

1 **How Sustainable Materials Are Judged in Motion: Designing and Testing a**
2 **Hybrid Carbon–Flax Composite Gravel Bicycle Frame**
3

4
5 GIOVANNI SAPIENZA*, Eindhoven University of Technology, The Netherlands
6
7 PAVLO BAZILINSKY, Eindhoven University of Technology, The Netherlands
8

33 Fig. 1. 3T Extrema Italia Model that was re-engineered.
34

35 High-performance bicycle frames are predominantly manufactured from carbon-fibre composites due to their favourable stiffness-
36 to-weight ratio. However, carbon fibre production is energy-intensive, petroleum-based and difficult to recycle, raising concerns
37 about long-term sustainability. Although vegetal and mineral fibres offer environmental benefits, their adoption in performance-
38 oriented bicycle frames remains limited due to concerns about structural performance and user acceptance. This paper presents a
39 design-through-making study exploring the integration of sustainable composite materials, specifically flax, hemp and basalt fibres,
40 into a full-scale, rideable gravel bicycle frame. A hybrid composite frame was produced using filament winding and resin transfer
41 moulding, selectively incorporating vegetal fibres while remaining compatible with industrial production constraints. Finite element
42 simulations guided material selection, and physical stiffness testing verified structural performance against industry benchmarks. A
43 mixed-method study with 13 experienced riders showed that judgement depended less on stiffness and more on material visibility,
44 perceived sustainability, and trust, indicating potential for sustainable composites in performance bicycle design.
45

46 Additional Key Words and Phrases: Sustainable composites, Bicycle frame design, Natural fibre, Filament winding, Rider perception,
47 Flax, Basalt, Hemp
48

49 50 2026. Manuscript submitted to ACM
51
52

Fig. 2. Fibre types used in this work, with representative photographic samples.

1 INTRODUCTION

The transportation sector is currently responsible for approximately 23% of global CO₂ emissions [20]. Although emission reduction efforts have historically focused on vehicle operation, emissions associated with manufacturing processes and global logistics remain substantial. In this context, bicycles represent a low-emission alternative for everyday mobility—particularly for short and last-mile trips—while also providing significant health benefits [27, 28]. Consequently, cycling is increasingly recognised as a key component of sustainable urban transport strategies [4, 7].

However, sustainability in mobility cannot be evaluated solely through operational efficiency. Material selection and manufacturing processes play a critical role in determining the environmental impact, industrial feasibility, and how artefacts are experienced in use. Therefore, this study examines how material and manufacturing choices shape the embodied experience, perception, and trust of cyclists during real-world riding, treating sustainability not as an abstract performance metric but as something that becomes meaningful through lived interaction. This perspective directly motivates an investigation into both industrial integration and user experience, which form the basis of the research questions addressed in this work.

The bicycle market has evolved to address a wide range of mobility and performance demands, including city, mountain, and road bicycles. More recently, gravel bicycles (hybrid models that combine the characteristics of road and mountain bicycles) have gained popularity due to their versatility in mixed terrains, making them suitable for commuter and recreational use [22, 23]. Despite this growth, gravel cycling remains a niche segment within the broader bicycle market, predominantly adopted by experienced cyclists and early adopters of new technologies and materials. From a research perspective, gravel bicycles provide a representative platform for material and manufacturing experimentation, as they must balance structural robustness, comfort, durability, and visual identity across varied riding conditions. This makes them particularly suitable for studying how alternative composite materials can be integrated into rideable, performance-relevant frames. Against this backdrop, increasing attention has been directed towards alternative composite materials that reduce reliance on petroleum-based carbon fibres. In composite bicycle frame manufacturing,

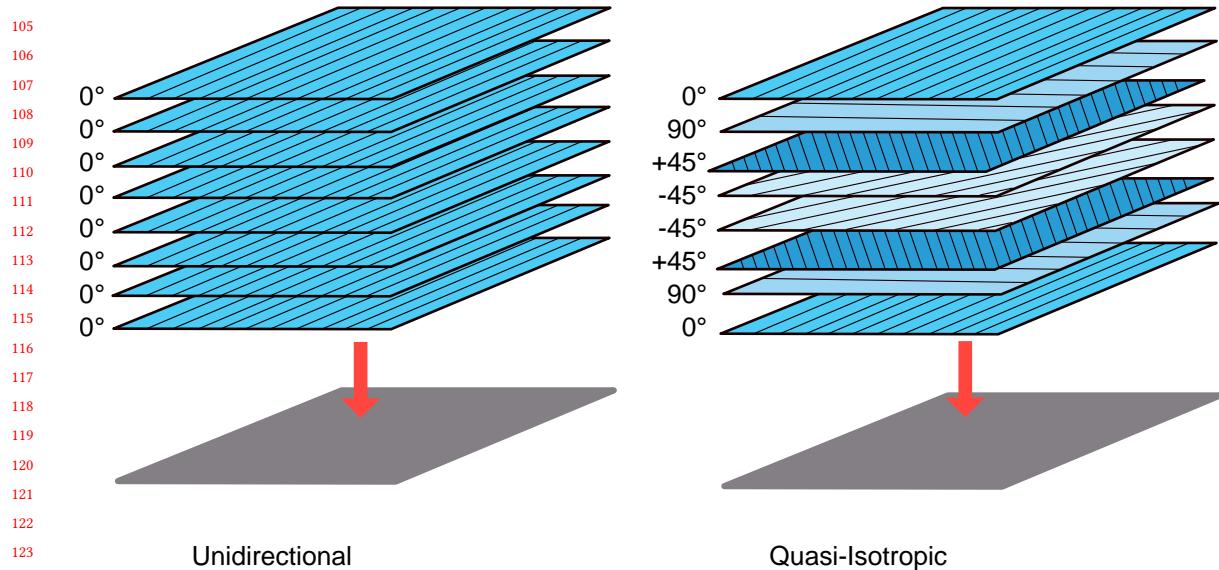


Fig. 3. Schematic representation of a laminate consisting of multiple UD plies. Image adapted from [1].

the choice of reinforcement fibre influences not only environmental impact and mechanical performance, but also manufacturing behaviour, handling, and achievable geometries. Vegetal and mineral fibres offer lower embodied energy, greater regenerative potential, and reduced dependence on fossil resources compared to conventional synthetic composites. Natural fibres such as flax and hemp are renewable and biodegradable [33–35], while mineral fibres such as basalt combine natural abundance with favourable mechanical performance [12].

Beyond their environmental characteristics, these fibres differ in surface texture, stiffness, bundle cohesion, and interaction with resin systems, leading to distinct processing requirements and material expressions during fabrication. As illustrated in Figure 2, vegetal, mineral, and synthetic fibres exhibit visibly different physical characteristics, which influence fibre placement, consolidation, and handling during manufacturing, as well as the resulting visual and tactile qualities of the finished frame. Although recyclability remains a challenge for composite materials regardless of fibre type, vegetal and mineral fibres provide a longer-term sustainability perspective while enabling alternative sensorial, visual, and tactile material expressions. Other natural materials, such as bamboo, have been discussed in the literature [10], but are not considered suitable here due to their limited compatibility with geometrically complex, performance-oriented frame architectures [14]. These material differences motivate an investigation into how fibre choice affects both manufacturing feasibility and perceived riding experience.

At the same time, current manufacturing practices impose significant constraints on the adoption of alternative materials. Many bicycle frames are produced using pre-impregnated (pre-preg) fibres, which require cold storage, careful handling, and labour-intensive manual lay-up. In these processes, frames are constructed by stacking multiple unidirectional (UD) composite plies, each consisting of fibres aligned in a single direction, to tailor stiffness and strength according to local load requirements (Figure 3).

To conform to complex frame geometries, flat pre-preg sheets must be cut into intricate shapes before lay-up, generating substantial material waste in the form of offcuts—unused remnants of composite material that cannot be reused once cut [29]. These inefficiencies increase environmental impact and limit experimentation with alternative fibres, as deviations from established lay-up schedules and ply architectures introduce additional cost, risk, and manufacturing uncertainty. This highlights the need for manufacturing approaches that can accommodate new fibres and laminate configurations without abandoning existing industrial knowledge, tooling, and structural design principles.

