Take-over again: Investigating multimodal and directional TORs to get the driver back into the loop

Petermeijer, S. M., Bazilinskyy, P.*, Bengler, K., De Winter, J. C. F.

Applied Ergonomics, 62, 204–215 (2017)
ABSTRACT When a highly automated car reaches its operational limits, it needs to provide a takeover request (TOR) in order for the driver to resume control. The aim of this simulator-based study was to investigate the effects of TOR modality and left/right directionality on drivers' steering behaviour when facing a head-on collision without having received specific instructions regarding the directional nature of the TORs. Twenty-four participants drove three sessions in a highly automated car, each session with a different TOR modality (auditory, vibrotactile, and auditory-vibrotactile). Six TORs were provided per session, warning the participants about a stationary vehicle that had to be avoided by changing lane left or right. Two TORs were issued from the left, two from the right, and two from both the left and the right (i.e., nondirectional). The auditory stimuli were presented via speakers in the simulator (left, right, or both), and the vibrotactile stimuli via a tactile seat (with tactors activated at the left side, right side, or both). The results showed that the multimodal TORs yielded statistically significantly faster steer-touch times than the unimodal vibrotactile TOR, while no statistically significant differences were observed for brake times and lane change times. The unimodal auditory TOR yielded relatively low self-reported usefulness and satisfaction ratings. Almost all drivers overtook the stationary vehicle on the left regardless of the directionality of the TOR, and a post-experiment questionnaire revealed that most participants had not realized that some of the TORs were directional. We conclude that between the three TOR modalities tested, the multimodal approach is preferred. Moreover, our results show that directional auditory and vibrotactile stimuli do not evoke a directional response in uninstructed drivers. More salient and semantically congruent cues, as well as explicit instructions, may be needed to guide a driver into a specific direction during a takeover scenario.