GIOVANNI SAPIENZA*, Eindhoven University of Technology, The Netherlands

PAVLO BAZILINSKYY, Eindhoven University of Technology, The Netherlands

Cyclists face significant risks from vehicles that overtake too closely. Through crowdsourcing (N = 200) and driving simulator (N = 20) experiments, this study examines driver behaviour in seven scenarios: laser projection, road sign, road marking, car projection, centre line and side line markings (baseline), cycle lane and no road markings. Crowdsourced participants consistently underestimated overtaking distances, particularly at wider gaps, despite feeling safer with greater distances. The simulation results showed that drivers maintained an average passing distance of 3.4 m when not constrained by traffic, exceeding the 1.5 m law of the European Union. However, interventions varied in effectiveness: while laser projection was preferred, it did not significantly increase passing distance. In contrast, a dedicated cycle lane and a solid centreline led to the greatest improvements. These findings highlight the discrepancies between perceived and actual safety and provide insight for policy interventions to enhance cyclist protection in the EU.

CCS Concepts: • Human-centered computing \rightarrow Laboratory experiments; User studies; • Computing methodologies \rightarrow Crowd-sourcing.

Additional Key Words and Phrases: Cyclist Safety, Driver Behaviour, Overtaking Distance, Simulation, Crowdsourcing, Human Factors, Vulnerable Road Users

ACM Reference Format:

Giovanni Sapienza and Pavlo Bazilinskyy. 2018. Enhancing Cyclist Safety in the EU: A Study on Lateral Overtaking Distance Across Seven Scenarios Using Lab and Crowdsourced Methods. 1, 1 (April 2018), 16 pages.

1 Introduction

Cycling has historically served as a vital mode of transport, particularly in countries such as the Netherlands, where a deliberate shift from car-centric to bike-centred urban design has significantly improved quality of life [12, 45, 60]. This transformation has reduced the environmental and spatial footprint of cars, making urban areas more liveable for citizens [52]. The Netherlands is a successful example of behavioural change, illustrating the potential for similar transformations in other countries such as Germany and Denmark [32]. Despite these advances, cyclists continue to face substantial risks of being involved in accidents, and in the Netherlands 25% of traffic deaths are cyclists [18, 55]. This poses a challenge to the wider adoption of cycling as a sustainable transport mode. An notable exception is Seville, Spain, where 13 years of infrastructure investment have led to the halving of the risk related to cycling (defined as the yearly ratio between the total number of collisions of bicycles with vehicles and the total number of bicycle trips) [37]. The European Union (EU) aims to reduce cycling deaths by 55% by the end of 2030 [57].

Authors' Contact Information: Giovanni Sapienza, g.sapienza@student.tue.nl, Eindhoven University of Technology, Eindhoven, The Netherlands; Pavlo Bazilinskyy, p.bazilinskyy@tue.nl, Eindhoven University of Technology, Eindhoven, The Netherlands.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

⁴⁹ © 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

In recent years, the urgency to reduce the carbon footprint [11] and alleviate urban traffic congestion has further 53 54 elevated the importance of cycling. Since the COVID-19 pandemic, there has been a notable increase in bicycle usage 55 and purchase [13, 38], accompanied by an increase in cycling-related deaths in the EU, accounting for 10% of all road 56 deaths [36]. EU reports highlight that many of these accidents occur on straight roads, accounting for 66% of the total 57 58 fatalities [54]. Studies have shown that drivers fail to or choose not to change lanes safely to overtake cyclists [21, 34, 62]. 59 Additional hazards arise on narrower roads, exacerbating the risks for cyclists [54, 59]. Other factors contributing to 60 the lack of reduction in general road fatalities include the use of mobile phones while driving. Montuori et al. (2021) 61 demonstrated in a survey-based cross-sectional study that 69% of participants admitted to using their phones while 62 63 driving [40]. In particular, distractions for cyclists caused by phone use, especially when cyclists text, significantly 64 increase the risk [30]. The findings indicate that attention issues contribute to bicycle-car collisions [31, 49]. Habibovic 65 & Davidsson (2011) and Bazilinskyy et al. (2022) attempted to investigate the causes of crashes between cars and cyclists 66 at intersections [5, 29] and other studies focused on the open road [2, 48, 64]. 67

68 Effective communication between drivers and motorcyclists and vulnerable road users (VRUs), such as cyclists and 69 pedestrians, is essential to ensure everyone's safety on the roads. This is particularly critical as cycling continues to 70 gain prominence as a sustainable transportation option. Recent studies highlight the importance of communication 71 using external Human-Machine Interfaces (eHMIs), particularly for interaction between automated vehicles (AVs) and 72 73 VRUs [4, 8, 10]. Granville et al. (2001) also emphasise the need for equitable road sharing [28]. However, few studies 74 have focused on cyclists. The integration of technology and improved road infrastructure has significant potential to 75 improve this communication and, consequently, cyclist safety [16]. As demonstrated by Walker et al. (2014), factors 76 such as cyclist clothing do not significantly influence driver behaviour [63]. Notable exceptions exist: for example, 77 78 when a cyclist is dressed as a police officer, drivers behave more safely, adjust their speed, and pay more attention. 79 Chaloupka & Risser (2024) further highlighted the complexity of driver-cyclist interaction, indicating the importance of 80 well-designed communication between the cyclist and the driver [15]. 81

Previous studies have investigated various factors that influence driver behaviour during overtaking, as well as modelling different overtaking strategies used, such as speed and road infrastructure [25, 26, 59]. Loyola et al. (2023) investigated the effectiveness of interventions such as bicycle clothing, signage, and road markings [35].

85 86 87

88

89

90

91 92

93

94

95

96 97

98

99

101

82 83

84

1.1 Aim of Study

Cycling-related accidents are increasing, highlighting the need to better understand driver behaviour and its impact on cyclist safety, especially within the EU, where cycling cultures and infrastructure vary widely. Although interest in cycling safety is growing, key gaps remain in understanding driver-cyclist interactions. Communication technologies like light projection [23, 33] remain underexplored, and systematic comparisons of interventions-such as dedicated cycling paths, alternative road markings [56], or unprotected cycling paths [41]-are still lacking. Traditional methods such as observational studies and laboratory experiments may not fully reflect real-world EU dynamics. Building on previous work, this study focusses on overtaking scenarios to evaluate how communication technologies and infrastructure influence driver behaviour. The aim is to identify scalable safety measures using both experimental and simulation-based methodologies. The findings are intended to inform policies such as the mandatory 1.5-metre 100 overtaking distance [17] and to support safer and more sustainable cycling infrastructure in Europe. To address these goals, the study explores the following three research questions:

- RQ1: How do different technologies, such as road infrastructure or human-machine interface (HMI), influence driver behaviour in maintaining the mandatory 1.5-meter overtaking distance from cyclists in the EU?
- RQ2: What are the most effective technological interventions to improve driver-cyclist communication among the currently available interaction concepts today?
 - RQ3: How do results from crowdsourced studies compare to findings from controlled laboratory experiments, particularly in evaluating driver-cyclist communication technologies?