157 These process-level constraints are further reinforced by the global organisation of bicycle manufacturing. A large proportion
158 of bicycle frame production by EU- and US-based brands is outsourced to Asia to reduce labour costs, distancing material choices
159 and manufacturing decisions from local contexts. This globalised production model increases dependence on long-distance freight
160 transport [2], contributing additional emissions; container shipping from Asia to Europe alone is estimated to produce 10–40 g of
161 CO₂ per tonne-kilometre [26]. This situation is particularly notable given that road and gravel cycling is predominantly practiced in
162 high-income regions where sustainability concerns are increasingly emphasised and where ambitious policy goals related to carbon
163 reduction, circularity and localised production have been articulated. These tensions further motivate the exploration of manufacturing
164 strategies that are compatible with regional production contexts.
165

166 In addition to logistical and organisational factors, the economic structure of carbon-fibre production reinforces this dependency.
167 Carbon fibre remains an energy- and capital-intensive material, with production costs dominated by raw materials, energy consumption,
168 and high investment in specialised equipment [15]. These characteristics limit supply flexibility and contribute to increasing material
169 prices, limiting manufacturers' ability to relocate production or diversify supply chains. As a result, designers and engineers face a
170 structural tension between the sustainability ambitions articulated at both policy and market levels and the realities of the contemporary
171 bicycle frame manufacturing infrastructure. This context underscores the relevance of evaluating the perceived value and feasibility of
172 alternative material solutions.
173

174 In response to these limitations, dry-fibre manufacturing approaches, such as filament winding, have emerged as promising
175 alternatives. Filament winding is a semi-automated process that ensures consistent alignment of the fibres [24] while significantly
176 reducing material waste—typically around 2–4% compared to 15–20% in manual lay-up processes [31]. Its ability to place fibres along
177 load paths with minimal waste makes it particularly well suited to tubular structures such as bicycle frames. Recent developments,
178 including removable and expandable mandrel systems, have further expanded its applicability to more complex geometries while
179 maintaining flexibility in material selection [30]. These developments provide the technical foundation for the integration of vegetal
180 and mineral fibres into industrially viable frame manufacturing.
181

182 Within this industrial context, regionally available vegetal and mineral fibres offer additional strategic advantages. The use of
183 locally rooted materials has been shown to improve supply-chain resilience, reduce transport-related emissions, and strengthen
184 the alignment between material sourcing, manufacturing, and regional industrial capabilities [32]. Italy provides a representative
185 case study: industrial hemp has historically been cultivated in southern regions, particularly Sicily, for textiles, ropes, and sails [19],
186 with renewed interest driven by its ecological and regenerative potential [36]. Similarly, basalt—abundant in the region surrounding
187 Mount Etna—has long been used in architecture and infrastructure and is now available as a continuous fibre suitable for composite
188 reinforcement [18]. These regional conditions inform the selection of flax, hemp, and basalt as candidate fibres in this study.
189

190 Previous research has demonstrated the basic manufacturability of natural-fibre bicycle frames, including hemp-reinforced
191 composites combined with aluminium cores [9]. That work focused on simplified round-tube geometries and excluded dry-fibre
192 manufacturing routes. Other studies have examined flax-based reinforcements in more complex geometries, although these were
193 typically applied to isolated frame components rather than fully integrated structures and relied on pre-preg lay-up and secondary
194 bonding processes [3]. Although capable of achieving high structural performance, such methods are labour intensive, costly, and
195 limited in scalability [8]. Differences in fibre properties within hybrid laminates can also increase susceptibility to interlaminar stress
196 concentrations and delamination under cyclic loading [16].
197

198 Moreover, much of existing research evaluates natural fibre bicycle frames primarily through laboratory-based mechanical tests
199 [3, 9], without allowing direct interaction between the riders and the artefact. As a result, the influence of material choice and
200 manufacturing process on user perception, tactile qualities, and riding experience remains underexplored. Prior work in product
201 and material design suggests that the acceptance of natural-fibre composites is strongly shaped by sensorial qualities and embodied
202 interaction [9]. This gap motivates a focus on rider perception and interpretation in real use.
203

204 1.1 Aim of the Study 205

206 To address this gap, the present study investigates whether a full-scale gravel bicycle frame can be designed, manufactured, and ridden
207 using sustainable vegetal and mineral composite fibres while remaining compatible with contemporary industrial manufacturing
208

209 constraints. The research explores the integration of flax, hemp, and basalt fibres within a dry-fibre composite workflow, adopting a
210 design-through-making approach to bridge material development, fabrication, and real-world use. Beyond demonstrating technical
211 feasibility, the study examines how cyclists experience and interpret these material and manufacturing choices during real riding.
212 By producing a structurally functional and rideable prototype, research considers not only structural performance, but also rider
213 perception, visual identity, material legibility, trust, and perceived value. In this way, the gravel bicycle frame is positioned both as a
214 load-bearing structure and as an interactive artefact through which sustainability, performance, and material intent are negotiated in
215 use. Consequently, the study is guided by the following research questions:

216 **RQ1:** How can a design-through-making approach integrate sustainable fibres (flax, hemp, basalt) into industrial manufacturing to
217 produce a rideable, high-performance frame?

218 **RQ2:** How do cyclists perceive and interpret the riding experience of vegetal- or mineral-fibre frames compared to conventional
219 materials?

220 **RQ3:** How do material choices and manufacturing processes shape the visual identity, legibility, and user trust of a sustainable
221 gravel frame?

222 **RQ4:** What is the perceived value and commercial feasibility of a high-performance gravel bicycle made from sustainable composite
223 materials?

227 2 DESIGN-THROUGH-MAKING: MATERIAL EXPLORATION

252 Fig. 4. 3T Extrema Italia frame showing the labelling convention and the division into front and rear triangles.
253

261 The *Extrema Italia* gravel bicycle frame was used as a reference artefact for this study. It represents a contemporary high-
262 performance gravel frame and provides a realistic baseline for exploring the integration of alternative composite materials within
263 industrial manufacturing constraints, while maintaining relevance to real-world riding conditions and user expectations.

264 The frame is designed for demanding riding scenarios, including rough gravel terrain, endurance riding, and bikepacking (self-
265 supported multi-day cycling using lightweight frame-mounted luggage) applications involving additional carried mass. These use
266 conditions informed the loading scenarios and performance requirements applied in this work, ensuring that material and manufacturing
267 decisions were grounded in situations commonly experienced by riders.

268 Frame geometry was therefore treated as a fixed design parameter and was not explored as a variable in this investigation. To ensure
269 consistent terminology when referring to structural components, Figure 4 presents the frame geometry and labelling convention used
270 throughout this study. The frame is described in terms of a front triangle and a rear triangle connected by the seat tube; adjacent
271 components such as the fork, seatpost, stem, and handlebars are referenced only when relevant to structural loading, manufacturing
272 decisions, or rider interaction.

281 2.1 Composite Material and Manufacturing System

282 This study investigates fibre-reinforced polymer composites using continuous fibres, consistent with filament-wound bicycle-frame
283 manufacturing. Continuous, aligned fibres were selected to ensure structural relevance, manufacturability, and consistency with
284 numerical modelling, while also enabling material substitution and comparison within an existing industrial process. This approach
285 allows alternative fibres to be explored without requiring changes in manufacturing equipment, tooling, or workflow.

286 Three categories of fibres were explored: carbon (synthetic), basalt (mineral), and vegetal fibres. Carbon fibre was used as a
287 mechanical benchmark due to its widespread adoption in high-performance bicycle frames. Basalt fibres were considered for their
288 intermediate stiffness, impact resistance, and lower embodied energy, while vegetal fibres were investigated for their potential damping
289 behaviour and perceived sustainability—properties that can influence rider comfort, trust, and material acceptance in use.

290 Among the vegetal fibre options considered, hemp was initially selected as the reinforcement due to its renewable origin and
291 regional relevance. However, at the time of prototype development, continuous hemp rovings with sufficient consistency and quality
292 for reliable filament winding were not available from commercial suppliers. By contrast, flax (linen) rovings were available in consistent
293 quality and exhibited stable processing behaviour suitable for filament winding. Flax was therefore selected for the physical prototype,
294 while hemp was retained for comparative numerical exploration. This choice reflects a central aim of the study: to investigate how
295 sustainable material integration can be achieved within current industrial constraints, adapting material selection to realistic availability
296 and manufacturing reliability rather than relying on bespoke or experimental production routes.

297 The frame was manufactured using dry filament winding followed by resin transfer moulding (RTM). In filament winding,
298 continuous rovings are deposited under controlled tension onto a rotating mandrel, enabling repeatable fibre placement and local
299 tailoring of stiffness through winding angle. Importantly, the dry-fibre process allows different types of fibres to be selected, combined,
300 or substituted at the time of winding. When hybrid configurations are required, multiple fibre types can be deposited simultaneously,
301 providing material flexibility without altering the underlying manufacturing system.

302 Following winding, the dry fibre preforms were impregnated and consolidated using RTM. As illustrated in Figure 5, RTM involves
303 placing the dry preform into a closed mould and injecting liquid resin under controlled pressure, allowing the resin to flow through
304 the fibre network and cure to form a consolidated composite structure.

