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Abstract

To this day, driving still is the most used form of trans-
portation. Therefore the risks that come with this responsi-
bility stay a pressing issue. In this follow-up research the
concept of a non-automated lane keeping assistance is fur-
ther developed. In this system the driver himself steers with
the help of auditory feedback. This feedback is based on the
driver’s position on the road as well as his steering angle.
To improve the previous model, the curvature of the track as
well as the curvature of the predicted path (based on steering
angle) are taken into account. A new variable which repre-
sents the angle between these curvatures is introduced. The
aim is not only to compare this concept with the method of
error prediction used in Blind Driving 2, but mainly to see
which type of feedback yields the best performance utilizing
a new algorithm. Using the new prediction algorithm in com-
bination with a directional, surround sound feedback system
results in better lane keeping performance on straight parts
of the track when looking at the root mean squared error
(RMSE). This feedback system describes in which direction
and how much the steering angle must be adjusted (auditive
beacon). Overall it does not result in better lane keeping
performance in comparison to a binary feedback system. In
this system the auditive feedback plays either left or right of
the driver and needs to be steered away from. The addition
of corner support, indicating when entering or exiting a turn,
as well as providing information regarding the sharpness of
the corner, is no improvement to the system. Considering that
there was no run without resets among the participants, the
system is not optimal. A side experiment did show that with
proper training a learning curve exists and can bring down
the total amount of resets per run significantly.

Introduction

Driving is predominantly a visual task (Groeger, 2000).
To be able to drive safely, a clear estimation of the po-
sition in relation to other road users and road boundaries
is indispensable.(Groeger, 2000)(Macadam, 2003) However,
visual information from the environment may be absent in
case of darkness, fog or rain (Edwards, 1999) (K. Smith,
1982). Moreover, studies have shown that glare sensitivity
and the loss of one’s visual fields were significant predictors
of crash involvement, as well as the decrease of the UFOV
(useful field of view), which is a problem with elderly drivers

(Rubin et al., 2007). Even in the case where visual informa-
tion is present, one may not use it properly. It is estimated
that 25% of traffic accidents are due to a distracted driver
(Young & Regan, 2007).

Autonomous driving technologies are becoming more
common. However, experts do state that fully automated
driving will not be technologically feasible before 2075
(Shladover, 2015). Even when autonomous driving tech-
nologies are fully developed, it could still be necessary for
a driver to take control. For example, in case of a malfunc-
tion or when the drivers prefer to drive themselves. Hence,
much research still has to be conducted before implementing
autonomous driving into society.

Previous studies have shown that auditory displays are
promising when used to warn or support human operators
because humans can receive auditory information from any
direction, irrespective of the orientation of their head and
eyes (Sanders & McCormick, 1987)(Stanton & Edworthy,
n.d.). The benefit of using auditory displays has already been
established by various research. Tactile and auditory col-
lision warnings improve the braking response time in rear-
end collision situations (Belz, Robinson, & Casali, 1999). A
more recent study has shown that the use of auditory feed-
back together with combined auditory and visual feedback
displays yielded improved performance in terms of response
times, total number of correct turns and subjective workload
in comparison to those using just visual feedback displays
(Liu, 2010). Bazilinskyy et al (2015) found that without pre-
dictor feedback, a driver was more likely to deviate from the
road than with predictor feedback. This feedback consisted
of a beep on either side which needed to be steered away
from. Lastly, a study using auditory feedback to influence the
choice of speed found that participants who received less au-
ditory feedback chose a higher velocity and were less accu-
rate in estimating their speed (Horswill & Mckenna, 2000).
Such a display can be designed in various ways. An example
is the racing auditory display (RAD), developed by Smith
and Nayar. This is an audio-based user interface that allows
blind players to play the same racing games as sighted play-
ers, with a similar efficiency and sense of control. A ’sound
slider’ is utilized in RAD, which indicates the appearance of
corners (B. A. Smith & Nayar, 2018).