2 Method

Crowdsourcing is becoming a popular method for collecting data from diverse participants in a time- and cost-effective manner, particularly in transportation studies. However, the results of crowdsourced studies may need validation through controlled laboratory experiments to ensure reliability and applicability, as demonstrated by Bazilinskyy et al. (2023) [9]. This study employs a dual methodology, integrating crowdsourcing and lab-based verification, to assess the effectiveness of technological interventions to improve driver-cyclist communication.

Participants in this study were selected from the 27 EU countries (United Kingdom not included), as the research aligns with the ongoing efforts of the EU to reduce road accidents, particularly those involving VRUs, such as cyclists. The decision to focus on the EU was also motivated by the existing cycling infrastructure of the region, which, although more developed than in many other parts of the world, still faces significant safety challenges. Furthermore, choosing the EU provided a better opportunity to reach participants for the simulator experiment, allowing the results from both crowdsourcing and simulator tests to be compared and analysed together. Furthermore, to ensure meaningful comparisons between the two methodologies, the selection criteria required participants to be 18 years or older and have a valid driving licence. This approach allowed for a balanced evaluation of how drivers from diverse backgrounds responded to different scenarios in both study formats. The study was approved by the Ethics Review Board of Eindhoven University of Technology and the participants gave their informed consent to use their data.

2.1 Scenarios

Unity version 2022.1.23f1 (https://unity.com) was used to design seven scenarios in Table 1 that aim to analyse various technologies and road infrastructure solutions to enhance driver awareness during overtaking manoeuvres.

The city environment and the vehicle model were taken from the coupled simulator [6]. Each scenario focused on a specific intervention to assist drivers during overtaking. The seven selected scenarios took place in a 30 km/h zone, with the car travelling at a constant speed of 30 km/h (±1 km/h) and the cyclist moving steadily at an average speed of 17 km/h varying between 12.5 and 26.5 km/h [24]. The cyclist was animated using the Male Cyclist Animated model from Code This Lab S.r.l. (https://assetstore.unity.com/packages/3d/characters/humanoids/male-cyclist-animated-220508). The scenarios did not include oncoming traffic to ensure that participants could focus on the distance between overtaking with the cyclist. In addition, the scenarios did not include any other road users, such as pedestrians.

2.2 Data Analysis

Paired sample t-tests and one-way repeated measures analysis of variance (ANOVA) were performed to determine
 significant differences between scenarios, revealing patterns in driver-cyclist communication and overtaking distances
 [5, 42]. The results were considered significant at p < 0.001, unless otherwise stated. In the laboratory experiment,
 additional metrics such as perceived lateral distance and stress responses were examined to verify alignment with the
 trends observed in crowdsourced data.

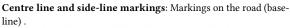

Giovanni Sapienza and Pavlo Bazilinskyy

Table 1. Scenarios and view from the driver's perspective as shown to participants. Images were taken at 8.2 s during simulation.

Laser projection: A system mounted on the bicycle handlebar that projects the safe passing distance from the bicycle onto the road similar to a solution used in London, UK [23, 58].

Road markings: Markings proposed by the Danish Cyclist Association to inform drivers of recommended overtaking distance [56].

No road markings: No specific road markings or signage [53].

Vertical signage: Signs placed on the roadside to remind drivers of the 1.5-metre passing rule [20].

Car projection: A system that provides the driver with visual cues to indicate the appropriate distance to overtake [1, 58].

Unprotected cycling path: A scenario simulating a cycling path without physical barriers separating it from vehicular traffic [47, 51].

View from driver's perspective: Participants viewed all scenarios from this angle.

3 Crowdsourced Experiment

3.1 Method

209

210

211

217

219

220 221

222

223

224

225

238

239 240

241

242

243

244

249

250 251

252

253

254

255 256

257

258

259 260

212 Participants in the crowdsourced experiment were recruited through the Appen platform (https://www.appen.com). 213 After joining the job, they answered demographic questions. Factors such as obtaining a driver's licence in countries 214 with strong cycling cultures (e.g. the Netherlands) versus countries with less emphasis on cycling safety (e.g. Italy) 215 216 were considered. The participants were compensated at a rate of 0.50 USD in total for their participation. See Section 7 for the materials used in the experiment. 218

The participants were shown videos of one scenario at a time, presented in random order. Each of the seven scenarios was tested with three different lateral overtaking distances: 0.8 m, 1.6 m, and 2.4 m from the cyclist, resulting in a total of 21 tests. The 1.6 m distance was used as a control to align with the EU's minimum legal overtaking distance of 1.5 m, making it harder for participants to guess the purpose of the study. The other two distances were chosen by increasing and decreasing the control distance by 0.8 m, creating a noticeable variation while ensuring that the shortest distance was close enough to feel risky but not excessively unsafe.

226 During each trial, participants were asked to "PRESS and HOLD Fkey when you experience any discomfort with the 227 overtaking scenario. Release it when you feel comfortable again" [7, 39, 43]. This input served as a method for capturing 228 participants' responses rather than reflecting direct behaviour. Performance scores were computed for each scenario by 229 calculating the percentage of participants who pressed the key during the 100-ms periods, scaled from 0 to 100. After 230 231 the video, the participants responded to two questions shown with sliders. The first asked: "The space between the car 232 and the bicycle during the overtaking manoeuvre was adequate". Responses were given on a 5-point Likert scale ranging 233 from "Strongly disagree" to "Strongly agree". The second question was "Estimate the lateral distance between the car and 234 the bicycle during the overtaking manoeuvre. The distance between the car and the bicycle was approximately". The slider 235 236 ranged from 0.5 to 2.5 m. 237

At the end of the experiment, participants were polled to respond to three statements on the 5-point Likert scale ranging from "Strongly disagree" to "Strongly agree": (1) After experiencing the videos in the experiment, I will change my attitude towards maintaining a safe overtaking distance from cyclists., (3) I felt safe while overtaking the cyclist in the videos., (3) Based on my experience, I support the introduction of the technology used in the scenarios on real roads.. On the next page, they were asked to indicate the most preferred scenario as Which scenario was most helpful in choosing the overtaking distance from cyclists? and provide feedback on the level of stress during the experiment I experienced a high level of stress during all scenarios. (5-point Likert scale ranging from "Strongly disagree" to "Strongly agree").