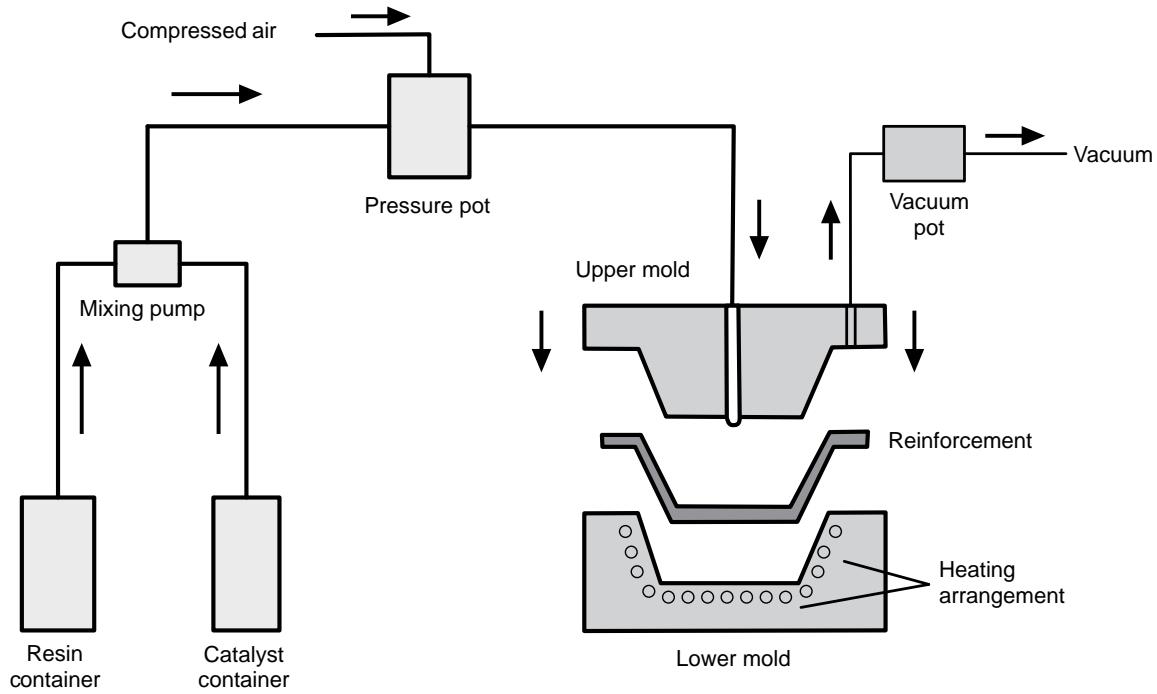


Fig. 5. Schematic representation of the resin transfer moulding (RTM) process.

RTM provides good surface quality, repeatability, and reduced void content compared to open mould processes. This manufacturing route reflects current industrial practice and imposes practical constraints on laminate thickness, fibre routing, and material combinations—ensuring that the resulting prototype remains representative of frames that could realistically be produced at scale.

Together, the selected material system and the manufacturing process define not only the structural behaviour of the prototype but also the physical conditions through which riders interact with the frame. The selection of fibres, the configuration of the laminates and the composition of the surface material directly influence the response to vibration, the visual appearance, and the legibility of the material. These characteristics shape how the bicycle is experienced, interpreted, and trusted by riders during real-world use.

2.2 Stiffness Testing as Experiential Reference

Mechanical testing was used to support the design-through-making process by establishing a quantitative performance reference against which rider experience, perception, and trust could be interpreted. Rather than serving as an exhaustive certification, stiffness tests were used to ensure that the prototype exhibited structural behaviour consistent with high-performance gravel bicycle frames, thereby enabling a meaningful interpretation of rider feedback.

In bicycle design, stiffness is a key parameter that links structural performance to rider experience. The stiffness of the bottom bracket (BB) is commonly associated with perceived pedalling efficiency and responsiveness, while the stiffness of the head tube (HT) influences steering precision, stability, and confidence. As such, stiffness values provide a measurable reference for understanding how riders perceive control, feedback, and overall ride quality during use.

In this study, the stiffness of BB and HT in the manufactured prototype was evaluated and compared with the predictions of the finite element method (FEM). This combined experimental–numerical approach served two purposes: first, to verify that the prototype fell within established industry-relevant stiffness ranges; and second, to provide a reference framework for relating rider perceptions

365 to known structural characteristics. By situating the prototype within these ranges, rider responses could be interpreted relative to
 366 familiar performance benchmarks rather than as isolated impressions.

367 Although comprehensive frame qualification typically includes fatigue, impact, and additional static tests—often defined within
 368 DIN EN ISO 4210-6 [21] these were not experimentally reproduced within the scope of this work. Instead, selected ISO 4210-6 load
 369 cases were evaluated using FEM simulations to assess structural safety under representative extreme and long-term use conditions.
 370 This approach reflects common early-stage industrial practice, in which simulation is used to screen feasibility and contextualise
 371 physical tests prior to full certification.

372 Stiffness was evaluated using a widely adopted industry methodology based on controlled load application and displacement
 373 measurement. Two stiffness parameters were considered:

- 375 • Head Tube (HT) stiffness, representing resistance to torsional deformation during steering;
- 376 • Bottom Bracket (BB) stiffness, representing resistance to lateral deformation under pedalling loads.

377 In both cases, stiffness was defined as the ratio between applied force F and measured displacement U ,

$$378 \quad c = \frac{F}{U},$$

381 with replicated experimental configurations in the FEM environment to ensure comparability [5].

383 By establishing the prototype within established stiffness metrics commonly used in the bicycle industry, this testing framework
 384 provides a shared mechanical reference for comparison with other frames. This provides a mechanical reference against which rider
 385 perceptions, collected later in the study, can be interpreted. In doing so, stiffness measurements allow subjective riding experience to
 386 be discussed not only qualitatively but also in relation to established stiffness ranges, supporting the interpretation of how material
 387 and manufacturing choices influence both measurable performance and perceived ride quality.

389 2.3 Simulation as a Design Support Tool

391 FEM simulations were used as an exploratory design support tool within the design-through-making process to assess material
 392 feasibility and ensure rider safety prior to physical manufacturing. Rather than aiming for laminate optimisation or complete structural
 393 validation, simulations were used to compare the relative behaviour of different composite material systems under consistent loading
 394 conditions derived from ISO 4210-6.

395 This use of simulation enabled a reduction of the material design space before physical prototyping, allowing potentially unsafe or
 396 unsuitable material configurations to be identified and excluded early. In this sense, FEM functioned as a decision-support instrument
 397 that guided material and lay-up choices, ensuring that only configurations expected to fall within safe and rideable performance
 398 ranges were taken forward to fabrication.

400 The simulations were conducted using a simplified representation of the frame that captured the dominant structural behaviour
 401 relevant to the comparison of the material. Identical boundary conditions and load magnitudes were applied in all material configurations
 402 so that observed differences could be attributed to material choice rather than modelling assumptions. Selected ISO 4210-6 static load
 403 cases were used to represent extreme and long-term use conditions that could pose safety risks if not adequately considered prior to
 404 manufacturing.

405 By providing a consistent mechanical reference across candidate material systems, FEM simulations supported the development of
 406 a safe, rideable prototype and reduced the risk associated with introducing alternative fibres into a load-bearing bicycle frame. This
 407 simulation-based screening established a mechanical baseline against which subsequent physical testing and rider experience could be
 408 meaningfully interpreted.

411 2.4 Prototype Configuration and Frame Geometry

412 The prototype was manufactured in a size 54 configuration, corresponding to a mid-range frame size commonly used as a reference in
 413 bicycle development and prototyping. This size typically accommodates riders with heights of approximately 170–180 cm and is often
 414 the first geometry produced when evaluating new frame concepts, materials, or manufacturing processes. Selecting this size ensured

417 compatibility with the majority of participants in the riding study, allowing differences in perception and experience to be primarily
 418 attributed to material and manufacturing choices rather than to geometry-related variation.
 419

420 2.5 Manufacturing Constraints and Material Configuration

421 The initial design intent was to explore a frame configuration in which one carbon layer would be replaced by multiple vegetal fibre
 422 layers, allowing a more substantial integration of sustainable materials. However, this approach proved to be incompatible with the
 423 practical requirements of producing a safe and rideable prototype. Increasing the thickness of the laminate would have required new
 424 mandrels and geometry modifications, introducing uncertainty in both structural behaviour and safety of the rider.
 425

426 To balance material exploration with the need for a reliable and interpretable riding experience, vegetal fibres were therefore
 427 integrated as an additional outer layer while retaining the existing carbon-based structural lay-up. This configuration allowed the use
 428 of established filament-winding tooling and ensured predictable structural behaviour, while still allowing investigation of how vegetal
 429 fibres influence aspects of the riding experience. Previous studies indicate that placing vegetal fibres on the outer surface can enhance
 430 damping behaviour, making this configuration particularly relevant to examine vibration perception without compromising structural
 431 integrity [16].
 432

433 The rear triangle was left unchanged due to tooling and process constraints, as its components are manufactured as a single
 434 integrated assembly. Modifying this region would have required a complete redesign of the tooling and curing procedures, which
 435 would have introduced additional variables not related to the focus of the study material. By keeping the rear triangle unchanged, the
 436 study maintained a stable reference structure, supporting a clearer interpretation of rider feedback.
 437

438 The material system investigated in this study comprises carbon, basalt and vegetal fibres, in accordance with the scope defined in
 439 RQ1. Carbon fibre was used as a structural reference material due to its widespread adoption in high-performance bicycle frames.
 440 Basalt fibres were selected for their intermediate mechanical properties and lower energy embodied compared to carbon. Within the
 441 category of vegetal fibres, flax was used in the physical prototype because of its availability in consistent, continuous rovings suitable
 442 for reliable filament winding. Hemp, while relevant from a sustainability and regional perspective, was therefore considered only at a
 443 numerical level.
 444

