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Robot-Like In-Vehicle Agent for a Level 3 Automated Vehicle

XINGJIAN ZENG, Eindhoven University of Technology, The Netherlands

PAVLO BAZILINSKYY, Eindhoven University of Technology, The Netherlands

With the rapid development of automotive technology and artificial intelligence, in-vehicle agents have great potential to solve the
challenges of explaining the status of the system and the intentions of an automated vehicle. A robot-like in-vehicle agent was designed
and developed to explore the in-vehicle agent communicating through gestures and facial expressions with a driver in a SAE Level
3 automated vehicle. An experiment with 12 participants was conducted to evaluate the prototype. The results showed that both
interactions of facial expressions and gestures can reduce workload and increase usefulness and satisfaction. However, gestures seem
to be more functional and preferred by the driver while facial expressions seem to be more emotional and preferred by passengers.
Furthermore, gestures are easier to notice but difficult to understand independently, and facial expressions are hard to notice but more
attractive.

CCS Concepts: • Human-centered computing → Empirical studies in interaction design; HCI theory, concepts and models;
Empirical studies in HCI; Usability testing; Laboratory experiments.
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1 Introduction

With the development of automotive technology and artificial intelligence, in-vehicle agents (IVAs) have emerged as a
transformative innovation for intelligent transportation systems. These agents are often embodied as driving assistants
and are integrated into the driving system. IVAs are classified as voice agents, virtual agents, and physical agents. The
purpose of integrating IVAs of any type is to help the driver with driving tasks and improve the driving experience [29].

1.1 In-Vehicle Agents in Manual and Automated Vehicles

In the manual driving context, the IVAs can not only help with driving-related tasks like vehicle-to-vehicle communica-
tion (both vehicles need to install IVA) [16], or non-driving related tasks like comfort children to reduce distractions for
the driver [13], but also minimize driver’s distraction by decreasing the number of directed utterances with a set of
robots [22], reduce driver’s fatigue through social communication [26], and mitigate drivers’ negative affective status
through giving positive comments about the situation [31].
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2 Zeng and Bazilinskyy

IVAs can explain the system status and intentions of an automated vehicle (AV) [18, 24, 30, 36, 45]. The user interface
(UI) of IVAs can be a voice UI [24], a visual UI [18], or a physical UI [9]. Lee and Jeon [29] suggest that physical agents
aid in better driving behaviour and overall experience, especially in the context of automated driving (AD). Zihsler et al.
[45] and Chakravarthi et al. [9] showed that physical agents with facial expressions and gestures, respectively, can
increase trust in AVs.

In an AD context, IVAs perform better in improving overall experience [29], such as explaining the status of the
system with animation of a chauffeur avatar and a world in miniature [18], or using the "How + Why message" to lead
better driving performance [24]. On the other hand, an IVA can serve as a companion by adopting a conversational
dialogue style, using emotional tones and first-person language, which fosters a ’human-agent relationship’ with
the driver [27], giving the driver a sense of a "human-agent relationship". Furthermore, IVAs can increase trust and
acceptance in AD using social cues and anthropomorphism to translate the state of the vehicle into human behaviour
and expressions, which can be intuitively interpreted by the driver [45].

Physical agents can be divided into consumer products on the market and prototypes in research. Physical agents do
not appear to be popular in Europe. However, Chinese and Japanese companies have already published a few physical
agent products on the market. Nomi [32], Xiaodu [6], and Mochi [11] all have a geometric appearance and digital
screens for facial expressions. Nomi can access the CAN bus. However, these products do not use gestures and act
as virtual agents to improve the driving experience. Intelligent Puppet [33] is a comfort robot for babies rather than
helping drivers with driving tasks. Kirobo Mini [10], RoBoHoN [2], and NAO [19] are usually applied as humanoid
agents in IVA studies [25, 30, 38, 40, 41]. However, Kirobo Mini and RoBoHoN are initially companion robots, and NAO
is used for coding education, which means that all of these humanoid robots are not designed specifically for driving
scenarios. The Affective Intelligent Driving Agent (AIDA) [43, 44] is the first physical agent designed especially for
driving scenarios. AIDA can act as a human passenger, communicate with the driver, and help the driver with some
tasks. The robot human-machine interface (RHMI) [38] can use eye colour and body movements to warn the driver of a
take-over request 5 seconds before it is issued. Carvatar [45] is another physical agent aimed at AD scenarios, using
facial expressions to convey information and improve trust.