3.2 Results

A total of 200 participants joined, 71 participants were filtered because 67 of them completed the study in under 900 s, 3 used the same IP, one used the same worker code and two people did not have a valid worker ID. A total of 120 (52 female and 68 male) persons participated in the crowdsourced experiment. The average age of the participants was 34.54 years (SD = 10.01), and the average year of obtaining a driving licence was 21.49 years (SD = 6.13). The participants came from Italy (n = 35), Portugal (n = 14), Hungary (n = 13), France (n = 12), Spain (n = 10), Germany (n = 8), Poland (n = 7), Romania (n = 6), the Netherlands (n = 6), Belgium (n = 3), Greece (n = 2), Croatia (n = 2), Denmark (n = 1) and Ireland (n = 1). Given the focus on the EU context, we aimed to cover all of the EU, but participation from some of the member states, such as certain Baltic and Central European countries (e.g., Estonia and Austria), was not achieved. Background questions indicated that participants perceived the average EU overtaking distance rule as 1.88 m (SD = 1.82), which implies that, in general, the governments of the EU countries did not inform on such rules correctly.

The participants demonstrated behaviour aligned with the distance of the overtaking manoeuvre, which appears to be influenced by their level of discomfort, as shown in Figure 1. The 1 \in filter [14] was applied to the data in this graph and other plots (frequency = 120, mincutoff = 0.1, beta = 0.1). Closer overtaking distances, such as 0.8 m, elicited the highest keypress, indicating the most discomfort. The overtaking distance of 2.4 m produced the lowest keypress, suggesting a greater sense of safety and comfort. The results of the t-test revealed significant differences between distances, particularly between 0.8 and 1.6 m and between 0.8 and 2.4 m. These findings highlight that participants could clearly distinguish between the levels of safety at varying distances of overtaking.

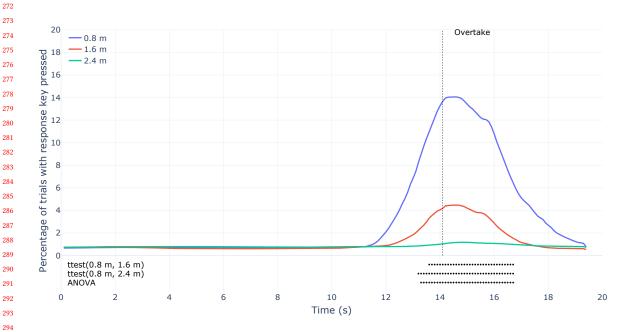


Fig. 1. Mean discomfort level in the crowdsourced experiment for the three distances. The vertical line represents the overtaking moment. The asterisks and crosses at the bottom indicate significant differences, p < 0.001.

Additionally, the shape of the curves provides valuable information on participants' behaviour. The curve for 0.8 metres has the steepest gradient and the highest peak, suggesting increased discomfort and urgency at this distance. In contrast, the flatter and narrower curve for 2.4 m indicates that discomfort was both lower in magnitude and shorter in duration. All curves peak around the same time (~14.5 s), which reflects a specific moment in the overtaking manoeuvre that participants consistently identified as critical. This specific moment was when the car was side-to-side with the cyclist. The results of the t-test highlight significant differences between the scenarios, particularly in the duration of the reported discomfort. On average, participants reported feeling discomfort for a longer period when the overtaking distance was 0.8 m, compared to distances of 1.6 and 2.4 m. The shorter duration of discomfort reported for the 2.4-m condition suggests that larger overtaking distances contribute to a greater sense of safety and reduced stress.

The results confirm that closer overtaking distances increase discomfort, whereas larger distances improve safety perceptions. The statistical significance of these findings, as demonstrated by the t-test, validates the reliability of

the observed trends. These results underscore the importance of maintaining safe overtaking distances to minimise

discomfort and ensure cyclist safety.Figure 2 highlights the levels of discomfort reported by participants during overtaking scenarios in seven scenarios.The results indicate that the participants felt more comfortable in scenarios where some form of communication was provided, particularly with the Car projection. Interestingly, participants also appeared to feel relatively at ease in scenarios that involved an unprotected cycling path. The t-tests demonstrate marginal differences under these conditions.

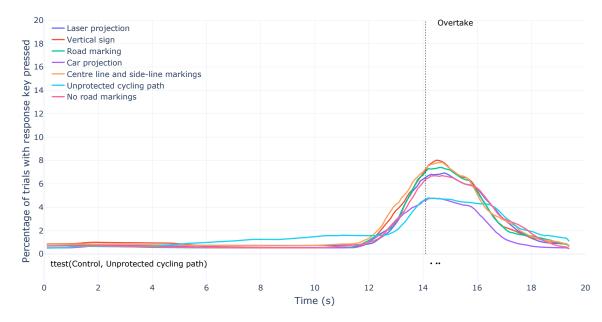


Fig. 2. Mean discomfort level in the crowdsourced experiment for the seven scenarios. The vertical line represents the overtaking moment. The asterisks at the bottom indicate significant differences, p < 0.001.

The levels of discomfort varied between different scenarios, with some interventions leading to a more sustained perception of safety, while others resulted in momentary spikes in discomfort. The unprotected cycling path and the Car projection showed a more uniform distribution of discomfort reports over time, suggesting that participants did not experience a specific moment of increased discomfort, but rather a more stable perception of safety or unease.

Interestingly, the *Laser projection* did not perform as effectively as the *Car projection*, with participants reporting levels of discomfort similar to those of other solutions rather than demonstrating a clear improvement. Furthermore, the *Vertical signage* and the *Road markings* resulted in momentary increases in discomfort, suggesting that participants felt uneasy at specific points in the overtaking process. The absence of road markings showed results similar to the *Centre line and side-line markings* (baseline), indicating that the lack of additional visual guidance did not provide substantial safety improvements.

These findings highlight the importance of further investigating technological interventions, particularly *Car projection*, which demonstrated more consistent results in promoting a sense of safety for both drivers and cyclists. Given its potential to improve driver awareness during overtaking manoeuvres, this approach deserves further examination as a possible alternative to traditional infrastructure-based solutions.

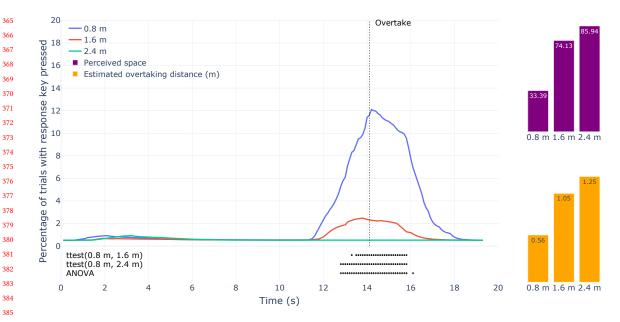


Fig. 3. Participants' discomfort responses and post-stimulus questionnaire results for the perceived adequate overtaking distance and the estimated lateral distance for the *Car projection*. The purple bars represent the adequate overtaking distance reported by participants, while the orange bars indicate the estimated lateral distance of the overtaking manoeuvrer. The vertical line represents the overtaking moment. The asterisks and crosses at the bottom indicate significant differences, p < 0.001.