445 The material properties used for the numerical evaluation were derived from supplier data and established literature. Rather than
 446 aiming for precise material characterisation, these properties were used to enable consistent comparison across material systems.
 447 The composite properties were estimated using standard analytical approaches and applied uniformly throughout the simulations to
 448 support the relative assessment of the behaviour of the material. Detailed material data and calculation procedures are provided in the
 449 supplementary material.
 450

451 In general, the selected hybrid flax–carbon configuration represents a deliberate design compromise. It enabled the fabrication
 452 of a safe and rideable artefact while preserving the opportunity to study how the partial integration of vegetal fibres influences the
 453 mechanical response, vibration behaviour, and perception of the rider under real riding conditions.
 454

455 2.6 Results of Stiffness Test

456 Physical stiffness tests were conducted on the bottom bracket (BB) and head tube (HT) to establish a mechanical reference to interpret
 457 rider experience and to verify that the manufactured prototype behaved consistently with expectations derived from the previous FEM
 458 screening. The average stiffness values measured were 175 N/mm in the BB and 27.5 N/mm in the HT, with low variability between
 459 repeated measurements.
 460

461 These values fall within the ranges commonly reported for contemporary gravel bicycle frames. BB stiffness values are typically
 462 reported between approximately 160 N/mm to 200 N/mm, while HT stiffness values generally fall between 25 N/mm to 30 N/mm.
 463 The measured values therefore place the prototype within the established performance envelope of this category.
 464

465 The integration of a flax outer layer did not result in stiffness values outside these expected ranges. Although the total frame mass
 466 increased by approximately 250 g, the stiffness of BB and HT remained comparable to those reported for conventional carbon gravel
 467 frames, indicating that the hybrid configuration did not introduce atypical structural behaviour.
 468

469 The measured stiffness values showed moderate deviations from the FEM predictions, reflecting the expected differences between
470 the simplified numerical models and the manufactured composite structures. Therefore, FEM was used to support comparative material
471 assessment and structural safety screening rather than to predict absolute stiffness values.

472 Overall, the measured stiffness results situate the hybrid flax–carbon prototype within a mechanically familiar range for gravel
473 bicycle frames. This establishes a stable reference condition for the subsequent riding study, allowing rider perceptions to be interpreted
474 relative to known structural behaviour rather than being influenced by unexpected or safety-critical deviations in frame stiffness.
475

476 2.7 Design Implications

477 FEM simulations were used to explore the feasibility of vegetal, mineral, and hybrid composite material systems using high-performance
478 bicycle frames as a reference case. High-performance frames impose particularly stringent requirements on stiffness, weight, and
479 structural safety, making them a suitable stress case for evaluating the limits of alternative composite materials. The results indicated
480 that purely vegetal-fibre configurations would require either increased laminate thickness or extensive hybridisation to achieve
481 stiffness and safety levels comparable to conventional carbon-based references. Such thickness increases were not compatible with
482 existing filament-winding tooling and would have introduced uncertainties related to manufacturability, structural behaviour, and
483 rider safety.

484 In contrast, hybrid configurations demonstrated that partial integration of vegetal fibres—when combined with stiffer reinforcements—
485 could approach the mechanical performance of carbon frames while remaining within established geometric and safety
486 constraints. These findings directly informed the decision to limit vegetal-fibre integration in the physical prototype to a single flax
487 layer, rather than pursue a full or multi-layer substitution.

488 The position of flax as an outer layer was a deliberate design choice. The results of FEM and previous experimental studies
489 indicate that the placement of the outer-layer allows vegetal fibres to contribute to vibration damping and surface compliance without
490 significantly altering global frame stiffness. In particular, previous work has shown that when flax is used as an external layer, the
491 damping ratio can increase by 53.6% with a single flax layer and up to 94% with two outer flax layers [16].

492 On this basis, the integration of a single flax outer layer was considered sufficient to introduce a meaningful increase in vibration
493 damping likely to be perceptible to riders, while avoiding the increased laminate thickness, mass, and manufacturing risk associated
494 with multiple vegetal layers. Placing flax as the outermost ply primarily targets material properties relevant to rider comfort and
495 vibration perception—specifically increased internal damping, reduced high-frequency vibration transmission, and altered surface
496 compliance—while preserving a familiar and predictable global stiffness response consistent with high-performance gravel bicycle
497 frames.

498 On this basis, flax fibres were selected as vegetal reinforcement for the prototype, balancing mechanical feasibility, manufacturing
499 reliability, and experiential relevance. The FEM study was not used to optimise the laminate architecture, but rather to define a safe
500 and realistic design envelope within which user perception, comfort, and acceptance could be meaningfully studied. By limiting flax
501 integration to a single outer layer, the prototype remained representative of a high-performance gravel bicycle configuration that
502 riders could plausibly encounter, rather than an experimental structure with atypical stiffness characteristics.

503 Beyond rider experience, the results also suggest broader implications for composite manufacturing practice and occupational
504 health. Partial substitution of carbon fibres with vegetal fibres can reduce the extent of carbon fibre handling during winding, trimming,
505 sanding, and finishing operations. Carbon fibres are associated with well-documented occupational health concerns, particularly
506 related to the release of fine filament fragments and respirable airborne dust during cutting, machining and post-processing. Prolonged
507 exposure to such particulates has been associated with skin irritation, respiratory discomfort, and the need for stringent protective
508 measures in composite manufacturing environments.

509 Although worker exposure was not directly quantified in this study, the integration of vegetal fibres—particularly when placed as
510 outer layers—suggests a potential reduction in direct contact with carbon fibres during downstream manufacturing steps. Vegetal
511 fibres generally break down into larger and less respirable particles and exhibit different fragmentation behaviour during machining,
512 which can reduce the generation of fine airborne debris. As such, hybrid laminate configurations that limit the exposure of carbon
513 fibre on the surface could contribute to improved working conditions while remaining compatible with existing industrial processes.

521 These considerations point to an additional, often overlooked dimension of sustainability in composite bicycle manufacturing,
 522 which extends beyond material sourcing and environmental impact to include worker safety and production ergonomics. More
 523 targeted investigation would be required to quantitatively assess exposure levels and validate these potential benefits.

524 Together, these findings highlight that material choices in a design-by-design context extend beyond structural performance alone.
 525 Decisions about the extent and placement of vegetal fibres influence rider comfort, perceptual qualities, and trust, while also shaping
 526 manufacturing conditions and occupational safety. Sustainable material integration should therefore be understood as a socio-technical
 527 design challenge, linking user experience, production practice, and environmental responsibility.

530 3 USER PERCEPTION STUDY

531 A user study investigated how riders perceive the hybrid carbon–flax frame under real riding conditions. Subjective evaluations of
 532 comfort, stiffness, confidence, and overall ride quality were combined with objective ride and vibration measurements to contextualise
 533 the user experience. The inclusion of sensor-based data was intended to support, rather than replace, riders’ self-reported perceptions
 534 by linking felt ride qualities with measurable on-road behaviour. The study was conducted around Eindhoven, the Netherlands and
 535 Düsseldorf Germany between 27 October 2025 and 30 November 2025.

536 3.1 Method

537 *3.1.1 Participants.* A total of 13 experienced cyclists participated in the user tests. Eight participants were recruited from Squadra
 538 Veloce team of Eindhoven University of Technology (<https://www.squadraveloce.nl>), and five participants were recruited through
 539 personal networks. The ages of the participants ranged from 19 to 54 years, with a median age of 22 years ($M = 29.3$, $SD = 12.8$). The
 540 group consisted of nine male and four female riders.

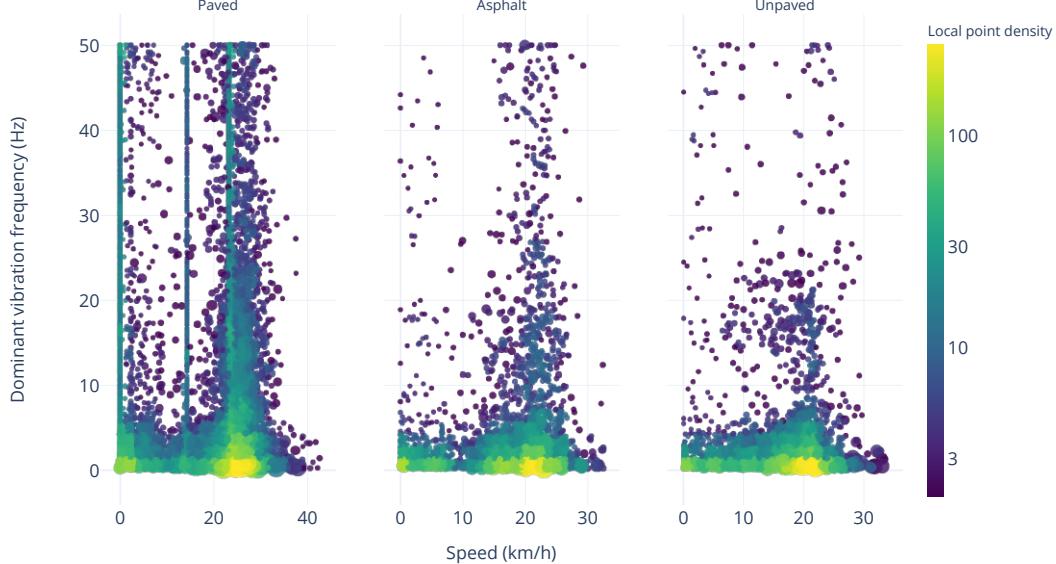
541 The heights of the participants ranged from 171 cm to 185 cm, with a median height of 178 cm ($M = 178.2$ cm, $SD = 4.8$ cm). The
 542 heights of the male participants’ ranged from 171 cm to 185 cm, with a median height of 180 cm ($M = 180.0$ cm, $SD = 4.7$ cm). The
 543 heights of the female participants’ ranged from 171 cm to 178 cm, with a median height of 174.5 cm ($M = 174.5$ cm, $SD = 2.9$ cm).