As mentioned before, there is a need for assistive tech-
nologies that support the driver when visual information is
degraded, when the driver fails to process the available vi-
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sual information or when an autonomous system is not work-
ing. To gain knowledge on the feasibility of developing such
a system, the extreme case is evaluated eliminating all vi-
sual input. The intent is not to actually assist visually im-
paired drivers. This paper presents a follow-up research
aiming to improve the auditory feedback systems designed
in Blind Driving I and Blind Driving II (Bazilinskyy et al.,
2016)(Bazilinskyy et al., 2017). Hereafter, called ’BD1’ and
’BD2’, respectively. Instead, the intent is to focus on an er-
ror prediction algorithm which translates into useful feed-
back on straight parts of the track as well as in corners, since
both BD1 and BD2 preformed significantly better on one or
the other. As well as focusing on a more intuitive form of
feedback resulting in less oscillating behaviour. More specif-
ically, the focus is to test whether a directional, surround
sound feedback system, hereafter referred to as ’beacon’,
yields better lane-keeping performance than linear graded
binary feedback. This surround sound feedback system de-
scribes in which direction and how much the steering an-
gle must be adjusted. Also will be validated whether a cor-
ner support system improves lane-keeping performance. The
expectation is that both the beacon feedback and the corner
support improve lane-keeping performance, all using an er-
ror prediction utilizing the curvature of the predicted path as
well as the curvature of the track.

Method

Apparatus

For this research, a fixed-base driving simulator (figure
1, Green Dino) was used. An interface was programmed in
MATLAB/Simulink r2016b to retrieve data from the simu-
lator and to generate output via the driving simulators 4.0
integrated speaker system. This sound system was adapted
so that the four front speakers were placed in front of and
above the driver’s seat. The speed of the car was predeter-
mined, so the driver does not use the gas pedal. Also, the car
is automatic, so it is not necessary for the participants to shift
gears. In figure 1 the setup and the dimensions are shown.
The schematic figure show the top down dimensions. The
distance in height between the side speakers and the steering
wheel is 55cm and distance in height of the front two speak-
ers is 100cm. The speaker we used is a creative inspire 4.1
4400 without the sub-woofer.

Track

To compare results between BD1, BD2 and BD 3 it was
decided that the same track was used as in BD1 and BD2.
This track was a two-lane 7.5-km road without intersections
and without other road users. It contained straight segments,
180-degree corners, sharp 90-degree corners, most of which
had a radius of about 20 m. The lane width was 5 m. There
were four starting points, yielding four different segments

(a) (b)
Figure 1. (a)Setup of driving simulator (b)Schematic top-
down view

(Fig. 2). In each trial, the participant drove for 3 minutes.
The track, including starting points are displayed in Fig. 2.
The ending points are variable, since the experiment is lim-
ited by a 3 minutes driving time and not a predetermined
distance.

Figure 2. Track with 4 starting points

Error prediction

To be able to give useful auditory feedback a method was
developed to give a value to the predicted error of the ve-
hicle. A conceptual representation is given in figure 3. To
determine this predicted error that must be corrected the cur-
vature of the predetermined track (T) as well as the curvature
of the prediction line (P) are taken into account. Using the
steering angle and velocity to determine an expected path for
the vehicle, a prediction point (PP) is established mapping
the vehicle’s expected point in 2 seconds. A representation
of the distance between the car and PP following the line P
on the track T will determine a predicted point on the track
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(PT). Angle alpha indicates the angle between the tangent
lines to both PT and PP. The magnitude as well as the sign of
this alpha is the representation of the predicted error and will
then be translated to a certain amount of auditory feedback
explained in section Auditory feedback.

One issue with this error prediction is the case implied in
figure 3b. Angle alpha in this case will be undefined and
therefore give positive feedback, while the vehicle is not yet
on the desired track. To avoid this the expected lateral error
(E), a representation of the shortest distance of PP to T, is
taken in taken into account when angle Alpha is between a
certain bandwidth. In this case the amount of feedback is
decided using both angle alpha as well as the magnitude of
this lateral error.

(a) Corner (b) Straight
Figure 3. Error prediction on straight parts and in corners

Figure 4 shows the comparison between the prediction
methods of BD1, BD2 and BD3. The error prediction in BD1
and BD2 is represented by the lateral error. BD1 takes a lin-
ear velocity vector to describe the vehicle’s predicted path.
In BD2 the steering angle is also taken into account to evalu-
ate the predicted path. As described before BD3 utilizes the
angle between the tangent line of track and the tangent line of
the predicted path represented by the yellow and black lines
respectively.

Auditory feedback

Binary. In the binary feedback mode, sound either
comes from the right or the left. The aim is to steer away
from the sound and to minimize the volume, as an increase
in volume indicates an increase in predicted error. Strictly
speaking, the feedback is not purely binary, but in this re-
search, this is the terminology used. No auditory feedback
means the participant is on the desired track or within an al-
lowable bandwidth of 3 degrees and a lateral allowable band-
width of 0.5 m. The volume relates to the extent of steering
necessary to correct the predicted error. The sound used for
all the experiments is an interrupted tone with a constant fre-
quency of 463 Hz and a constant interval of 0.2 second sound
on and 0.2 second sound off, while the engine sound has a

Figure 4. Prediction methods BD1, BD2 and BD3

frequency between 90 and 105 Hz.