392 Figure 3 provides information on results related to the Car projection. The results of the t-test highlight significant 393 pairwise differences between specific scenarios, reinforcing the findings of the ANOVA, which confirmed that the 394 differences between perceived discomfort in the three stimuli (overtaking distance of 0.8 m, 1.6 m, and 2.4 m) were 395 396 statistically significant during the overtaking manoeuvre. The t-test revealed significant differences between individual 397 pairs of scenarios, such as between trials with distance of 0.8 m and 2.4 m, where the smaller overtaking distance of 398 0.8 m elicited a higher keypress rate, indicating greater discomfort. Similarly, the ANOVA test validates these findings 399 by showing that the differences in all three videos are not due to random variation, but reflect meaningful patterns in 400 401 participant responses. Specifically, the trial with 0.8 m distance recorded the highest keypress rate, suggesting that the 402 participants experienced the greatest discomfort or felt the least safe. The trial with the 2.4 m distance showed the 403 lowest keypress rate, reflecting increased comfort and perception of safer overtaking conditions. The range of keypress 404 data in the trial with the 1.6 m distance fell in between, with moderate keypress rates, reflecting a gradual improvement 405 406 in perceived safety.

Participants generally felt safer and more comfortable with longer overtaking distances. However, they consistently
 underestimated the actual gap. This trend suggests a misalignment between perception and reality in driver behaviour.
 The results confirm that shorter overtaking distances lead to significantly higher discomfort, while larger gaps were
 associated with a greater sense of adequacy and safety.

When comparing the *Car projection* with the *Unprotected cycling path*, the results reveal a misalignment between perceived comfort and actual overtaking distance. See Section 7 for additional visualisations and analysis. Although participants reported feeling more comfortable with *Unprotected cycling path*, they were unable to achieve adequate

386

387

388

overtaking distances or high safety ratings. This contrast underscores the importance of designing interventions that
 balance subjective perceptions with measurable safety outcomes.

Figure 4 compares the discomfort responses and spatial estimates between the Car projection and the *Unprotected cycling path*. Although both show a trend of increasing comfort and distance perception with wider overtaking margins, the *Car projection* condition yielded consistently lower discomfort levels and higher perceived adequacy scores. In particular, although participants reported feeling safer under the *Unprotected cycling path* condition, their estimated overtaking distances remained lower than actual values, reinforcing the idea that perceived safety does not always align with objective spatial behaviour.

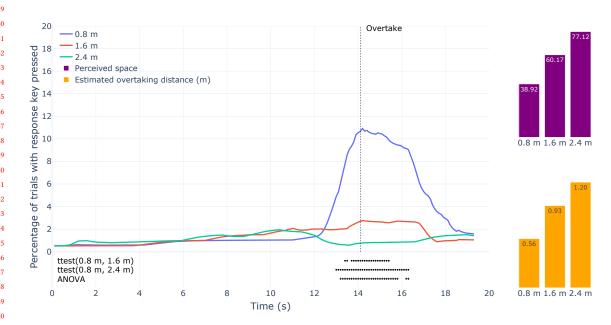


Fig. 4. Participants' discomfort responses and post-stimulus questionnaire results for the perceived adequate overtaking distance and the estimated lateral distance for the *Unprotected cycling path*. The purple bars represent the adequate overtaking distance reported by participants, while the orange bars indicate the estimated lateral distance of the overtaking manoeuvrer. The vertical line represents the overtaking moment. The asterisks and crosses at the bottom indicate significant differences, p < 0.001.

The *Car projection* demonstrated its effectiveness in improving overtaking behaviour, particularly at greater distances, as evidenced by lower keypress rates, higher perceived space, and better adequacy scores in the trial with the 2.4 m distance. The combined validation from the t-test and ANOVA confirms the reliability of these findings and underscores the potential of the Car projection as an effective communication tool to improve driver-cyclist interactions.

Participants were asked to choose the most helpful interaction to maintain the overtaking distance. The scenarios were chosen in this order: *Car projection* (n = 38), *Laser projection* (n = 36), *Unprotected cycling path* (n = 22), *Road markings* (n = 19) and *Vertical signage* (n = 1). These preferences align with keypress data, which indicated lower levels of discomfort in such scenarios.

469 4 Laboratory Experiment

4.1 Method

The setup, consisting of a screen, a gaming steering wheel, and paddles for speed control, was used to evaluate the scenarios more thoroughly, focussing on whether they contributed to improving the lateral overtaking distance rather than assessing distance perception. Participants could freely control the car's steering with the wheel and adjust the speed using the pedals, allowing for a detailed analysis of their actions while overtaking the cyclist. The speed of the car and the lateral distance from the cyclist were recorded every 0.1 s [22, 61]. In addition, the coordinates of the car, time, speed, and the closest distance between the bicycle and the car box colliders were also recorded [50].

The tests were carried out in a controlled environment, the light level was kept the same, and the shades were closed during the experiment. There was no noise during the experiment. To closely mimic a real driving experience, the participants used a 27-inch screen set-up equipped with a steering wheel, accelerator, and braking pedals (see Figure 5). To run the simulation, a Microsoft Surface Book 2 with Intel I7, 8GB of RAM, and a dedicated graphics card, Nvidia 1050ti, was used. In this setup, the cyclist maintained a constant speed of 17 km/h along a set path, while the car's speed was controlled by the participant, allowing variations in speed and lateral distance.

Fig. 5. Experimental setup used during the laboratory experiment. Participants controlled a vehicle using a gaming steering wheel and paddles for speed adjustments with the simulation on a monitor.

The laboratory experiment was conducted by first providing participants with information about the project and requiring them to complete the demographic survey, which included questions on driving experience and familiarity with cycling safety. They were then asked to read the instructions. Before the first actual trial, the participants were given a demonstration in which only the car and the city environment were used without the cyclist to allow the participants to practice. Participants were allowed as much time as needed until they felt confident driving the car. Section 7 for the materials used in the laboratory experiment.