1.2 Interaction with In-Vehicle Agents

Voice interaction is a common communication method for IVAs in SAE Level 3 AD vehicles due to its minimal visual
distraction [41]. Research on IVA voice interaction, including speech emotion and gender, indicates that no single voice
suits all listeners and situations [21]. Lee et al. found that voice agents aligning with social role stereotypes (informative
male and social female) enhance perceived ease of use (PEU) and perceived usefulness (PU) [28]. Jeon et al. showed the
effectiveness of an in-vehicle software agent in mitigating effects on driver situation awareness and performance [20].
Ruijten et al. showed that conversational interfaces are more trusted, liked, anthropomorphised, and perceived as more
intelligent than graphical UIs [36].

As IVAs evolve from voice-only agents to physical agents, interactions become more complex. Both virtual and
physical agents can engage in visual interactions, with virtual agents being 2D or 3D characters, and physical agents
having a physical appearance and facial expressions [14, 18, 23, 38, 43, 45]. However, the interesting thing is that except
for AIDA published in 2014, other concepts are all in the context of AD.

Gestures are a unique feature of physical agents compared to other agents. The robot developed by Srivatsan et al.
[9] shows that robotic objects are a promising technology to improve passengers’ experience in AVs. RHMI developed
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Robot-Like In-Vehicle Agent for a Level 3 Automated Vehicle 3

Fig. 1. The design concept of the robot-like IVA.

by Tanabe et al. [38] can adjust the turning angle, speed, and opening angle of the lid to inform different levels of
emergency: normal state, unstable state and suspended state.

Social interactions, such as small talk, significantly increase driver trust compared to voice interactions alone [25].
Although robot agents can be visually distracting, yet increase trust, voice agents are preferred in low-speed situations
[41]. Drivers have mixed attitudes towards conversational robot agents [30]. Both voice and robot agents improve
likability and perceived warmth, with voice agents better at anthropomorphism, and robot agents offering greater
competence and lower workload [40].

IVAs (especially physical IVAs) have significant potential to help with driving tasks and improve the driving
experience, as well as a solution to the challenges raised in the context of AD. There is a research gap in exploring the
advantages and challenges of combining facial expressions and gestures with voice interaction in physical IVAs. This
project explores this area. Two research questions were defined: RQ1: How to develop a robot-like IVA for the SAE Level

3 AD scenario? and RQ2: What are the advantages and challenges of comparing gestures and voice interaction with facial

expressions and voice interaction in SAE Level 3 AD scenarios? In the context of this work, AD is assumed to be SAE
Level 3 [37]. In this project, a robot-like IVA was designed and developed to answer these two questions.

2 Interview and Design of In-Vehicle Agent

To understand attitudes and expectations about IVA and driving behaviour in Asian countries and Europe, five
participants (5 males, M = 28.8, SD = 3.42) were invited to an interview (see supplementary materials/interview). Four
of the participants had experience driving in Europe and one of the participants had experience driving in both Japan
and Europe. The results showed that long-distance driving can be boring and can cause us to get distracted. Although
only one of them had heard of IVA (Nomi of NIO), others were interested in the concept.

The sketch (Figure 1 (a)) presents three modalities, and the middle one was developed further. The face shows
expressions and the body rotates to present different gestures according to seven highway scenarios [8] (Figure ??). The
IVA prototype is not a robot that acts independently, but a physical form of the whole driving assistant system [30].
Figure 1 (b) shows the 3D model created in Rhino 8 (STL files are in the supplementary material). The shell is 3D printed
and contains a round 1.28 inch IPS-TFT display (240*240 pixels, IPS GC9A01) inside the round head (r=31mm) connected
to ESP32 (Figure 1 (c)). The gestures are driven by an SG90 servo motor inside the stand connected to Arduino Uno R3
(Figure 1 (d)). No speaker was installed in the prototype because, in the real vehicle, the sound comes from the vehicle’s
audio system, rather than a physical robot. Figure 1 (e) shows the whole prototype.