544 The cycling frequency during the last 12 months was generally high. Six participants cycled 1 to 3 days per week, five cycled 4
 545 to 6 days per week, and one participant reported cycling every day. The self-rated cycling experience was high, with a mean score
 546 of 4.08 out of 5 ($SD = 0.86$). The annual distance covered varied widely. Five participants rode between 1 and 1,000 km per year,
 547 three rode 1,001 to 5,000 km, four rode 5,001 to 15,000 km, and one participant exceeded 20,000 km. The majority of the riders mainly
 548 used the road bicycle (7 participants) and the mountain bicycle (7 participants), with gravel riding also common (5 participants).
 549 Familiarity with frame materials showed a moderate mean score of 3.38 out of 5 ($SD = 1.04$), indicating that most of the participants
 550 had at least some understanding of the differences between aluminium, carbon, steel, and composite constructions. The cost of the
 551 current primary bicycles of the participants ranged widely, with most between €1,000 and €5,000, and two more than €7,500. Most of
 552 the participants reported bicycle weights between 7 kg and 9 kg (9 out of 12 valid responses). Specifically, four participants reported
 553 weights between 7~8 kg, five between 8~9 kg, and two between 9~10 kg. One participant reported a bicycle weight above 10 kg, and
 554 one participant indicated that they did not know the weight. When asked about factors that influence frame choice, participants rated
 555 stiffness, comfort, durability, handling, and weight as the most important considerations, while sustainability and cost showed more
 556 varied responses. This suggests that the sample consisted of riders who were performance-orientated but still aware of material and
 557 environmental aspects, making them well suited to evaluate the mechanical and perceptual qualities of a hybrid carbon–flax gravel
 558 frame.

559 *3.1.2 Procedure and the Bicycle Setup.* Before the riding session, each participant completed a pre-test questionnaire to collect
 560 information on cycling experience, preferred riding style, and familiarity with different frame materials. These questions were adapted
 561 from the work of Bazilinsky et al. [6]. After this stage, each participant received the test bicycle, which was equipped with a set of
 562 instruments for data collection. The study received ethical approval from the Ethics Review Board of the Eindhoven University of
 563 Technology, and all participants gave their informed consent prior to participation.

573 A Garmin Edge 540 Solar bicycle computer was mounted on the handlebar to record riding data during the study. The device logged
 574 speed, route, elevation, ambient temperature, and gear-shift events using its integrated multi-band GNSS (GPS) satellite positioning
 575 system. Data were recorded at a temporal resolution of approximately one sample per second, using the device's default recording
 576 settings. Road surface types were also captured through the recorded GPS track and subsequently classified during post-processing. In
 577 addition, a Samsung Galaxy S10+ smartphone was rigidly mounted to the handlebars to record vibrations experienced during the ride
 578 using its internal accelerometer, along with time and GPS data. Vibration signals were recorded at the maximum available sampling
 579 rate of 122 Hz using the Sensor Logger application, ensuring sufficient temporal resolution to capture road-induced vibration content
 580 during real-world riding. The bicycle was assembled with a Selle Italia Novus Boost Evo Superflow 145 saddle, an Apto Stealth 80mm
 581 stem, and an Aereogliaia Integrale carbon handlebar. The drivetrain used an SRAM Rival AXS 2022 wireless electronic groupset with
 582 hydraulic disc brakes and a 1x drivetrain configuration consisting of a 40-tooth chainring and a 10–44 cassette. The wheels were
 583 Fulcrum Rapid Red 900 paired with Continental Race King 29",x,2.0 new tyres, providing a reliable balance between traction and
 584 rolling resistance for mixed-surface testing. The total weight of the bicycle used for user testing, including Shimano SPD pedals, was
 585 8.5 kg.
 586

587 All participants received a certified Massi helmet and received a short safety briefing before starting the test. The briefing emphasised
 588 that the ride would take place in a real-world traffic environment and that participants were required to comply with all applicable
 589 traffic regulations at all times, as the study did not involve racing or competitive riding. Each rider was allowed to choose their
 590 own route to replicate realistic cycling conditions ?? . The recorded routes were anonymised after data collection for the purpose
 591 of submission. Upon completion of the ride, participants completed a post-test questionnaire to evaluate their perceived comfort,
 592 stiffness, and overall riding experience.
 593



616 Fig. 6. User testing session conducted on unpaved terrain to evaluate rider perception, comfort, and vibration response under real
 617 riding conditions.
 618

619
 620 After the ride, all participants were required to complete a post-test questionnaire, which included questions about the frame and
 621 the bicycle setup, as well as items that focused on their overall riding experience. See supplementary material 5 for the materials used
 622 in the study.
 623

625 3.1.3 *Data Analysis.* A Python script was used to synchronise Garmin activity data with smartphone accelerometer recordings, 626 allowing vibration, speed, and road-surface conditions to be analysed on a shared timeline. Signal filtering and peak-detection 627 techniques were applied to extract dominant vibration frequencies and root mean square (RMS) acceleration values, which provide a 628 measure of the overall magnitude of vibration experienced over each road segment. The responses of the questionnaire were then 629 merged with the performance data to allow a comparison between the behaviour of the objective frame and subjective perceptions of 630 the users. The analysis script is provided in the supplementary material (see Section 5). 631

632 3.2 **Results** 633

658 Fig. 7. Dominant vibration frequency versus cycling speed across different surface types. Individual points represent vibration events, 659 with colour indicating local point density.

660 Across all recorded routes, the cyclists covered a total distance of 352.89 km. The distribution of road-surface types indicates that 661 the majority of riding occurred on paved surfaces (133.06 km, 37.7%) and asphalt (121.84 km, 34.0%), followed by unpaved terrain 662 (67.43 km, 19.1%). The smaller portions of the distance were classified as unknown (18.94 km, 5.4%) or natural surfaces (11.62 km, 3.3%). 663

664 Anonymised results are available in the supplementary material 5. The overall average cycling speed among all participants was 665 19.5 km/h, with a recorded maximum instantaneous speed of 43.9 km/h. Elevation changes during the rides were minimal, with a 666 total elevation gain of 15.2 m and a total elevation loss of 78.8 m. On average, each ride resulted in an elevation gain of 1.2 m and a 667 elevation loss of 6.1 m. The mean ambient temperature recorded during the rides was 8.7 °C, with a minimum of -1.0 °C and a 668 maximum of 26.0 °C. The unusually high maximum temperature is likely attributable to the start of certain rides that take place 669 indoors, before participants move outdoors. 670

671 To contextualise riders' comfort and stiffness evaluations, vibration behaviour was analysed across surface types and speeds 672 encountered during the rides. Figure 7 illustrates the relationship between cycling speed and dominant vibration frequency across all 673 participants, with data separated by surface type. Individual vibration events are plotted as points, with colour intensity indicating the 674 local density of observations in the speed–frequency space. Across all surfaces, the majority of vibration events cluster within the 675 10–30 km/h range and 10–50 Hz frequency range. 676

677 2–20 Hz range at typical riding speeds of approximately 15–30 km/h, corresponding to the frequency band most perceptible to cyclists.
 678 Paved and asphalt surfaces exhibit a higher concentration of low-frequency vibrations with a relatively narrow spread, reflecting
 679 smoother and more consistent riding conditions. In particular, the data on the pavement surface reveal distinct vertical clusters at
 680 specific frequencies that remain largely constant across a wide range of cycling speeds. The appearance of these discrete frequency
 681 bands is consistent with the finite frequency resolution of the windowed Fourier analysis applied under relatively steady-state riding
 682 conditions, particularly on paved surfaces. Under such conditions, dominant vibration components are repeatedly assigned to the
 683 same frequency bins, leading to visible clustering in the speed–frequency space. Although system-level resonant behaviour cannot be
 684 fully excluded, the observed pattern is likely influenced by signal-processing characteristics rather than by speed-dependent structural
 685 excitation.
 686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