521 The scenarios were randomised. After each scenario, participants were required to answer two questions based on 522 the survey: (1) After the simulation, to what extent do you agree with the following statement: The space between the car 523 and the bicycle during the overtaking manoeuvre was adequate and (2) Could you estimate the lateral distance between the 524 525 car and the bicycle during the overtaking manoeuvre. Give your answer in meters. The distance between the car and the 526 bicycle was approximately.....Participants at the end of the study were asked to express their preferences for the scenario 527 Which of the seven scenarios, featuring various technologies such as road markings or laser projections, was the most helpful 528 in accurately determining the distance between the car and the cyclist? They could select only one of the seven scenarios. 529 530 The total number of participants in the laboratory study was 20 (7 female and 13 male). The average age of the

participants was 21 years (SD = 3.0), with an average driving licence holding period of 2 years (SD = 2.3). The participants were from Estonia (n = 4), the Netherlands (n = 4), Bulgaria (n = 3), Italy (n = 2), Poland (n = 2), Spain (n = 1), Germany (n = 1), Romania (n = 1), Latvia (n = 1), and Cyprus (n = 1)

Results 4.2

531

532

533

534 535 536

537

538

539 540

541

542

543

544 545

546

547

548

572

The results of the laboratory experiment showed that there was a variation between the different scenarios. The results of this experiment provide support for what can be observed in the crowdsourced experiment. The first insight from the general result has shown that participants demonstrated difficulty in accurately estimating the lateral overtaking distance, with an estimation error of 1.63 m in all of the scenarios by comparing the estimation with the actual overtaking distance.

The distance between the car and the cyclist was also observed to be on average high compared to expectation, regardless of the scenario. The average overtaking distance was 3.40 m. This is likely due to the absence of incoming traffic as some comments that the participants provided suggested, which made the participants feel comfortable taking a greater distance than required by regulations.

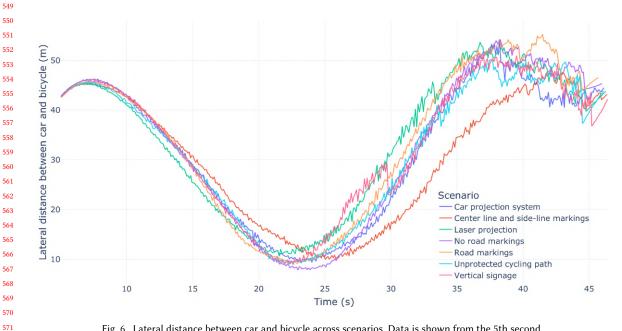


Fig. 6. Lateral distance between car and bicycle across scenarios. Data is shown from the 5th second.

Figure 6 presents the recorded overtaking distances in different scenarios, illustrating both how the mean distance 573 574 varies over time in the scenarios. Although scenarios such as the Laser projection demonstrated the highest recorded 575 overtaking distances, there is significant variation between scenarios. The Unprotected cycling path, which participants 576 in the crowdsourced experiment associated with high comfort and high perceived adequacy 2, also resulted in shorter 578 overtaking distances, reinforcing its limitations 6. The results of the t-test indicated that there were no statistically 579 significant differences between conditions, highlighting the need for more research to better understand the relationship 580 between perceived safety and actual driver behaviour in overtaking situations.

Participants were polled to indicate their most preferred interaction concept. The scenarios preferred by the partici-582 583 pants did not always correspond to those that maintained the highest overtaking distances. The Unprotected cycling 584 path received the highest number of participant votes, with 10 in total. This was followed by the Laser projection with 585 5 votes, the Car projection with 3, and the Road marking with 2. The remaining options did not receive any votes. 586 However, Figure 6 shows that the Unprotected cycling path did not result in the highest overtaking distances, as other 587 588 conditions, such as the Laser projection, led to greater actual clearance. This discrepancy between perceived safety 589 and actual driver behaviour suggests that the participants' sense of security does not necessarily align with objective 590 overtaking behaviour, which warrants further investigation. 591

5 Discussion

594 This study examined seven interventions aimed at increasing the lateral overtaking distance for cyclist safety in the 595 EU. A crowdsourced (N = 120) and a laboratory (N = 20) experiments evaluated technologies and infrastructure-based 596 solutions. While Laser projection and Car projection were preferred, they were not always the most effective in measured 597 598 results. The results highlight a gap between perceived comfort and actual overtaking distances, which underlines the 599 need to align driver perception with real safety (RQ1). Previous studies have shown that drivers often underestimate 600 the distance they leave when overtaking cyclists, particularly when they perceive the road to be wide or the cyclist 601 to be predictable [61]. This misalignment suggests that effective HMI or infrastructure interventions must not only 602 603 influence behaviour but also enhance spatial awareness during overtaking.

604 Car projection emerged as the most effective, increasing overtaking distance and reducing discomfort through 605 intuitive visual cues. Laser projection was the most preferred, valued for its clarity. Similarly, automotive projection 606 systems offer real-time feedback, reducing stress and improving decision making [19]. Advanced technologies were 607 favoured, but simpler interventions, such as Vertical signage and Road markings, performed comparably in measured 608 609 behaviour. Although less preferred, Vertical signage achieved similar results in terms of measured overtaking distances, 610 highlighting its potential as a lower-cost alternative [20]. Road markings showed moderate effectiveness, providing 611 further support for their applicability in resource-constrained settings. Interestingly, the Unprotected cycling path was 612 rated as comfortable, but resulted in the smallest overtaking distances, exposing a misalignment between subjective 613 614 comfort and actual safety (RQ2) [44]. 615

The behavioural results confirm that drivers often misjudge safe passing distances [27], reinforcing the need for 616 interventions that improve spatial awareness. Technologies such as bicycle and car projections help reduce uncertainty, 617 618 but the diversity of responses indicates that no single intervention is universally effective. Context-specific solutions 619 are likely to be needed to account for environmental and cultural variation. 620

The combination of crowdsourcing and simulation provided complementary insights (RQ3). Crowdsourcing enabled 621 broad participation across the EU but was limited by its use of pre-recorded videos. The controlled study, although 622 623 lacking traffic complexity, offered real-time behavioural data. The laboratory simulation showed greater overtaking 624

12

577

581

592

distances, probably due to the absence of oncoming traffic or distractions. This difference underscores the importance of validating the findings in real-world settings to ensure broader applicability.

5.1 Limitations and Future Work

625

626

627 628 629

630

652 653

654

655 656

657

658 659 660

661

662

663 664

665 666

667

668

669

670

671

672

673

676

While this study provides valuable information, several limitations must be acknowledged. Although this study focused 631 on drivers, future work should explore how these interventions affect cyclists' perceived safety. A more immersive 632 633 simulator, such as the one in Petermeijer et al. (2017) [46], or the use of VR headsets could better replicate real-world 634 driving [8]. Furthermore, conducting tests in live traffic would improve the ecological validity by capturing more natural 635 driver behaviour. The current simulation lacked dynamic elements, such as pedestrians and opposing traffic, which can 636 influence decisions. The crowdsourced approach offered broad perspectives but relied on subjective interpretations of 637 638 2D video, potentially limiting realism. The sample size was also small compared to similar studies (e.g., Onkhar et al. 639 (2022) [42] and Bazilinskyy et al. (2022) [5] with 2000 participants each), suggesting that future work should scale up, 640 ideally across all EU member states. The selected overtaking distances (0.8 m, 1.6 m, 2.4 m) could be expanded to a 641 642 continuous range for richer behavioural insights [3]. Similarly, while seven interventions were tested, future research 643 should assess whether they represent the entire design space or if additional concepts should be explored. Regional 644 and infrastructural differences across the European Economic Area (EEA) and beyond may influence effectiveness, 645 especially since the current scenario reflected a US-style layout. Future work should also consider other VRUs, such as 646 scooter riders, which face similar risks. Lastly, although participants had driver's licences, a further detailed analysis of 647 648 the driving experience, particularly among crowdsourced population, could clarify its impact on overtaking behaviour. 649 Real-world studies, integration with connected vehicles, and the development of real-time feedback systems can provide 650 deeper insights and improve cyclist-driver communication. 651