Beacon. The beacon feedback mode utilizes a funda-
mentally different type of feedback. In this type of auditory
feedback the source of the sound is mapped using 4 speak-
ers placed in front of the driver in the formation represented
in figure 1b. The predicted error is mapped along these 4
speakers, using a division of volume between these speakers
to mimic a shifting sound location in front of the driver which
the driver aims to follow. When angle alpha is between -20
and 20 degrees the sound is divided along speakers 2 and 3.
An error with a value between 20 and 40 degrees is mapped
along speakers 3 and 4 and lastly a value between -20 and
-40 by speaker 1 and 2. An angle exceeding this bandwidth
is represented by either 1 and 4. In this form of feedback, no
audio signal also indicates the driver is on the desired track
in the same manner as for binary feedback.

Corner support

To clarify when a turn starts or ends, corner support was
implemented. Before a corner starts, the driver hears a set
of tones on the side in which direction the car needs to be
steered away from. The sound is played once, twice or thrice,
depending on how sharp the curve is (with 926 Hz and inter-
val of 0.01 seconds on and 0.01 seconds off). The degree
of sharpness directly links to the needed steering angle. For
a wide curve, corresponding to a steering angle between 0
and 90 degrees, the sound plays thrice. The tone plays twice
for an angle varying from 90 to 180, and once for a range of
180 to 270, which corresponds to the sharpest type of curve.
When exiting a turn, the driver hears the same sound on both
sides for 1 second.
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Experiment design

Participants. Twenty people, aged 19 to 26 with a mean
age of 22.9 years, participated in the experiments. Out of
these participants, 15 were male and 5 were female. Each
participant possessed a driver’s license; the average amount
of driving experience was 4.5 years.

Form. Three different feedback systems were tested: bi-
nary, beacon and binary including corner support. All these
systems operated with the new error prediction algorithm.

Each participant tested all three feedback systems. Be-
fore participating in each feedback system, clear instructions
were given about the particular system. In addition, a one-
minute sighted test drive was conducted to increase famil-
iarity with the system. After each session, a questionnaire
was administered. This, the NASA Task Load Index (TLX),
assess the perceived workload.

The order of test sessions was alternated among the partic-
ipants, to take into account a learning effect that could occur.
Half of the participants started testing the binary feedback
system, after which they tested the binary feedback system
including corner support and lastly the beacon feedback sys-
tem. The other group performed the test in opposite order.
Every test drive had a duration of one minute and every ses-
sion a duration of three minutes.

During the test session, MATLAB and Simulink were
used to store the required data to evaluate the test drive.

Learning Curve. To show the effect of a possible learn-
ing curve two participants conducted the session a total of
9 times. 5 of which were on the same track alternated with
4 sessions on a different track. Between each session these
participants got clear instructions and feedback from one of
the researchers on how to use the feedback system to their
advance. One participant tested binary, and the second par-
ticipant tested beacon. To evaluate if a learning curve occurs
the 5 sessions driven on the same track are compared, since
the difference in tracks might influence the results.

Results

To compare the three feedback systems, three main as-
pects were looked at. Root mean square error (RMSE), In
lane percentage (ILP) and the amount of resets. As can be
seen in figure 5 the average RMSE for binary feedback in-
cluding corner support is the lowest (2.85 m) and the ILP the
highest (73.0%). The average amount of resets (11.4) is also
the highest. Beacon based feedback results in the highest
RMSE (3.01 m) and the lowest ILP (66.1%), but does also
has the lowest amount of resets (9). Looking at the standard
deviation beacon shows the highest values for all aspects,
while binary has very little spread. This is also visible in
figure figure 6 showing RMSE, ILP and amount of resets per
participant.

(a) (b) (c)
Figure 5. Boxplots of (a)Root mean squared error per partic-
ipant (b)Average in lane percentage per participant (c)Total
number of resets per participant

(a) (b) (c)
Figure 6. (a)Root mean squared error per participant
(b)Average in lane percentage per participant (c)Total num-
ber of resets per participant

Figure 7. Results NASA TLX

The outcome of the NASA TLX (Figure 7) show that bi-
nary is perceived to require the least amount of workload.
Binary including corner support on the other hand is seen
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as the system requiring the most amount of workload and
sensed as highly frustrating.