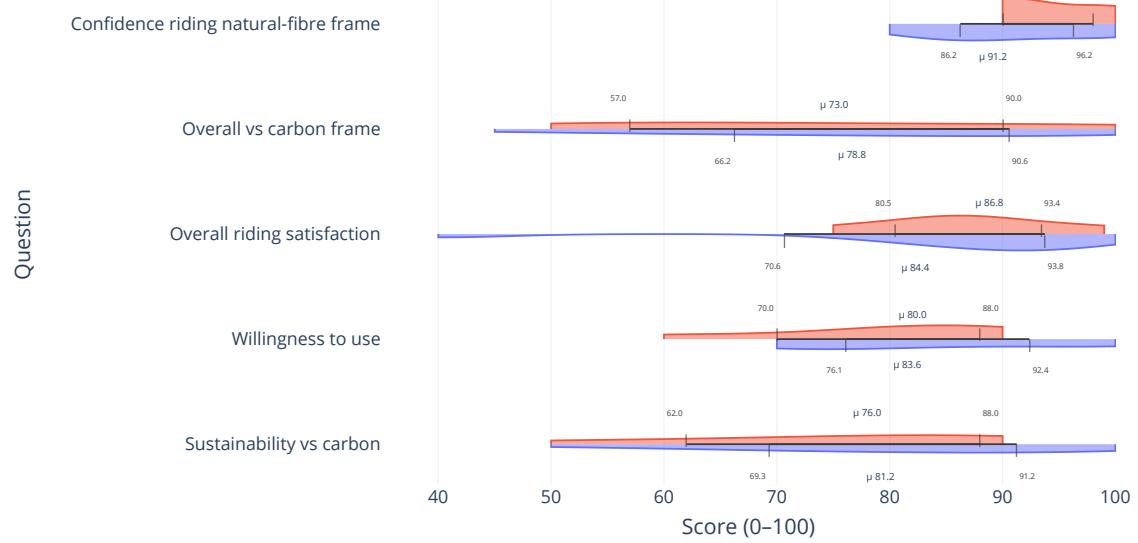
702

703

704

705

706


707

708

709

710

711

712 Fig. 8. Ratings for sustainability, willingness to use, satisfaction, performance compared to carbon, and confidence riding the frame,
 713 split by whether a fibre-related difference was perceived.

714

715 The results of the user tests indicate that the hybrid carbon flax frame delivered a riding experience that participants generally rated
 716 as equal to or better than that of their usual bicycles. Comfort on smooth surfaces received consistently high scores, while comfort on
 717 rough terrain showed greater variation but remained overall positive. Stiffness and responsiveness were positively evaluated, and
 718 riders reported stable handling during steering, cornering, braking, and acceleration. When asked to compare the prototype with a
 719 conventional carbon frame, most of the participants placed their ratings slightly above the “equal performance” midpoint, suggesting
 720 that the incorporation of vegetal fibres did not reduce perceived performance and may even have been interpreted as an improvement.
 721 Sustainability and innovation were highly rated throughout the sample and appeared to contribute positively to overall impressions.
 722 In the post-test questionnaire, the willingness-to-pay values centred around €4,000, aligning with expectations for a mid- to high-end
 723 gravel bicycle and indicating that the concept was viewed as commercially viable. In general, the prototype met user expectations for
 724 comfort, stiffness, and ride quality while fostering a positive perception of its sustainable material composition.
 725

726

727 The average perceived weight score was 8.8 out of 10, indicating that most of the participants considered the frame relatively light.
 728 The scores were generally consistent among the participants, with the exception of one notably low score (1.5). This outlier is likely

729 attributable to a misunderstanding of the question, as the participant may have interpreted it as referring to absolute frame mass
 730 rather than to a subjective assessment of perceived lightness.

731 Figure 8 provides more insight into how material perception shapes user evaluation. Participants who reported perceiving a
 732 fibre-related difference in the frame consistently gave higher ratings on measures of sustainability, willingness to use the frame, overall
 733 satisfaction, and confidence while riding. Importantly, this effect was observed despite the vegetal fibre being present only as a single
 734 outer layer, suggesting that the user's evaluation was not driven by the quantity of sustainable material, but rather by its visibility,
 735 meaning and perceived intent. In contrast, participants who did not perceive a material difference showed lower and more variable
 736 ratings, indicating weaker engagement with the material narrative.

737 Together, these findings suggest that user satisfaction and adoption potential are influenced not only by mechanical performance,
 738 but also by how material choices are perceived, interpreted, and trusted. Even limited integration of sustainable fibres can positively
 739 shape willingness to use and perceived value, demonstrating that material meaning plays a significant role in user experience alongside
 740 measurable ride qualities.

741 4 DISCUSSION

742 This study was set out to examine whether sustainable fibres, specifically flax, hemp and basalt, could be integrated into a high-
 743 performance gravel bicycle frame using filament winding and RTM, and how this approach compares with conventional carbon fibre
 744 construction. Rather than treating sustainability as a purely material substitution problem, the study combines numerical simulation,
 745 manufacturing constraints, and rider evaluation to assess feasibility within a realistic industrial production context.

746 FEM simulations and subsequent physical testing indicated that sustainable fibre composites can achieve stiffness behaviour
 747 comparable to conventional carbon frames when designed within appropriate structural and manufacturing constraints. While
 748 purely vegetal or mineral laminates would require substantially increased thickness to reach the stiffness levels associated with
 749 high-performance gravel frames—introducing manufacturing and experiential trade-offs—hybrid configurations combining flax with
 750 carbon offered a more viable balance between structural performance and material substitution [25].

751 Upon confirmation that the manufactured prototype fell within the established stiffness ranges of BB and HT, the simulation and
 752 testing phase established a stable mechanical baseline for the riding study. This ensured that rider perceptions of comfort, vibration
 753 behaviour, and overall ride quality could be interpreted without confounding effects arising from atypical stiffness. In this sense,
 754 simulation functioned not only as a feasibility check but as an enabling step for meaningful user evaluation, supporting the integration
 755 of sustainable fibres through a design-through-making approach (RQ1), in line with the prior work by Amiri et al. [3].

756 Manufacturing constraints further shaped the prototype configuration in ways that directly influenced user evaluation. The existing
 757 3T filament-winding process could integrate flax only as an outer layer without requiring new mandrels, redesigned joints, or modified
 758 winding paths. This constraint informed the decision to limit the integration of vegetal fibres to a single outer layer, preserving
 759 predictable structural behaviour while targeting vibration damping and perceptual qualities most relevant to riders. As a result, the
 760 prototype remained representative of a high-performance gravel bicycle that users could plausibly encounter, strengthening the
 761 validity of the riding study and supporting the scalability considerations addressed in (RQ4).

762 The physical stiffness tests of the prototype confirmed that the integration of flax, even in limited quantities, does not compromise
 763 structural performance. Based on the test loads applied, the derived stiffness values were approximately 175 N/mm in the lower bracket
 764 and 27.5 N/mm in the head tube, which fall within the range typically reported for high-performance carbon gravel frames. Differences
 765 between stiffness values predicted by simulation and those measured experimentally reflect expected modelling limitations, particularly
 766 simplified joint representations and the inherent variability of natural-fibre composite lay-ups. Importantly, these differences were not
 767 substantial enough to alter the overall stiffness behaviour of the frame, establishing a stable mechanical baseline for the evaluation of
 768 the rider and supporting the feasibility of the design-through-making approach (RQ1).

769 Although flax is often associated with improved damping behaviour, the vibration analysis conducted in this study did not reveal
 770 a clear improvement at the system level (RQ2). The overall vibration response experienced by the riders was likely dominated
 771 by the tyres, wheels, and contact points of the rider, masking any subtle frame-level effects introduced by the flax layer. Previous
 772 material-focused studies showing that externally placed flax layers can increase damping ratios at the component level by up to
 773

53.6% [16]. Thus, study highlights a critical insight for user experience: material-level performance gains do not necessarily translate into perceptible differences during real-world riding. For riders, acceptance and positive evaluation appear to depend less on measurable damping improvements and more on perceived ride stability, confidence, and trust in the artefact.

Despite the fact that the integration of flax did not reduce the overall amount of petroleum-based carbon fibre in the frame, cyclists evaluated the hybrid carbon–flax prototype positively. Comfort, perceived stiffness, handling, and overall ride quality received favourable ratings, with riders consistently describing the prototype as comparable to or better than their usual bicycles. These findings directly address **RQ2**, demonstrating that the inclusion of sustainable fibres—even when applied as an additive rather than a substitutive layer—does not negatively affect rider satisfaction or confidence.

Importantly, the results do not suggest that the prototype constitutes a fully sustainable alternative to conventional carbon frames. Rather, they indicate that partial integration of vegetal fibres can be achieved without compromising rider experience, thereby lowering barriers to future material substitution. Participants who reported perceiving a material-related difference tended to evaluate the frame more positively overall, suggesting that the rider experience is shaped not only by physical sensations but also by material awareness, expectations, and value alignment. This finding links perceptual outcomes to both **RQ2** and **RQ3**, highlighting the role of material legibility and trust as mediating factors in how sustainability-oriented material choices are interpreted in use.