6 Acknowledgments

This research was supported by 3T Bike S.r.l. through their expertise in the field. Additional technical input and 3D models were provided by the collaborating organisation Code This Lab S.r.l.. We also thank Jiaqi Wang for their valuable assistance with the coding used in the data analysis. Their support was instrumental to this research.

7 Supplementary Material

Supplementary material containing anonymous questionnaire data, user test forms and VR and analysis code is available at: https://drive.google.com/drive/folders/1MioioNDYjwnr9ez8nuBy6qMcAPb7Abjj. The maintained version of the code is available at https://github.com/gip58/cyclist-distance-crowdsourced.

References

- Liebram Alena. 2019. Continental enhances intelligent glass control. https://www.continental.com/en/press/press-releases/2019-07-25-intelligentglass-control/
- [2] Raphael Avital, Tomer Mutzafi, and Amnon Shashua. 2022. Detection and Tracking of Cyclists on Rural Roads Using Deep Learning and Thermal Imaging. Computer Vision and Image Understanding 220 (2022), 103437.
- [3] Pavlo Bazilinskyy, Dimitra Dodou, and J. C. F. De Winter. 2020. External human-machine interfaces: Which of 729 colors is best for signaling 'Please (do not) cross'?. In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, Toronto, Canada, 3721–3728. https://doi.org/10.1109/SMC42975.2020.9282998
- [4] Pavlo Bazilinskyy, Dimitra Dodou, and J. C. F. De Winter. 2022. Crowdsourced assessment of 227 text-based eHMIs for a crossing scenario. In Proceedings of International Conference on Applied Human Factors and Ergonomics (AHFE). New York, USA. https://doi.org/10.54941/ahfe1002444

Giovanni Sapienza and Pavlo Bazilinskyy

- [5] Pavlo Bazilinskyy, Dimitra Dodou, Y. B. Eisma, W. V. Vlakveld, and J. C. F. De Winter. 2022. Blinded windows and empty driver seats: the effects of
 automated vehicle characteristics on cyclist decision-making. *IET Intelligent Transportation Systems* 17 (2022), 72–84. https://doi.org/10.1049/itr2.
 12235
 - [6] Pavlo Bazilinskyy, Lars Kooijman, Dimitra Dodou, and J. C. F. De Winter. 2020. Coupled simulator for research on the interaction between pedestrians and (automated) vehicles. In Proceedings of Driving Simulation Conference (DSC). Antibes, France.
 - [7] Pavlo Bazilinskyy, Lars Kooijman, Dimitra Dodou, and J. C. F. De Winter. 2021. How should external Human-Machine Interfaces behave? Examining the effects of colour, position, message, activation distance, vehicle yielding, and visual distraction among 1,434 participants. *Applied Ergonomics* 95 (2021), 103450. https://doi.org/10.1016/j.apergo.2021.103450
 - [8] Pavlo Bazilinskyy, Lars Kooijman, K. P. T. Mallant, V. E. R. Roosens, M. D. L. M. Middelweerd, Dodou Dimitra Overbeek, L. D., and J. C. F. De Winter. 2022. Get out of the way! Examining eHMIs in critical driver-pedestrian encounters in a coupled simulator. In Proceedings of International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutoUI). Seoul, South Korea. https://doi.org/10.1145/3543174.3546849
- [9] Pavlo Bazilinskyy, Roberto Merino-Martınez, Elif Özcan, Dimitra Dodou, and J. C. F. De Winter. 2023. Exterior sounds for electric and automated
 vehicles: Loud is effective. Applied Acoustics 214 (2023), 109673. https://doi.org/10.1016/j.apacoust.2023.109673
- [10] Siri Hegna Berge, Marjan Hagenzieker, Haneen Farah, and Joost de Winter. 2022. do cyclists need hmis in future automated traffic? an interview
 study. Transportation Research Part F: Traffic Psychology and Behaviour 84 (Jan. 2022), 33–52. https://doi.org/10.1016/j.trf.2021.11.013
- [11] Christian Brand, Evi Dons, Esther Anaya-Boig, et al. 2020. the climate change mitigation effects of active travel. *Research Square* PREPRINT (Version 1) (July 2020), 1–30. https://doi.org/10.21203/rs.3.rs-39219/v1
- [12] Matthew Bruno, Henk-Jan Dekker, and Letícia Lindenberg Lemos. 2021. Mobility protests in the Netherlands of the 1970s: Activism, innovation, and transitions. Environmental Innovation and Societal Transitions 40 (Sept. 2021), 521–535. https://doi.org/10.1016/j.eist.2021.10.001
- [13] Ralph Buehler and John Pucher. 2022. cycling through the covid-19 pandemic to a more sustainable transport future: evidence from case studies of 14 large bicycle-friendly cities in europe and north america. Sustainability 14, 12 (2022), 1–32. https://doi.org/10.3390/su14127293
- [14] Géry Casiez, Nicolas Roussel, and Daniel Vogel. 2012. The 1€ filter: A simple speed-based low-pass filter for noisy input in interactive systems.
 In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 2527–2530. https://doi.org/10.1145/2207676.2208639
- [15] Christine Chaloupka and Ralf Risser. 2024. The Influence of Communication Cues on Driver–Cyclist Interactions: A Review of Recent Advances.
 Journal of Safety Research (2024). In press.
- [16] Christine Chaloupka-Risser and Elisabeth Füssl. 2017. The importance of communication between cyclists and other traffic participants and its potential in reducing traffic safety-critical events. *Transactions on Transport Sciences* 8, 1 (2017), 24–30. https://doi.org/10.5507/tots.2017.004

[17] Deirdre CLUNE. 2017. Parliamentary question | minimum lateral clearance distance when passing cyclists | E-002358/2017 | European Parliament. https://www.europarl.europa.eu/doceo/document/E-8-2017-002358_EN.html