The performance of the three systems in a corner is not
addressed by these figures. Figure 8 shows the boxplots for
the RMSE in corners as well as on straight parts of the track
to be able to compare the systems. Beacon has a much lower
RMSE for straight parts (2.89 m vs 3.18 m), while binary
performs the best in corners.

(a) (b)
Figure 8. Boxplots of (a)Root mean squared error in corners
per participant (b)Root mean squared error on straight parts
per participant

To analyze the results from the learning curve experi-
ments, the same aspects are used as in the main experiment.
Figure 9 shows that the most notable difference is in the num-
ber of resets during the experiment.

Discussion

This study was aimed to use the benefits of auditory feed-
back as mentioned in the introduction to assist a driver in
certain scenarios. In particular when visual information is
degraded, when the driver fails to process the available visual
information or when an autonomous system is not working.
We do think the use of this concept can be useful when fur-
ther developed. BD3 is not optimized enough yet to use in
real life situations.

It can be derived from these results that, while using
the new prediction method algorithm, beacon feedback only
yields better lane keeping performance on straight parts of
the track when looking at the RMSE. Overall it does not
result in better lane keeping performances. The spread in
results, which is very visible for the beacon support implies
that beacon might be a hard system to master but is not nec-
essary a faulty system. Binary seems to be easier to com-
prehend, since it does not show a spread as significant and
is found the least demanding. Looking at the RMSE and
ILP, the corner support scores very similar to both beacon
and binary. This could be due to the fact that the corner
support was always tested after binary and therefore the par-
ticipants were not completely inexperienced anymore. The

(a) ILP (b) Resets

(c) RMSE (d) RMSE in Corners
Figure 9. Results Learning Curve Experiment

amount of resets is significantly higher, which complies with
the high workload the participants experienced. The contra-
diction between the high amount of resets, the high ILP and
the low RMSE presumably comes from the fact that after
a reset the participant is placed back exactly on track. This
benefits the average of these aspects. It seems the corner sup-
port is confusing and distracts the participants from focusing
on the feedback. In conclusion, binary feedback yields better
results than a beacon feedback system. Also the addition of
a corner support is no improvement to the system.

Since driving a car with visual feedback usually takes peo-
ple months to master, it can also be expected that it will take
some time to develop the skills to drive with auditory feed-
back only. BD2 performed elaborate testing with the devel-
opers of the system, the results of the main experiment from
BD3, performed by unbiased participants, does not show a
significant improvement over BD2. This is arguably caused
by the lack of experience of the participants. Since the partic-
ipants of the experiments of BD3 only executed every feed-
back system once, it is impossible to determine any learning
curve in BD3. To investigate the possibility of a learning
curve, another experiment was conducted. The results of this
experiment imply that there is indeed a learning curve when
trained in these feedback systems, but further research is re-
quired to confirm this hypothesis.

Furthermore, BD2 has a fair amount of oscillation after a
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curve before stabilizing again. In BD3 this oscillation is ob-
served to be much less. This might come due to the fact that
BD3 uses a derivative (namely the tangent line) in contrast
to BD2. In comparison to BD2 no significant improvement
is achieved. One important factor to take into account while
comparing these results is that the five participants in BD2 all
conducted the experiment various times and were involved
with the implementation of the system. The participants of
BD3 were all unbiased and inexperienced in driving in this
particular driving simulator.

Future studies may build on the methods presented in this
paper, and focus on the development of the auditory feed-
back. In particular, the beacon feedback could be improved.
In addition, the algorithm that combines the lateral error pre-
diction with the angle between the predicted curve and track
should be further developed. The collaboration between both
errors is not optimized yet. A proposed direction of re-
search is to examine whether Head Related Transfer Func-
tions (HTRFs) give a realistic sound location as they repre-
sent the physical sound source by mimicking this virtually.
Another possible improvement might be to apply an arch
shaped rail, on which the speakers can move so that the pre-
cise location of the sound source is more clearly indicated.
Also, this method of prediction indicates an angle, which is
hard to translate to a directional beacon. Future studies might
focus on a beep that indicates direction instead of an angle.

Supplementary Material

Example test drives of the three feedback systems:

• Beacon: https://youtu.be/PyGILpMZ26U
• Binary: https://youtu.be/T7kBxnoMQbU
• Corner Support: https://youtu.be/xFMQJa8nSmU

Folder with all the MATLAB and Simulink algorithms:
https://drive.google.com/open?id=1l6FrG0XTp8jSwt

_M9VKxVxpxKzccjj4r
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