From an industrial perspective, these results suggest that meaningful progress towards more sustainable composite frames does not necessarily require immediate or complete substitution of carbon fibres. Instead, partial integration of vegetal fibres can serve as a low-risk entry point that preserves familiar performance characteristics while allowing manufacturers to explore alternative materials within existing production systems. This approach offers strategic flexibility: material compositions can be incrementally adapted in response to supply availability, regulatory pressure, or sustainability targets, without requiring fundamental changes to tooling or manufacturing infrastructure.

From a commercial standpoint, such incremental integration can also help limit upfront investment and process risk compared to full material substitution, potentially mitigating the cost volatility associated with carbon fibre supply and allowing manufacturers to experiment with alternative fibres without committing to wholesale changes in production.

The frame mass further connects user acceptance with market feasibility. The total mass of the bicycle was approximately 8.5 kg (± 100 g), with the frame alone weighing approximately 1.2 kg (± 50 g), representing a modest increase compared to typical high-end carbon gravel frames. From a user perspective, participants did not report that the frame was noticeably heavier and were generally able to estimate its weight accurately, indicating that this increase did not negatively affect perceived quality or satisfaction (**RQ2**). Willingness-to-pay values remained aligned with expectations for the mid- to high-end gravel bicycle segment, suggesting that riders viewed the sustainable material choice as acceptable and commercially viable rather than as a compromise.

Taken together, these results indicate that the hybrid carbon–flax frame is suitable for real-world riding and use within its intended performance category. Although the sustainability contribution of the prototype lies in partial rather than complete material substitution, the findings demonstrate that such transitional material strategies can be implemented without undermining user acceptance, perceived value, or functional performance. In this sense, the prototype represents a viable step towards more sustainable composite bicycle frames that balances immediate usability with longer-term material transition goals, directly addressing **RQ4**.

4.1 Limitations and Future Work

Methodologically, the study was conducted under real-world riding conditions, which inevitably introduced external variables such as weather, road-surface variability, wind state, tyre pressure, and route choice. Although these factors limited experimental control, they also reflect the contexts in which gravel bicycles are typically used. The reliance on smartphone-based sensors constrained the isolation of frame-level damping behaviour; however, this setup supported an ecologically valid evaluation of rider experience. More controlled and instrumented testing protocols could complement this approach in future work, particularly where the objective is to isolate subtle vibration effects under repeatable conditions.

Participant recruitment was intentionally broad due to the limited number of participants that could be recruited within the scope of the study, and no prior selection was applied based on competitive or professional cycling background. Although a larger sample size and a more granular classification of participants would improve statistical power and allow subgroup analyses, the resulting

833 participant profile aligns with the intended user base of gravel bicycles, which spans recreational, enthusiast and semi-performance
834 riders, rather than elite competitors. Although the relatively small sample size ($N = 13$) limits the generalisability of the findings, it
835 remains appropriate for an exploratory design-through-making study focused on user perception and early indications of market
836 relevance, supporting the evaluation of commercial feasibility addressed in **RQ4**.

837 From a commercial perspective, willingness-to-pay results should be interpreted as indicative rather than predictive. The values
838 reported in the post-test questionnaire clustered around €4,000, consistent with expectations for the premium gravel-bicycle segment.
839 These responses reflect perceived value under test conditions rather than confirmed purchasing behaviour. Nevertheless, the absence of
840 resistance to vegetal fibres and the positive association with sustainability provide insight into how users frame value and acceptability
841 when evaluating alternative material choices, informing the interpretation of **RQ4**.

842 The research also highlighted the practical constraints inherent to the early-stage design-through-making. The degree of integration
843 of flax in the prototype was primarily limited by existing tooling rather than material capability, while vibration measurements
844 were constrained by consumer-grade sensing and uncontrolled test conditions. Similarly, FEM simulations relied on simplified joint
845 representations, which are appropriate for comparative assessment but limit absolute predictive accuracy for natural-fibre composite
846 structures. These constraints do not undermine the feasibility of the approach; rather, they define the current scope and resolution of
847 the investigation and point directly to avenues for future development.

848 One notable limitation is the absence of a complete life-cycle assessment (LCA) of the proposed material system. Although vegetal
849 and mineral fibres are often associated with lower embodied energy and improved environmental profiles compared to synthetic
850 carbon fibres, these aspects were not quantified in this study. Factors such as laminate thickness, resin content, manufacturing
851 energy, tooling requirements, durability, and end-of-life treatment may significantly influence overall environmental performance.
852 Consequently, sustainability claims should be interpreted qualitatively, focussing on material potential and design flexibility rather
853 than quantified environmental benefit. Future work should therefore prioritise a comprehensive LCA to enable a more rigorous
854 evaluation of environmental impact.

855 Looking ahead, further work could expand the role of vegetal and mineral fibres through redesigned laminate architectures
856 that strategically increase the flax content while maintaining the target stiffness and strength. Achieving this would require the
857 development of new mandrels and filament-winding paths capable of accommodating thicker or more complex lay-ups, enabling deeper
858 material substitution within industrially relevant manufacturing systems. More advanced experimental testing—such as professional
859 tri-axial accelerometry, controlled tyre-pressure monitoring, and laboratory-based vibration rigs—would complement real-world riding
860 evaluations by enabling clearer separation of frame-level and system-level behaviour. Long-term durability studies, including fatigue,
861 impact, and environmental ageing tests, are also essential to validate natural fibres in load-intensive cycling applications.

862 Finally, broader market-oriented studies could investigate production costs, scalability, and willingness to pay among more diverse
863 rider populations. Integrating economic modelling with LCA, mechanical testing, and user-experience data would support informed
864 decision-making for industrial adoption and further extend insights related to **RQ1** and **RQ4**.

865 5 SUPPLEMENTARY MATERIAL

866 Supplementary material containing the code, the questionnaire and anonymised experiment data is available at: <https://drive.google.com/drive/folders/1t-zu1Ldfz2wg0s3kh91LO1v7o97LXnhS>

867 ACKNOWLEDGMENTS

868 Thanks to 3T Cycle S.r.l. and Composite Jazz S.r.l. for allowing me to create this research

869 REFERENCES

870 [1] Jacob Aboudi, Steven Arnold, and Brett Bednarcyk. 2021. 2 - Lamination theory using macromechanics. In *Practical Micromechanics of Composite*
871 *Materials*, Jacob Aboudi, Steven Arnold, and Brett Bednarcyk (Eds.). Butterworth-Heinemann, 21–75. <https://doi.org/10.1016/B978-0-12-820637-9.00001-5>

872 [2] Nihan Akyelken and Hartmut Keller. 2014. Framing the Nexus of Globalisation, Logistics and Manufacturing in Europe. *Transport Reviews* 34, 6
873 (2014), 674–690. <https://doi.org/10.1080/01441647.2014.981885> arXiv:<https://doi.org/10.1080/01441647.2014.981885>

[3] Ali Amiri, Taylor Krosbakken, William Schoen, Dennis Theisen, and Chad A Ulven. 2018. Design and manufacturing of a hybrid flax/carbon fiber composite bicycle frame. *Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology* 232, 1 (2018), 28–38. <https://doi.org/10.1177/1754337117716237> arXiv:<https://doi.org/10.1177/1754337117716237>

[4] David Banister. 2008. The sustainable mobility paradigm. *Transport Policy* 15, 2 (2008), 73–80. <https://doi.org/10.1016/j.tranpol.2007.10.005> New Developments in Urban Transportation Planning.

[5] E Baumgart. 2000. Stiffness – an unknown world of mechanical science? *Injury* 31 (2000), 14–84. [https://doi.org/10.1016/S0020-1383\(00\)80040-6](https://doi.org/10.1016/S0020-1383(00)80040-6)

[6] Pavlo Bazilinskyy, Miltos Kyriakidis, and Joost de Winter. 2015. An International Crowdsourcing Study into People's Statements on Fully Automated Driving. *Procedia Manufacturing* 3 (2015), 2534–2542. <https://doi.org/10.1016/j.promfg.2015.07.540> 6th International Conference on Applied Human Factors and Ergonomics (AHFE 2015) and the Affiliated Conferences, AHFE 2015.