- [18] European Commission. 2016. 2015 road safety statistics: what is behind the figures? https://ec.europa.eu/commission/presscorner/detail/en/memo_
 16_864
- [19] Continental AG. 2019. Virtual a-pillar: continental improves vehicle safety with invisible pillars. https://www.continental.com/en/press/press releases/2019-01-07-virtual-a-pillar-157750. Accessed: 2025-04-07.
- [20] Alastair Dalton. 2022. Drivers passing dangerously close to cyclists nearly halved in pilot project. https://www.scotsman.com/news/transport/drivers passing-dangerously-close-to-cyclists-nearly-halved-in-pilot-project-3555536
- [21] Marco Dozza, Ron Schindler, Giulio Bianchi-Piccinini, and Johan Karlsson. 2016. How do drivers overtake cyclists? Accident Analysis and Prevention
 88 (March 2016), 29–36. https://doi.org/10.1016/j.aap.2015.12.008
- [22] Marco Dozza and Joakim Werneke. 2014. Introducing naturalistic cycling data: What factors influence bicyclists' safety in the real world?
 Transportation Research Part F: Traffic Psychology and Behaviour 24 (2014), 83–91. https://doi.org/10.1016/j.trf.2014.03.001
 - [23] Simon Driver and Elliott Ross. 2015. Blaze laserlights. https://tfl.gov.uk/modes/cycling/santander-cycles/blaze-laserlights#on-this-page-2
- [24] Jenny Eriksson, Åsa Forsman, Anna Niska, Susanne Gustafsson, and Gunilla Sörensen. 2019. An analysis of cyclists' speed at combined pedestrian and cycle paths. *Traffic Injury Prevention* 20 (2019), 56–61. https://doi.org/10.1080/15389588.2019.1658083 2018 International Cycling Safety Conference (ICSC).
- [25] Haneen Farah, Giulio Bianchi Piccinini, Makoto Itoh, and Marco Dozza. 2019. Modelling overtaking strategy and lateral distance in car-to-cyclist
 overtaking on rural roads: a driving simulator experiment. *Journal of Safety Research* 70 (2019), 35–43. https://doi.org/10.1016/j.jsr.2019.05.002
- [26] Victoria Gitelman and Etti Doveh. 2023. Safety of Cyclists on Urban Roads: Effects of Lane Width and Infrastructure. Accident Analysis & Prevention
 184 (2023), 106202.
- 721
 [27] Donald A. Gordon and Truman M. Mast. 1970. Drivers' judgments in overtaking and passing. Human Factors 12, 3 (1970), 341–346. https:

 722
 //doi.org/10.1177/001872087001200310 arXiv:https://doi.org/10.1177/001872087001200310 PMID: 5483808.
- [28] Sue Granville, Fiona Rait, Mike Barber, and Andra Laird. 2001. Sharing road space: Drivers and cyclists as equal road users. 2001 1 (2001), 1–98. https://webarchive.nrscotland.gov.uk/3000/https://www.gov.scot/resource/doc/156597/0042065.pdf
- [29] Azra Habibovic and Johan Davidsson. 2011. Requirements of a system to reduce car-to-vulnerable road user crashes in urban intersections. Accident Analysis & Prevention 43, 4 (July 2011), 1570–1580. https://doi.org/10.1016/j.aap.2011.03.019
- [30] Kang Jiang, Zhiwei Yang, Zhongxiang Feng, N. N. Sze, Zhenhua Yu, Zhipeng Huang, and Jiajia Chen. 2021. Effects of using mobile phones while
 cycling: a study from the perspectives of manipulation and visual strategies. *Transportation Research Part F: Traffic Psychology and Behaviour* 83