The TFT display was connected to an ESP32 board and controlled by the Arduino IDE [3] (v.2.3.2) on the Apple
Macbook A2442. See the supplementary material for the code. Five facial expressions (normal, smile, excited, realising,
sad) were designed, shown in Table 1.
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4 Zeng and Bazilinskyy

Scenarios IVA gestures
(GV) Dialogues (FV & GV) Facial expressions

(FV) Dialogues (B)

Greeting Greeting (gesture)

"Welcome! My name is
Eva. Shall we start our
trip?" (Driver: Yes) "Here
we go!"

Enter highway Situation reporting "We will enter the
highway ahead."

"Enter the
highway ahead."

Speed limit and
speed report

"The speed limit is 90, and
right now we are at 87."

“The speed limit
ahead is 90, the
current speed is
87.”

Overtaking

Situation
reporting;
overtaking
(gesture)

"The front car is driving
too slow, shall we
overtake it?" (Driver: Yes)
"Let’s do this!" (After
overtaking) "WOW, nice!"

Line changing
(construction) Situation reporting

"Seems there is a
construction ahead, we
need to change line."

Congestion Situation reporting
"Seems there is a traffic
jam, we need to slow
down."

Exit highway Situation reporting "We will exit the highway
ahead."

"Exit the highway
ahead."

Table 1. IVA behaviour (gestures, facial expressions, and dialogues) in seven highway scenarios.

To enable the Arduino IDE to run on ESP32, the Arduino core [12] for ESP32 was installed. Libraries Adafruit
GC9A01A [1] (v.1.1.1), Adafruit GFX [5] (v.1.11.9), and TFT_eSPI [4] (v.2.5.43) were installed in the Arduino IDE to run
the code on the TFT display.

The SG90 servo motor was connected to an Arduino Uno board and controlled by Arduino IDE on the laptop. The
library Servo (v. 1.2.1) was installed in Arduino IDE to run the code on the servo motor. Three gestures were designed in
this project according to the scenarios [8] in Table 1: (1) greeting: turn to the driver (starting position), then turn front
(100/s, clockwise) to check the surroundings (66.7/s, clockwise and counterclockwise) and turn back to the driver (100/s,
counterclockwise); (2) situation reporting: turn front (100/s, clockwise) and turn to the driver (100/s, counterclockwise);
(3) overtaking after got permission: turn front and rotate to face the vehicle be overtaken (100/s, clockwise, only 30
degrees with SG90), then turn back to the driver (100/s, counterclockwise).

3 Method of Experiment

An experiment was conducted to evaluate the design. The experiment had three groups: Group 𝐵 (baseline), Group 𝐹𝑉

(facial expressions and voice), and Group𝐺𝑉 (gestures and voice). The behaviour of IVA in different groups is shown in
Manuscript submitted to ACM
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Robot-Like In-Vehicle Agent for a Level 3 Automated Vehicle 5

Fig. 2. Experimental setup.

Table 1. 𝐵 as a baseline only had robotic voice interaction, making it sound like a conventional in-vehicle navigation
system and convey limited information. Thus, 𝐵 presented the Tesla Full Self-Driving (supervised) driving-assistance
system. All audio was generated from PlayHT [34] and was edited as another soundtrack in a 4.5-minute video recorded
in GTA V. The study was approved by the Ethical Review Board of Eindhoven University of Technology and the
participants gave their informed consent to use their data.