[7] Ralph Buehler and John Pucher. 2012. Cycling to work in 90 large American cities: new evidence on the role of bike paths and lanes. *Transportation* 39, 2 (March 2012), 409–432. <https://doi.org/10.1007/s11116-011-9355-8>

[8] Timotei Centea, Stella Hughes, Steven Payette, James Kratz, and Pascal Hubert. 2012. Scaling Challenges Encountered with Out-of-Autoclave Preprints. *Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference* (04 2012). <https://doi.org/10.2514/6.2012-1568> arXiv:<https://arc.aiaa.org/doi/pdf/10.2514/6.2012-1568>

[9] Arisara Chaikittiratana, Kerati Suwanpakpраek, Sacharuck Pornpeerakeat, Sittichai Limrungruengrat, and Joshua Dietz-Röthlingshöfer. 2019. Bicycle frame from hemp fibre filament wound composites. *Technologies for Lightweight Structures (TLS)* 3 (09 2019). <https://doi.org/10.21935/tls.v3i1.133>

[10] Kate Chilton, Marzieh Kadivar, and Hal Hinkle. 2025. From Problems to Possibilities: Overcoming Commercialization Challenges to Scale Timber Bamboo in Buildings. *Sustainability* 17, 4 (2025), 1575. <https://doi.org/10.3390/su17041575>

[11] Vivek Dhand, Garima Mittal, Kyong Yop Rhee, Soo-Jin Park, and David Hui. 2015. A short review on basalt fiber reinforced polymer composites. *Composites Part B: Engineering* 73 (2015), 166–180. <https://doi.org/10.1016/j.compositesb.2014.12.011>

[12] Rajiv Carl Dunne, Dawood A. Desai, Rotimi Emmanuel Sadiku, and J. Jayaramudu. 2016. A review of natural fibres, their sustainability and automotive applications. *Journal of Reinforced Plastics and Composites* 35 (2016), 1041 – 1050. <https://doi.org/10.1177/0731684416633898>

[13] Telmo Eleutério, Maria João Trota, Maria Gabriela Meirelles, and Helena Cristina Vasconcelos. 2025. A Review of Natural Fibers: Classification, Composition, Extraction, Treatments, and Applications. *Fibers* 13, 9 (2025), 119. <https://doi.org/10.3390/fib13090119>

[14] Issam Elfaleh, Fethi Abbassi, Mohamed Habibi, Furqan Ahmad, Mohamed Guedri, Mondher Nasri, and Christian Garnier. 2023. A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. *Results in Engineering* 19 (2023), 101271. <https://doi.org/10.1016/j.rineng.2023.101271>

[15] Tim Ellringmann, Christian Wilms, Moritz Warnecke, Gunnar Seide, and Thomas Gries. 2016. Carbon fiber production costing: a modular approach. *Textile Research Journal* 86, 2 (2016), 178–190. <https://doi.org/10.1177/0040517514532161> arXiv:<https://doi.org/10.1177/0040517514532161>

[16] George Fairlie and James Njuguna. 2020. Damping Properties of Flax/Carbon Hybrid Epoxy/Fibre-Reinforced Composites for Automotive Semi-Structural Applications. *Fibers* 8, 10 (2020), 64. <https://doi.org/10.3390/fib8100064>

[17] V. Fiore, T. Scalici, G. Di Bella, and A. Valenza. 2015. A review on basalt fibre and its composites. *Composites Part B: Engineering* 74 (2015), 74–94. <https://doi.org/10.1016/j.compositesb.2014.12.034>

[18] Emanuela Garofalo. 2017. In the Shadow of the Volcano: the Etna Region in the modern Period. *AGATHÓN / International Journal of Architecture, Art and Design* 2, online (Dec. 2017), 67–74. <https://doi.org/10.19229/2464-9309/292017>

[19] Luca Giupponi, Valeria Leoni, Matteo Carrer, Giulia Ceciliani, Stefano Sala, Sara Panseri, Radmila Pavlovic, and Annamaria Giorgi. 2020. Overview on Italian hemp production chain, related productive and commercial activities and legislative framework. *Italian Journal of Agronomy* 15, 3 (2020), 1552. <https://doi.org/10.4081/ija.2020.1552>

[20] International Energy Agency. 2024. *CO₂ Emissions in 2023: Highlights from Fuel Combustion*. IEA Report. International Energy Agency. <https://www.iea.org/reports/co2-emissions-in-2023> Accessed: 2025-06-11.

[21] International Organization for Standardization. 2014. *ISO 4210-1:2014. Cycles – Safety requirements for bicycles – Part 1: Terms and definitions*. Technical Report. International Organization for Standardization, Geneva, CH. <https://www.iso.org/standard/59908.html>

[22] Paolo Magaidda. 2025. How does innovation arise in the bicycle sector? The users' role and their betrayal in the case of the 'gravel bike'. *Prometheus* 40 (03 2025). <https://doi.org/10.13169/Prometheus.40.2.0092>

[23] Paolo Magaidda. 2025. How does innovation arise in the bicycle sector? The users' role and their betrayal in the case of the 'gravel bike'. *Prometheus* 40, 2 (2025), 92–107. <https://doi.org/10.13169/Prometheus.40.2.0092>

[24] Saptarshi Maiti, Md Rashedul Islam, Mohammad Abbas Uddin, Shaila Afroj, Stephen J. Eichhorn, and Nazmul Karim. 2022. Sustainable Fiber-Reinforced Composites: A Review. *Advanced Sustainable Systems* 6, 11 (2022), 2200258. <https://doi.org/10.1002/adsu.202200258> arXiv:<https://advanced.onlinelibrary.wiley.com/doi/pdf/10.1002/adsu.202200258>

[25] Manzar Masud, Aamir Mubashar, Emad Uddin, Zaib Ali, and Adnan Tariq. [n.d.]. Investigation of Compression, Impact and Post-impact Behavior of Carbon/Flax Bio-hybrid Laminates: Effects of Stacking Sequence and Fiber Hybridization. 26, 9 ([n. d.]), 4115–4132. <https://doi.org/10.1007/s12221-025-01072-2>

[26] Alan McKinnon. 2007. *CO₂ Emissions from Freight Transport*. Commission for Integrated Transport Report. OECD/ECMT Joint Transport Research Centre. <https://www.itf-oecd.org/sites/default/files/docs/07cuttingco2.pdf>

937 [27] Natalie Mueller, David Rojas-Rueda, Tom Cole-Hunter, Audrey de Nazelle, Evi Dons, Regine Gerike, Thomas Götschi, Luc Int Panis, Sonja Kahlmeier,
938 and Mark Nieuwenhuijsen. 2015. Health impact assessment of active transportation: A systematic review. *Preventive Medicine* 76 (2015), 103–114.
939 <https://doi.org/10.1016/j.ypmed.2015.04.010>

940 [28] Andre Neves and Christian Brand. 2019. Assessing the potential for carbon emissions savings from replacing short car trips with walking and
941 cycling using a mixed GPS-travel diary approach. *Transportation Research Part A: Policy and Practice* 123 (2019), 130–146. <https://doi.org/10.1016/j.tra.2018.08.022> Walking and Cycling for better Transport, Health and the Environment.

942 [29] K.L. Pickering, M.G. Aruan Efendy, and T.M. Le. 2016. A review of recent developments in natural fibre composites and their mechanical
943 performance. *Composites Part A: Applied Science and Manufacturing* 83 (2016), 98–112. <https://doi.org/10.1016/j.compositesa.2015.08.038> Special
944 Issue on Biocomposites.

945 [30] Enrique ROMERO PINEDA. 2025. Removable fiber winding mandrel assembly having axially slidible inner and outer mandrel parts provided with
946 axially directed opposing guiding surfaces and complementary coupling portions. [https://patents.google.com/patent/WO2025131703A1/en?oq=](https://patents.google.com/patent/WO2025131703A1/en?oq=WO2025131703A1)
947 WO2025131703A1

948 [31] Jawed Qureshi. 2022. A Review of Recycling Methods for Fibre Reinforced Polymer Composites. *Sustainability* 14, 24 (2022), 16855. <https://doi.org/10.3390/su142416855>

949 [32] Joao Ribeiro, Manuel Rodríguez-Martín, Joaquín Barreiro, Ana Fernández-Abia, Roberto García-Martín, Joao Rocha, and Susana Martínez-Pellitero.
950 [n.d.]. New trends of additive manufacturing using materials based-on natural fibers and minerals : A systematic review. 11, 2 ([n. d.]), e41993.
951 <https://doi.org/10.1016/j.heliyon.2025.e41993> Place: England.

952 [33] Santhosh Kumar S and Somashekhar S. Hiremath. 2020. Natural Fiber Reinforced Composites in the Context of Biodegradability: A Review. In
953 *Encyclopedia of Renewable and Sustainable Materials*, Saleem Hashmi and Imtiaz Ahmed Choudhury (Eds.). Elsevier, Oxford, 160–178. <https://doi.org/10.1016/B978-0-12-803581-8.11418-3>

954 [34] Mohini Saxena, Asokan Pappu, Anusha Sharma, Ruhi Haque, and Sonal Wankhede. 2011. Composite Materials from Natural Resources: Recent
955 Trends and Future Potentials. In *Advances in Composite Materials - Analysis of Natural and Man-Made Materials*, Pavla Těšinová (Ed.). IntechOpen,
956 London, Chapter 6, 120–162. <https://doi.org/10.5772/18264>

957 [35] Yashas Gowda Thyavihalli Girijappa, Sanjay Mavinkere Rangappa, Jyotishkumar Parameswaranpillai, and Suchart Siengchin. 2019. Natural Fibers
958 as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. *Frontiers in Materials* Volume 6
959 (2019), 14. <https://doi.org/10.3389/fmats.2019.00226>

960 [36] United States Department of Agriculture - FAS. 2023. *Italian Industrial Hemp Overview 2023*. Technical Report. USDA Foreign Agricultural
961 Service. <https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByName?fileName=Italian+Industrial+Hemp+Overview+2020+>
962 _Rome_Italy_02-18-2020 Highlights revival post Law 242/2016; 4,000 ha on 800 farms.

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988