14

680

681

682

683

684

685

686

703

704

- 729 (Nov. 2021), 291-303. https://doi.org/10.1016/j.trf.2021.10.010 730
- [31] Yu Jiang, Ming Li, and Xiaopeng Zhang. 2021. Effects of Mobile Phone Use on Cyclists' Behaviour and Accident Risk: A Simulator Study. Accident 731 Analysis & Prevention 160 (2021), 106319.
- 732 [32] Ralph Buehler John Pucher. 2008. full article: making cycling irresistible: lessons from the netherlands, denmark and germany. https: 733 //www.tandfonline.com/doi/full/10.1080/01441640701806612?casa_token=lwxIApaLvesAAAAA%3Au-CtHObEaK5xTZ78wphD3ubPXdSdJz-734 lF9su46pAtro5qBTMBN6OR2iLwWOmasOYE4fY3ttYb9tj
- [33] Thomas et al. Kooijman. 2021. Light Projection Systems for Enhancing Cyclist Visibility: A Field Study. Transportation Research Procedia 60 (2021), 735 123 - 130.736
- [34] Jordanka Kovaceva, Gustav Nero, Jonas Bärgman, and Marco Dozza. 2019. Drivers overtaking cyclists in the real-world: Evidence from a naturalistic 737 driving study. Safety Science 119 (Nov. 2019), 199-206. https://doi.org/10.1016/j.ssci.2018.08.022 738
- [35] Miguel Loyola, John D Nelson, Geoffrey Clifton, and David Levinson. 2023. the influence of cycle lanes on road users' perception of road space. 739 Urban, Planning and Transport Research 11, 1 (Dec. 2023), 2195894. https://doi.org/10.1080/21650020.2023.2195894 Publisher: Routledge, _eprint: 740 https://doi.org/10.1080/21650020.2023.2195894. 741
- [36] Ingrid van Schagen Marjolein Boele-Vos. 2024. european commission (2024). road safety thematic report cyclists. european road safety observatory. brussels, european commission, directorate general for transport. https://transport.ec.europa.eu/system/files/2024-03/ERSO-TR-Cyclists-20240305. 743 pdf
- [37] R. Marqués and V. Hernández-Herrador. 2017. On the effect of networks of cycle-tracks on the risk of cycling. the case of Seville. Accident Analysis 744 & Prevention 102 (2017), 181-190. https://doi.org/10.1016/j.aap.2017.03.004 745
- [38] Peter Midgley. 2023. Cycling renaissance: Pandemic as a catalyst for urban change. Sustainable Cities and Society 96 (2023), 104710. 746
- [39] C. S. Mok, Pavlo Bazilinskyy, and J. C. F. De Winter. 2022. Stopping by looking: A driver-pedestrian interaction study in a coupled simulator using 747 head-mounted displays with eye-tracking. Applied Ergonomics 105 (2022). https://doi.org/10.1016/j.apergo.2022.103825 748
- [40] Paolo Montuori, Pasquale Sarnacchiaro, Raffaele Nubi, Donatella Di Ruocco, Alessandro Belpiede, Antonia Sacco, Elvira De Rosa, and Maria Triassi. 749 2021. The use of mobile phone while driving: Behavior and determinant analysis in one of the largest metropolitan areas of Italy. Accident Analysis 750 & Prevention 157 (July 2021), 106161. https://doi.org/10.1016/j.aap.2021.106161
- 751 [41] Hiroshi Nakamura. 2023. Evaluation of Cycle Lane Markings and Safety in Urban Areas. Conference presentation, International Cycling Safety 752 Conference 2023.
- 753 [42] Vishal Onkhar, Pavlo Bazilinskyy, Dimitra Dodou, and J. C. F. De Winter. 2022. The effect of drivers' eye contact on pedestrians' perceived safety. Transportation Research Part F: Traffic Psychology and Behaviour 84 (2022), 194–210. https://doi.org/10.1016/j.trf.2021.10.017 754
- Max Oudshoorn, J. C. F. De Winter, Pavlo Bazilinskyy, and Dimitra Dodou. 2021. Bio-inspired intent communication for automated vehicles. 755 [43] Transportation Research Part F: Traffic Psychology and Behaviour 80 (2021), 127-140. https://doi.org/10.1016/j.trf.2021.03.021 756
 - John Parkin and Ciaran Meyers. 2010. The effect of cycle lanes on the proximity between motor traffic and cycle traffic. Accident Analysis & [44] Prevention 42, 1 (2010), 159-165. https://doi.org/10.1016/j.aap.2009.07.018
- Robert Perot. 2023. From bikes to cars and back again: How Dutch cities became cycling cities. Vassar College Digital Library 1 (2023), 1-60. [45] 759 https://digitallibrary.vassar.edu/collections/institutional-repository/a7ce4b7d-2ed2-4f57-9b93-568666ddaf40
- 760 [46] S. M. Petermeijer, Pavlo Bazilinskyy, Klaus Bengler, and J. C. F. De Winter. 2017. Take-over again: Investigating multimodal and directional TORs to 761 get the driver back into the loop. Applied Ergonomics 62 (2017), 204-215. https://doi.org/10.1016/j.apergo.2017.02.023
- 762 [47] Sara Rivera Olsson and Erik Elldér. 2023. Are bicycle streets cyclist-friendly? micro-environmental factors for improving perceived safety when 763 cycling in mixed traffic. Accident Analysis & Prevention 184 (May 2023), 107007. https://doi.org/10.1016/j.aap.2023.107007
- [48] Marta Rodriguez, Alejandro Gómez, and Fernando Garcia. 2023, Real-Time Detection of Vulnerable Road Users for Autonomous Driving Using 764 LiDAR and Camera Sensor Fusion. Sensors 23, 1 (2023), 95. 765
 - Mikko Räsänen and Heikki Summala. 1998. Attention and expectation problems in bicycle-car collisions: An in-depth study. Accident Analysis & [49] Prevention 30, 5 (Sept. 1998), 657-666. https://doi.org/10.1016/S0001-4575(98)00007-4
 - Rick Salay, Rafael Queiroz, and Krzysztof Czarnecki. 2017. An analysis of ISO 26262: Using a hazardous event in a self-driving car simulation. SAE [50] International Journal of Transportation Safety 5, 1 (2017), 61-72. https://doi.org/10.4271/2017-01-0102
- 769 [51] Gernot Sauter. 2021. (7) making cycling safer: cyclists also need pavement markings | linkedin. https://www.linkedin.com/pulse/making-cycling-770 safer-cyclists-also-need-pavement-markings-sauter/
- 771 [52] Francesco Scorza and Giovanni Fortunato. 2021. cyclable cities: building feasible scenario through urban space morphology assessment. Journal of 772 Urban Planning and Development 147, 4 (Dec. 2021), 05021039. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000713 Publisher: American Society 773 of Civil Engineers.
- 774 [53] Stella C. Shackel and John Parkin. 2014. Influence of road markings, lane widths and driver behaviour on proximity and speed of vehicles overtaking cyclists. Accident Analysis & Prevention 73 (Dec. 2014), 100-108. https://doi.org/10.1016/j.aap.2014.08.015 775
- Freya Slootmans. 2023. european commission (2023) facts and figures cyclists. european road safety observatory. brussels, european commission, [54] 776 directorate general for transport. https://road-safety.transport.ec.europa.eu/document/download/e916d096-cdae-4979-8700-0c81db3fbde6_en? 777 filename=ff cvclists 20230213.pdf 778
- [55] SWOV. 2023. Fietsers. https://swov.nl/nl/factsheet/fietsers 779
- 780

742

757

758

766

767

Giovanni Sapienza and Pavlo Bazilinskyy

- [56] The Local Denmark. 2022. Danish cyclists want new markings to remind motorists to keep distance. https://www.thelocal.dk/20220915/danish cyclists-want-new-markings-to-remind-motorists-to-keep-distance
- 783 [57] European Union. 2024. european declaration on cycling. http://data.europa.eu/eli/C/2024/2377/oj/eng
- [58] Volvo. 2014. Volvo cars and poc to demonstrate life-saving wearable cycling tech concept at international ces 2015. https://www.media.volvocars.com/
 us/en-us/media/pressreleases/155565/volvo-cars-and-poc-to-demonstrate-life-saving-wearable-cycling-tech-concept-at-international-ces-201
- [59] Rul von Stülpnagel, Rafael Hologa, and Nils Riach. 2022. Cars overtaking cyclists on different urban road types expectations about passing safety are not aligned with observed passing distances. *Transportation Research Part F: Traffic Psychology and Behaviour* 89 (Aug. 2022), 334–346. https://doi.org/10.1016/j.trf.2022.07.005
- [60] Centraal Bureau voor de Statistiek (CBS). 2024. Meer verkeersdoden onder fietsers en 80-plussers. (2024). https://www.cbs.nl/nl-nl/nieuws/2024/
 [3/meer-verkeersdoden-onder-fietsers-en-80-plussers Accessed: 2025-04-04.
- [61] Ian Walker. 2007. Drivers overtaking bicyclists: Objective data on the effects of riding position, helmet use, vehicle type and apparent gender.
 Accident Analysis & Prevention 39, 2 (2007), 417–425. https://doi.org/10.1016/j.aap.2006.08.010
- [62] Ian Walker. 2023. Drivers' overtaking behavior when cyclists wear different outfits: a field study. Transportation Research Part F: Traffic Psychology and Behaviour 93 (2023), 1025–1034.
- [63] Ian Walker, Ian Garrard, and Felicity Jowitt. 2014. The influence of a bicycle commuter's appearance on drivers' overtaking proximities: an on-road
 test of bicyclist stereotypes, high-visibility clothing and safety aids in the United Kingdom. Accident Analysis & Prevention 64 (2014), 69–77.
 https://doi.org/10.1016/j.aap.2013.11.007
 - [64] Jan Zimmermann, Sebastian Kammel, and Christoph Stiller. 2020. Cyclist Intention Detection in the Presence of Occlusions with Probabilistic Occupancy Grids and Particle Filters. IEEE Transactions on Intelligent Transportation Systems 21, 8 (2020), 3417–3427.