The videos of scenarios were recorded in the GTA V video game [35] running on a Windows PC according to Table
1, and the highway route is chosen from downtown to Beeker’s Garage. To get an inside view of AD, two mods were
applied: (1) Dynamic Vehicle First Person Camera Mod [15], allowing the camera inside the vehicle to get the driver’s
perspective and (2) Enhanced Native Trainer Mod [42], which makes characters invisible (i.e., no hands holding the
steering wheel were visible, providing a sense of driving in an AV).

A total of 12 participants (age: M = 27.42, SD = 2.11; 7 females and 5 males) from Eindhoven University of Technology
joined the user test through the user test link posted on the social media platform. And no financial inducement
was offered for the user test. All participants were over 18 years of age and had a driver’s licence (issued in different
countries). Three participants had experience of driving with Tesla autopilot. Figure 2 shows the experimental setup. A
screen (RCA RS32F3), headphones (Sennheiser MOMENTUM 4), and the robot-like IVA prototype were connected to the
laptop (Apple Macbook A2442). For each participant, the lowest point of the prototype was adjusted by stacking books
(5.5 cm from the desk surface) until the participant could see the whole TFT display. The position of the robot-like IVA
prototype is settled on the front right of the participant, corresponding to the position above the dashboard in a real car.

The author briefly introduced the background information about SAE Level 3 AD to the participants. The participants
then took a seat and had three groups of tasks to complete: 𝐵, 𝐹𝑉 and𝐺𝑉 . 𝐵 was a baseline and was always first, but for
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6 Zeng and Bazilinskyy

Table 2. Results from the NASA TLX scale [17].

B FV GV
M(SD) M(SD) M(SD)

Mental demand (%) 34 (23) 24 (26) 20 (18)
Physical demand (%) 33 (27) 28 (28) 11 (12)
Temporal demand (%) 21 (18) 21 (22) 15 (13)
Performance (%) 34 (27) 22 (24) 17 (13)
Effort (%) 28 (25) 22 (25) 25 (21)
Frustration (%) 48 (28) 19 (16) 19 (15)
Average (%) 33 (21) 23 (24) 18 (14)
Note: B=Baseline, FV=Facial expressions and voice, GV=Gestures and voice.

half of the participants, the sequence of 𝐹𝑉 and 𝐺𝑉 was switched. The prototype was controlled by the author during
the experiment. After each group of tasks, participants were asked to fill in the NASA Task Load Index scale [17] to
measure workload and the acceptance scale [39] to measure overall experience on an iPad. Finally, a semi-structured
interview was conducted to collect the user test experience. During each group of tasks, participants were asked to
imagine themselves in the SAE Level 3 AV and do their daily work as a secondary task (either replying to messages,
watching videos on a mobile phone/iPad, or reading a book). They were allowed to look up and check the situation at
any time. If they felt that they wanted to take over the control immediately, they were asked to inform the author about
it.

The experiment interview was analysed through thematic analysis. The themes were generated after coding the data
in the transcription.

4 Results of Experiment

The workload scores (Table 2) of 𝐹𝑉 (M=23, SD=24) and 𝐺𝑉 (M=18, SD=14) were both less than 𝐵 (M=33, SD=21),
and 𝐺𝑉 had the lowest workload score among the three groups. For the dimension of Physical demand, the workload
score of 𝐺𝑉 (M=20, SD=18) was around half of 𝐵 (M=34, SD=23). When comparing 𝐹𝑉 and 𝐺𝑉 separately, 𝐺𝑉 had
lower workload scores than 𝐹𝑉 in the other five dimensions, except Effort, and lower standard deviation values in
all dimensions. However, 𝐺𝑉 (M=25, SD=21) scored a higher workload score than 𝐹𝑉 (M=22, SD=25) in the Effort
dimension. And 𝐹𝑉 had almost the same Temporal demand as 𝐵.

