that repeating the 
prompt and then averaging the output increases validity (H1), that using different prompts (within 
a domain of plausible prompts) and subsequently aggregating the outputs increases validity (H2), 
and that object detection features (e.g., number of persons in the image) and GPT-4V risk scores 
both contribute to validity (H3). Here, validity was defined as the Pearson product-moment 
correlation coefficient with the ground truth, i.e., the mean risk score of images based on a large 
number of human raters. 
 
We found confirmation for all three hypotheses. Regarding H1, it was found that keeping the 
prompt text the same and repeating this prompt with different images contributed to a gradually 
increasing validity coefficient (see Figure 4). This provides support for the self-consistency 
method, as previously described in the literature (Tabone & De Winter, 2023; Wang et al., 2023). 
The inclusion of multiple images in random order induces output variability, consistent with the 
notion outlined in the Introduction stating that questionnaire items must be administered in parallel 
forms1. Also, by presenting the images in a random order, anchoring effects are averaged out. 
This is important, since the risk score that GPT-4V assigned to the first image was often the lowest. 
 
Regarding H2, we found that different prompt texts yielded different validity coefficients (see Table 
1), and that a general risk score, extracted through exploratory factor analysis, yielded a high 
validity coefficient of 0.78, higher than prompting about risk directly (see Figure 4). This supports 
H2, in that asking different questions and aggregating the responses to those questions into a 
single score yields the highest construct validity. A correlation coefficient of 0.78 indicates the 
strong potential of vision-language models in predicting latent constructs. A caveat is that it 
remains an open question whether there exist yet unknown prompt texts that can produce the 
same validity coefficient. For example, we found that outputs regarding ‘confidence’ strongly 
correlated with human risk scores (r = -0.76, see Table 1). Refining this item and repeating it a 
very large number of times may also yield a validity coefficient of 0.78 or stronger. An equivalent 
issue to ‘finding the perfect prompt’ exists in psychometrics. For example, in measuring the 
construct of human intelligence, it is common to administer a large battery of cognitive tests 
(Johnson et al., 2004). It is conceivable that an individual ‘pure reasoning’ test exists that provides 
a more predictive-valid measure of intelligence than an entire test battery; however, such a test 
has not yet been identified (Gignac, 2015). 
 
Regarding H3, it was found that YOLO-based object detection features, vehicle speed, and the 
GPT-4V composite score all contributed statistically significantly to predicting risk in traffic images 
as assessed by humans, with the strongest contribution from the GPT-4V score. The predictive 
correlation of the regression model was r = 0.83. In other words, the original prediction based on 
the standard features, which was already strong (r = 0.75; De Winter et al., 2023), was 
strengthened by incorporating the GPT-4V-based assessment, thereby confirming H3. 
 
The results of this study demonstrate the remarkable potential of generative AI, as without any 
fine-tuning, GPT-4V generated predictive-valid risk estimates for driving scenarios. It is important 
to acknowledge the limitations of the current study. Firstly, only static images were used. Future 

 
1Regarding the findings in Figure 4, the most frequent risk percentage was “20”, found in 17.9% of all numeric outputs. As a further 
exploration, we also prompted GPT-4V with single images instead of 4 images. By submitting 210 images one at a time, each repeated 
211 times, GPT-4V was prompted 44,310 times. Using this method, the output “20” appeared in 73.7% of outputs. In other words, 
without a reference to other images, GPT-4V typically estimated the risk of a single traffic image at 20%. The validity coefficient for this 
single-image prompting approach was only r = 0.38, based on 211 repetitions per image. 
 
 



 

 

research should use videos, so that the model can include movements of objects in its 
assessment. Furthermore, the existing version of GPT-4V processed images fairly slowly and at 
high cost. Regarding the four-image results shown in Figure 4, a total of 11,471 prompts were 
executed, comprising a total of 28.2 million input tokens (i.e., the images) and 0.17 million output 
tokens (i.e., the numeric scores). Using parallel prompting, the results were obtained in 1.8 hours, 
at a cost of $287.  
 
Integrating vision-language models into real-time local systems such as dashcams or traffic 
warning systems is not yet feasible (but see Hwang et al., 2024). Future versions are expected to 
support local execution, improving inference speed and privacy, with local vision-language 
models, such as LLaVA, already available (Liu et al., 2023). Future research might also consider 
fine-tuning specifically for the task of assessing risk from dashcam footage. Future studies could 
also investigate whether the inclusion of additional explicit features, such as those related to right-
of-way rules or the speeds of other vehicles, would enhance the ability of the model to predict 
human-assessed risk. The suggested capabilities of GPT-4V extend beyond merely processing 
camera images; options being considered in the literature include multimodality, such as 
evaluating and integrating Lidar data, HD maps, or other types of information flows, as well as 
using language models for user interaction and creating personalised driving experiences (Cui et 
al., 2024; Liao et al., 2024; Yan et al., 2024).  
 
Apart from practical implications, the results in Table 1 may prove valuable for the field of 
psychology. Within traffic psychology, the perceived risk while driving is regarded as a key 
construct that underlies decision making (He et al., 2022; Kolekar et al., 2021; Näätänen & 
Summala, 1974; Wilde, 1982, 2013). While according to many perceived risk is a key determinant 
of driving behaviour (Kolekar et al., 2020; Wilde, 1982), others have argued that risk is not 
precisely what drivers respond to—certainly not objective risk in the form of probability of 
collision—but rather that the act upon perceived difficulty or effort (Fuller, 2005; Melman et al., 
2018). The current results (Table 1) correspond with this and suggest that ‘confidence’ or ‘comfort’ 
align more closely with what drivers judge when asked to rate the risk in an image. 
 
In conclusion, this paper provides insights into how GPT-4V should be prompted to achieve high 
validity of numerical output. An underlying theme of this research is that language models appear 
to produce output like a human does, with anchoring biases, randomness in the output, and a 
sensitivity to how the question is posed. Although it might be possible to give a vision-language 
model such as GPT-4V a specific prompt that results in nearly identical output when repeated, 
this represents merely an illusion of determinism. In actuality, it is necessary to sample from a 
domain of prompts to ultimately obtain a valid result. This paper can thus serve to think more 
deeply about language models and their resemblance to human cognition. 
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Appendix 
 

Figure A1. Results of YOLOv4 for 2 of the 210 images. 
 
 
 