Table 3 shows the usefulness and satisfaction scores of each participant for 𝐵, 𝐹𝑉 , and𝐺𝑉 . Both 𝐹𝑉 and GV had higher
overall usefulness and satisfaction scores than 𝐵, and 𝐹𝑉 scored the highest both in usefulness and satisfaction among
all. Except for Annoying-Nice, 𝐹𝑉 obtained higher or equal scores compared to 𝐺𝑉 , as well as lower or equal standard
deviation for all dimensions. Furthermore, 𝐺𝑉 received scores far lower (over 0.5) than 𝐹𝑉 in the Unpleasant-Pleasant
and Sleep-inducing-Raising Alertness dimensions.

According to the results of the experiment interview (see supplementary material), 7 participants preferred 𝐺𝑉

(gestures and voice), 5 participants preferred 𝐹𝑉 (facial expressions and voice) and no one preferred 𝐵 (baseline). The
reason for choosing gestures could be summarised as follows: (1) they have better perception than facial expressions
(P1, P2, P3, P6, P8); (2) gestures move before the voice conveys information, providing more time to get out of the work
and concentrate on the road situation (P1, P11); (3) facial expressions make people distracted (P8); (4) understanding
facial expressions needs time (P1, P2, P8). The others who chose facial expressions suggested: (1) facial expressions
Manuscript submitted to ACM
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Table 3. Results from the acceptance scale [39].

Negative (-2) Positive (+2) B FV GV
M(SD) M(SD) M(SD)

Useless Useful 1.00 (1.04) 1.33 (0.78) 1.08 (1.16)
Unpleasant Pleasant 0.67 (0.98) 1.17 (0.39) 1.08 (0.67)
Bad Good 0.83 (0.94) 1.25 (0.45) 1.08 (0.79)
Annoying Nice 1.08 (0.67) 1.25 (0.62) 1.33 (0.65)
Superfluous Effective 0.92 (1.00) 1.25 (0.75) 1.25 (0.75)
Irritating Likeable 0.67 (0.78) 1.08 (0.79) 0.83 (1.03)
Worthless Assisting 1.00 (0.95) 1.17 (0.58) 0.92 (0.90)
Undesirable Desirable 1.00 (0.60) 1.17 (0.83) 0.83 (1.19)
Sleep-inducing Raising Alertness -0.33 (0.89) 0.75 (0.75) 0.17 (1.27)
Overall usefulness score 0.68 (0.72) 1.15 (0.48) 0.90 (0.82)
Overall satisfaction score 0.85 (0.61) 1.17 (0.59) 1.02 (0.79)
Note: B=Baseline, FV=Facial expressions and voice, GV=Gestures and voice.

can provide more emotional support than gestures (P2, P4, P5, P10); (2) facial expressions do not have the noise of
rotating (P7); (3) cannot understand the meaning of gestures (P12). Details of the interview thematic analysis are shown
in Table4.pdf (see supplementary materials). In summary, four main themes were concluded: (1) perception (not just
visual), efficiency, trust issues, and emotional support. Although 𝐵 could be perceived by the user, it still needs to
provide more information to explain the current status. This is also related to the trust of the system. (2) 𝐹𝑉 works
better in emotional support than𝐺𝑉 , however, it is difficult for users to notice and understand facial expressions in a
short time. (3)𝐺𝑉 has a higher perception than 𝐹𝑉 and 𝐵, but it is hard to understand the meaning and is a little boring.
(4) All groups have trust concerns.

5 Discussion

We developed a robot-like IVA capable of voice interactions for an SAE Level 3 AV with five facial expressions and
three gestures and evaluated it in an experiment.

There were notable results. (1) Both interactions of facial expressions and gestures can reduce workload in an SAE
Level 3 AD scenario, and increase the usefulness and satisfaction of the driver. Both 𝐹𝑉 and 𝐺𝑉 were effective in
reducing workload, and the effect of𝐺𝑉 was better than 𝐹𝑉 . Furthermore,𝐺𝑉 greatly reduced the workload of Physical
demand. The reason may be that the gestures were always triggered before voice interaction and can be easily noticed by
the participants, which leaves some time for them to get out of their work and focus on the road. The facial expression
was shown at the same time as the voice was played, which may have caused the participants to check both road
situations and expressions, resulting in a higher score of Temporal demand. As for the great reduction in Frustration,
probably because IVA provide a sense of companionship, either through voice interaction, facial expressions or gestures.
On the other hand, the acceptance scale shows better results in 𝐹𝑉 than GV, even though both groups can improve
usefulness and satisfaction. This may indicate that gestures work better in reducing workload (functionally) and facial
expressions work better in enhancing usefulness and satisfaction, providing more affective support (emotionally). The
results of the thematic analysis of the interview showed that: (1) Participants who preferred gestures also indicated
that gestures could remind them that something was going to happen before the voice informed them about it; while
participants who preferred facial expressions argued that expressions were more intuitive (P5), comforting (P2), and
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8 Zeng and Bazilinskyy

cute (P4). (2) Although voice interaction is a more efficient way for an IVA to convey information, it is still not enough.
The challenges could be missing information (P1) or needing more explanation (P3, P5, P9), and gestures can provide
more time to get out of the secondary task and concentrate on the traffic situation. (3) Gestures appear to be more
functional and preferred by the driver while facial expressions are more emotional and preferred by passengers. (4)
Gestures are easier to notice but difficult to understand independently, and facial expressions are the opposite. (5) Users’
concerns about physical IVA could be classified into four aspects: perception (not just visual), efficiency, trust issues,
and emotional support.

After the experiment, two engineers from Nissan Co. were interviewed to discuss the project from the point of view
of the vehicle manufacturer. They noted that installing physical IVAs in vehicles is challenging, especially if connected
to the CAN bus. Privacy concerns arise if an IVA accesses vehicle functions, and the IVA’s position must be considered
to prevent injuries during airbag deployment.

The secondary task was not defined in the experiment because people have different driving habits. However, some
people would look at the view outside while others read a paper. They had different levels of commitment to the
secondary task, which may have led to errors. Different secondary tasks and different sitting postures also influence the
participants’ field of view. That is why some participants could easily notice the IVA, while others could not. Different
driving modes of IVA could be defined to suit different workloads of secondary tasks. The experiment was conducted
with a video, rather than in a real vehicle. Two participants (P10, P12) mentioned that they may have acted differently
if they had felt the acceleration and deceleration of the vehicle. Since exposure to each group was only 4.5 minutes
per participant, it is hard to predict if participants would get bored or fall asleep in case of extended duration. Some
participants were curious about the video and always looked up in all groups. Even switching 𝐹𝑉 and𝐺𝑉 to reduce the
error, they knew what would happen when they tested 𝐹𝑉 and 𝐺𝑉 .

For future work, the combination of facial expressions and gestures could enhance the concept. Designing more
intuitive gestures and 3D facial expressions is also recommended. Integrating IVA with other human-machine interfaces
in the vehicle could make IVA the manager of all in-vehicle communication. Since the study method is Wizard of Oz,
user tests in a working system are suggested to have more precise results. Different driving modes of IVA (when the user
is working on laptop/reading a book/talking with others/driving alone, etc.) should be defined based on the feedback
from the participants. Different appearances and sizes of IVA might also make a difference to the workload, satisfaction,
and usability. Furthermore, different driving modes of IVA have different degrees of impact on the SAE level [37], which
level of automation benefits the most would also be interesting to explore in the future. Additionally, exploring IVA’s
potential in interacting with vulnerable road users (VRUs) such as cyclists and pedestrians is suggested. The IVA was
placed above the dashboard, where it can also be visible to people outside. So, it could communicate information to
them by gestures and facial expressions, helping them in interactions with VRUs [7]. However, physical IVA will have a
significant impact on safety in a car accident, so a protection chamber on the dashboard will be considered in future
work.

6 Supplementary material

Interview, STL files, analysis and Arduino code, materials used in the experiment, and raw data can be found at: https://
www.dropbox.com/scl/fo/8xz3ok1s4zsagf7nytky5/AJQPehMbzmQAZ8ncz3LqjfQ?rlkey=25dct1vyd3dzqyxyvihy34h4u&
st=zu8ty1mn.
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